A DETERMINANTAL INEQUALITY

FOR POSITIVE DEFINITE MATRICES

R. C. Thompson

(received December 28, 1960)

Let $H = (H_{i,j})$ $(1 \le i,j \le n)$ be an $nk \times nk$ matrix with complex coefficients, where each $H_{i,j}$ is itself a $k \times k$ matrix $(n, k \ge 2)$. Let |H| denote the determinant of H and let $|H| = |(|H_{i,j}|)|$ $(1 \le i, j \le n)$. The purpose of this note is to prove the following theorem.

THEOREM. If H is positive definite Hermitian then $|H| \le ||H||$. Moreover, |H| = ||H|| if and only if $H_{i,j} = 0$ whenever $i \ne j$.

The case n = 2 of this theorem is contained in [1].

Before proceeding to the proof, we introduce some notation. Suppose $2 \leq p \leq m$ and let $z_i = (z_{i,1}, z_{i,2}, \ldots, z_{i,m})$ have complex coefficients for $1 \leq i \leq p$. Then define $(z_1, z_2) = \sum_{r=1}^m z_{1,r} \bar{z}_{2,r}$ and define $z_1 \wedge z_2 \wedge \ldots \wedge z_p$ to be a vector with ${}_{m}C_p$ coordinates as follows: the coordinates of $z_1 \wedge z_2 \wedge \ldots \wedge z_p$ are the $p \times p$ minors of the matrix $Z = (z_{i,j})$ $(1 \leq i \leq p, 1 \leq j \leq m)$ where the ordering of the coordinates is lexicographic based upon the columns of Z. For example, if p = 2 and m = 3,

$$z_1 \wedge z_2 = \left(\begin{vmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \end{vmatrix}, \begin{vmatrix} z_{1,1} & z_{1,3} \\ z_{2,1} & z_{2,3} \end{vmatrix}, \begin{vmatrix} z_{1,2} & z_{1,3} \\ z_{2,2} & z_{2,3} \end{vmatrix} \right).$$

The proof of our theorem rests on the known fact [2] that if also $y_i = (y_{i,1}, y_{i,2}, \ldots, y_{i,m})$ for $1 \le i \le p$, then $(z_1 \land z_2 \land \ldots \land z_p, y_1 \land y_2 \land \ldots \land y_p) = |(z_i, y_j)|, 1 \le i, j \le p$.

Canad. Math. Bull. vol. 4, no. 1, January 1961

We now turn to the proof of our theorem. If $W = \operatorname{diag}(W_1, \ W_2, \ \dots, \ W_n) \text{ is the direct sum of n non-singular } k \times k \text{ matrices } W_1, \ W_2, \ \dots, \ W_n \text{ then } | WHW^* | = |WW^* | |H|, \\ \operatorname{and} \ \| WHW^* \| = |(|W_iH_{i,j}W_j^*|)| = \| W \| \ \| H \| \ \| W^* \| = |WW^* | \| H \|. \\ (W^* \text{ is the conjugate transpose of } W.) Thus, if <math display="block"> |WHW^*| \leq \| WHW^* \| \text{ then } |H| \leq \| H \|, \text{ and if } |H| = \| H \| \text{ then } |WHW^* | = \| WHW^* \|.$

Since H is positive definite, $H=VV^*$ for some triangular V. We write $V=(V_{i,j})$ $(1\leq i,j\leq n)$ where each $V_{i,j}$ is $k\times k$ and $V_{i,j}=0$ if i>j. Let $W_i=(V_{i,i})^{-1}$ for $1\leq i\leq n$. Then $WHW^*=(WV)(WV)^*=XX^*$ where

Here each $X_{i,j}$ is $k \times k$ and I_k denotes the $k \times k$ identity matrix. Since $|XX^*| = 1$, to prove that $|H| \leq ||H||$ it suffices to prove that $||XX^*|| \geq 1$. Moreover, if |H| = ||H||, then $||XX^*|| = 1$. If we can show that this implies that $X = I_{nk}$ then $V = W^{-1}$ and hence $H = VV^*$ satisfies $H_{i,j} = 0$ for all $i \neq j$.

Let x_1, x_2, \ldots, x_{nk} be the row vectors of the matrix X. Then

$$(x_{(i-1)k+1}^{x}(i-1)k+2^{x}...^{x}ik, x_{(j-1)k+1}^{x}(i-1)k+2^{x}...^{x}jk)$$

$$= |(x_{(i-1)k+s}, x_{(j-1)k+t})|, 1 \le s, t \le k,$$

so that

$$\|XX^*\| = \|(x_i, x_j)\|, 1 \le i, j \le nk,$$

$$= |(x_{(i-1)k+1} \land \dots \land x_{ik}, x_{(j-1)k+1} \land \dots \land x_{jk})|,$$

$$1 \le i, j \le n,$$

$$= (x, x)$$

where

$$x = (x_1 \wedge x_2 \wedge \dots \wedge x_k) \wedge (x_{k+1} \wedge x_{k+2} \wedge \dots \wedge x_{2k})$$

$$\wedge \dots \wedge (x_{(n-1)k+1} \wedge \dots \wedge x_{nk}).$$

Then $\|XX^*\|$ is of the form $\Sigma |u_i|^2$ where the u_i are the coordinates of the vector x and are polynomials in the elements of the matrix X. We complete the proof by showing that among the u_i we find 1 and all of the non-zero off-diagonal coefficients of X. Let $X = (x_i, j)$.

The first coordinate of $x_1 \wedge x_2 \wedge \ldots \wedge x_k$ is 1, and the first coordinate of $x_{(j-1)k+1} \wedge \ldots \wedge x_{jk}$ is zero for $2 \le j \le n$ since each such coordinate is the determinant of a matrix of zeros. Similarly, the coordinate of $x_{(i-1)k+1} \wedge \cdots \wedge x_{ik}$ constructed from columns (i-1)k+1, (i-1)k+2, ..., ik of the matrix

$$A_{i} = \begin{pmatrix} x_{(i-1)k+1} \\ x_{(i-1)k+2} \\ \dots \\ x_{ik} \end{pmatrix}$$

whose rows are the vectors $x_{(i-1)k+1}$, $x_{(i-1)k+2}$, ..., x_{ik} , is 1; and for all j > i this coordinate in $x_{(j-1)k+1} \land \dots \land x_{jk}$ is the determinant of the zero matrix. This means that if we form the matrix A whose rows are the vectors $x_{(i-1)k+1} \land \dots \land x_{ik}$ for $1 \le i \le n$, then

is one of the minors of A. (Here, the asterisk indicates elements whose precise values do not matter.) Thus one u_i is 1.

For fixed i $(1 \le i \le n-1)$ let s, t be integers such that $1 \le s \le k$ and $ik \le t \le nk$. The minor of the matrix A_i constructed from columns $(i-1)k+1,\ldots,(i-1)k+s-1,$ $(i-1)k+s+1,\ldots,ik$, t has value $+x_{(i-1)k+s}$, t. Hence one of the coordinates of $x_{(i-1)k+1} \wedge \cdots \wedge x_{ik}$ is $+x_{(i-1)k+s}$, t. In $x_{(j-1)k+1} \wedge \cdots \wedge x_{jk}$ for j > i this same coordinate is a determinant with at least k-1 columns of zeros and hence is zero. Consequently, one of the minors of A is (after, possibly, a permutation of its columns)

$$i - 1 \begin{cases} 1 & & & \\ & \cdot & & \\ & & \cdot \\ & & 1 \\ & & -\frac{x}{1}(i-1)k+s, t \\ & & 1 \\ & & & \\ & & & 1 \end{cases}$$

Thus it follows that $\pm x_{(i-1)k+s}$, t is one of the coordinates of x.

It is now clear that

$$\|XX^*\| = 1 + \sum_{i, s, t} |x_{(i-1)k+s, t}|^2 + \sum |u_i|^2$$

where the last sum is over the remaining u_i . Hence $||XX^*|| \ge 1$ and $||XX^*|| = 1$ implies that all $x_{(i-1)k+s,t}$ vanish so that $X = I_{nk}$.

The proof of the theorem is now complete.

Everitt's proof of the case n=2 depended on the fact that if A and B are positive definite $k \times k$ Hermitian matrices then |A+B| > |A| + |B|. We are now able to reverse the logic and deduce this inequality from our theorem. For let

$$C = \begin{pmatrix} A + B & A^{\frac{1}{2}} \\ \frac{1}{A^2} & I_k \end{pmatrix}$$

where $A^{\frac{1}{2}}$ is Hermitian and satisfies $(A^{\frac{1}{2}})^2 = A$. Let

$$T = \begin{pmatrix} I_k & -A^{\frac{1}{2}} \\ 0 & I_k \end{pmatrix}.$$

Then $TCT^* = diag(B, I_k)$ is positive definite so that C is also. Moreover, |C| = |B|. Applying our theorem to C, we find $|C| \le |A + B| - |A|$ or $|A + B| \ge |A| + |B|$. We cannot have equality here since $A^{\frac{1}{2}} \ne 0$.

As another application of the case n = 2 we deduce an inequality due to Fischer [3]. Let

$$H = \begin{pmatrix} A & B \\ & \\ C & D \end{pmatrix}$$

be an $(m + n) \times (m + n)$ positive definite Hermitian matrix where A is $m \times m$ and D is $n \times n$. Suppose $m \ge n$ and let $H_1 = \text{diag}(H, I_{m-n})$. $(H_1 = H \text{ if } m = n.)$ Write $H_1 = (H_{i,j})$ for $1 \le i$, $j \le 2$ where $H_{1,1} = A$ and $H_{2,2} = \text{diag}(D, I_{m-n})$. Applying our theorem we find that

$$|H| = |H_1| \le |H_{1,1}| |H_{2,2}| - |H_{1,2}| |H_{2,1}| \le |A| |D|$$

with equality if and only if B = 0.

Since Fischer's inequality implies Hadamard's inequality, it follows that the case n = 2 of our theorem also implies Hadamard's inequality.

By a standard continuity argument, we may extend our result to non-negative Hermitian matrices.

COROLLARY. If H is non-negative Hermitian then $\big|\,H\big| \leq \big\|\,H\,\big\|\,.$

REFERENCES

- 1. W.N. Everitt, A note on positive definite matrices, Proc. Glasgow Math. Assoc. 3 (1958), 173-175.
- 2. J.H.M. Wedderburn, Lectures on Matrices, Amer. Math. Soc. Colloquium Publications XVII (1934), 16-19 and 63.
- 3. L. Mirsky, An Introduction to Linear Algebra, (Oxford, 1955), 420.

University of British Columbia