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1. Introduction 

Let Xt, i = 1, 2, 3, • • • be a sequence of independent and identically 
distributed random variables and write S„ = - X 1 + . X 2 + * * • +Xn. If the 
mean of Xt is finite and positive, we have Pr(Sn = x) -*• 0 as n -> co for 
all x, — co < x < co using the weak law of large numbers. It is our purpose 
in this paper to study the rate of convergence of Pr(Sn iS. x) to zero. Neces­
sary and sufficient conditions are established for the convergence of the 
two series 

f>* Pr{Sn = x), — 0 0 < 3 ! < 0 0 
n=l 

where k is a non-negative integer, and 
00 

2 ern Pr(Sn ^ x), - c o < x < co 
n=l 

where r > 0. These conditions are applied to some first passage problems 
for sums of random variables. The former is also used in correcting a 
queueing Theorem of Finch [4]. 

2. Two Probability Theorems 

Let Xt, i = 1, 2, 3, • • • be independent and identically distributed 
random variables. We write Sn = Xl+Xi+ • • • +Xn, X~ = min (0, X() and Xf = Xi+Xj. 

We shall establish the following two Theorems: 

THEOREM A
 1. Suppose E\X\ < co, EX > 0 and let k be a non-negative 

1 My attention has been drawn to a statement of Theorem A without proof in Smith, 
W. L. "On the elementary renewal theorem for non-identically distributed random variables" 
Univ. North Carolina Mimeographed Notes No. 352 (Feb. 1963). Professor Smith states 
that a proof of this result will appear in a paper entitled "On functions of characteristic 
functions and their applications to some renewal-theoretic random walk problems". 
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[2] Two probability theorems 215 

integer. A necessary and sufficient condition for the convergence of the series 

f « * Pr(Sn <x), — co < x < oo, 

is that 7i|A:-|*+2 < co. 

THEOREM B. Suppose E\X\ < co and EX > 0. A necessary and suf­
ficient condition for the convergence of the series 

%eTnPr(S„ <>x), - c o < a ; < c o , 
« - i 

for some r > 0 is that X~ has an analytic characteristic function i . 
(It is clear that analogous Theorems will hold in the case EX < 0). 

We defer the proofs of Theorems A and B until some Lemmas have been 
established. 

LEMMA 1. / / E\X\r < co for some integer r ^ 1 and EX > 0, then 

2 n"2 Pr(Sn ^ x) < co, — co < x < co. 

PROOF: Write EX = p. Using Katz [5], Theorem 1, we have 

2 nT~2 Pr{\S„—np\ ^ we} < co, every e > 0 

from which we obtain, in particular 

(1) 2>r - 2
 Pr{SK = (p—e)n) < oo, every e > 0. 

Now we choose e so small that E < p. We then have, for n sufficiently 

Pr (S . 3S *) = Pr(Sn = {p-e)n) 

and the result follows immediately from (1). 

LEMMA 2. Let E\X\ < oo and EX > 0 or else E\X\ = co and, in either 
case, E\X~\r < oo for some integer r 2j 1. Then 

2 nr~2 Pr(Sn = x) < 00, — 00 < X < 00. 

PROOF. We define a new random variable Y as follows 

Y = X if X < K 
= 0 otherwise, 

where the constant K ( > 0) is chosen so that EY > 0. Then, Y <^ X and 
E\Y\r < <• . It follows from Lemma 1 that 

* The term "analytic characteristic function" is used for a characteristic function which 
is analytic in a strip containing the origin as an interior point. 
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216 C. C. Heyde [3] 

2 nr~2 Pr{Y1-\-Yi-\ \-Yn ^ *) < oo, — oo < x < oo. 
Also, if A^+XjH \-Xn g x, then Y^Y^ \-Yn ^ x so that 

Pr • - • +Yn ̂ x) 2= P r ^ + X . - r - • • • +Xn^x) = Pr(Sn^x) 
and hence 

2 M ' - 2 i 3r(S„ < x) < oo, —oo < a: < oo. 

This completes the proof. 

LEMMA 3. Let E\X\ < oo, EX = u > 0 awo* 

2 »* ^ x) < oo, — o o < a ; < c o 

/or some non-negative integer k. Then 7i|X_|*+2 < oo. 
Our proof relies heavily on techniques used by Erdos [3]. 

PROOF. Write X* = Xt-/t and Z „ = J,tixt- We then have 

Pr(Sn £x) = Pr{Zn ^ x-n/t) ^ Pr(Zn ^ - « c ) 
for c > n and M sufficiently large. 

Now from the fact that E\X\ < oo, it follows by a simple rearrangement 
that 

ZPr(X*< ~{c+e)n) < oo, 
n- l 

for arbitrary £ > 0. Also, since the terms in this series are non-increasing, 
we have 

(2) nPr{X* < —(c+e)n) 0 as » -»• oo. 
Write { £ } for the event E and { £ } for the complement of {E}. We have 

{Zn = -ne)2U [{X? < -»( '+*)} « • • • +Xt-i+Xt+i+ • • • 
+X*\ < (n-l)e}], 

and for the sake of brevity, we put 

Af = {X* < -n{c+e)}, 
Bi = {\X*+ • • • +x:_1+X*+1+ • • -+X*\ < (n-l)e}, 

i = 1, 2, 3, • • •, n. Thus, 
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= Pr[ U {(At n By) n(A2nB2)n---n (A(_y n Bt_y) n(A{n B{)}] 
i=l 

= I Pr[(Ay n By)n • • • n(A(_y n BH)n(^ n B,)] 
<-i 

(3) ^ i P r ( i 1 n i 2 n - - n i H n / l i n B j ) 
i=l 

^ 2 [Pr{At n B ^ - P r ^ u A2 u • • • u A{_y) n A J] 
1=1 

=S 2 LPriBJ-li-VPrlAMPriAt) 
1=1 

^ J [Pr(Bt)-n Pr{Ay)]Pr{At). 

Now take arbitrary p,0 < p <1 and c5 > 0 such that 1—25 3: p. It follows 
from the weak law of large numbers that we can find an integer Ny such that 

Pr(Bf) > 1-6 for n ^Ny. 

Also, from (2), we can find an integer iSSg-such that 

n Pr(Ay) < <5 for n Si N2• 

Thus, for n Si max {Nlt N2), we have from (3) 

(4) Pr(Zn < -nc) Si np Pr(X* < —(c+e)n), 

and hence 

Pr{X* < ~{c+e)n) < oo. 

We now introduce the random variable Y defined by 

Y = X* if X* < 0 
= 0 otherwise, 

and obtain 

2 Pr{Y < ~{c+e)n) < oo. 
It follows from this, by a simple rearrangement, that £|Y|*+2 < oo and 
hence that E\X~\*+i < oo. This completes the proof. 

PROOF OF THEOREM A. Theorem A follows immediately from Lemmas 2 
and 3. 

We now go on to give two Lemmas leading up to a proof of Theorem B. 

Pr(Zn^-nc)^Pr[\J (AtnBt)] 
•=i 
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218 C. C. Heyde [5] 

The development of the proof is similar to that used above in the proof 
of Theorem A. 

LEMMA 4. Suppose X~ has an analytic characteristic function and either 
E\X\ < oo and EX > 0 or E\X\ — oo. There exists a constant R > 0 
such that 

2,ernPr(Sn ^x) < oo 
for every x, —oo < x < oo and every r, 0 < r < R. 

PROOF. Since X~ has an analytic characteristic function, there exists a 
constant K > 0 such that 

0(8) - E(e~ex) < oo 

for all 8 in 0 5g 8 < K. Now for such a 8, a well-known Chebyshev type 
inequality gives 

Pr(Sn = x) ^ eBx E(e-9S«) = ee"{0(8)}n. 

Also, in view of our assumption that E\X~\ < oo and either E\X\ < oo 
and EX > 0 or E\X\ = oo, we must have 0(6) < 1 for sufficiently small 
positive 6. We then choose R so small that eR0(8) < 1 and for all r, 
0 <r < R, 

^ V " Pr(Sn ^ a) < oo. 

This completes the proof of the Lemma. I am indebted to the referee for 
this direct proof. My original proof was based on Baum, Katz and Read 
[1], Theorem 2, 190. 

Lemma 4 is a generalization of the well-known result of Stein [9] 
which deals with the case X~ = 0. It should be noted that although Stein's 
result is correct, his proof is invalidated by a misinterpretation of the 
Markov chain property of the sequence { S B } of sums. 

LEMMA 5. Let E\X\ < oo. Suppose EX = u > 0 and 

2 ern Pr(S„ = x) < oo 

for all r, 0 < r < R and all x, — oo < x < oo. Then X~ has an analytic 
characteristic function. 

PROOF. We retain the notation of Lemma 3. Proceeding precisely as 
in Lemma 3, we obtain (4) 

Pr(Zn = -nc) 3r nP Pr(Xf < -(c+s)n), 

so that certainly 

Y Pr(X; < -(c+e)n) < oo. 
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We now introduce the random variable Y defined by 

Y = X* if X* < 0 
= 0 otherwise, 

and obtain 
JTE,NPR(Y < —(C+E)N) < oo. 

It follows immediately, using Lukacs [7], Theorem 7.2.1, 137, that Y 
and hence X~ has an analytic characteristic function. This completes the 
proof of the Lemma. 

PROOF OF THEOREM B: Theorem B follows immediately from Lemmas 4 
and 5. 

It is worth remarking that it is quite likely that in Theorems A and 
B the condition E\X\ < oo, EX > 0 can be replaced by the condition 
E\X\ < oo, EX > 0 or E\X~\ < oo, E\X\ = oo. 

3. APPLICATION TO SOME FIRST PASSAGE PROBLEMS 

Let XU I = 1, 2, 3, • • • be independent and identically distributed 
random variables and write S„ = XJ+X2+ • • • +XN. Consider a single 
boundary at A(^0) so that if 

f 1 X 2: 0 

\ 0 X < 0, 

FX(X) = PRIS^X), 

FN(X) = PR(S„ ^ X; max SK ^ A), N > 1, 

the probability PN that the first passage time out of the interval (—oo, A] 
for the process S n is N is given by 

Pn = FN-X(A)-FN(A), N ^ 1-

This passage problem in the case A = 0 arises, for example, in the busy 
period distribution of the queue GI/G/1 which has been considered by various 
authors such as Finch [4]. 

We introduce the probability generating function P{K) = ^LIARPR 

for the first passage time distribution (henceforth abbreviated F.P.T.D.) 
PR(N = « ) = P N . We have formally 

00 

P ' ( 1 ) = E(N) = L+2FR(A) 

^"(1) =LR(R-\)PR = E(N*)-E(N) = 2ZRFR(A), 
f-2 r-1 
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and in general for k > 1, 

P (*>(1) = (a)* (the k-th. factorial moment of N) 

= ¿2 ( r ) ( t F r ( ^ ) = 2 s ( * , r ) £ ( i V 0 
r=*-l r=0 

where (»-)* = r(r— l)(r—2) • • • ( r — ¿ + 1 ) and s(A, r) are the Stirling 
numbers of the first kind. It is thus clear that E{NT) < co for some positive 
integer r if and only if ^n'-^F^A) < co. Also, the random variable 
N has an analytic characteristic function if and only if the radius of con­
vergence of P{X) is greater than unity or equivalently if ]?eTnFn(A) < co 
for some r > 0. 

Now we write 

qn = Pr ( max Sk ^ 0), n > 1; qa = 1. 

Spitzer [8], 332, shows that 

(6) f ? B * » = e x p ( 2 ^ i V ( S B ^ 0 ) l , 

a result originally due, in a slightly different form, to E. Sparre Andersen. 
From this we obtain 

9 n > - Pr(Sn £ 0). n 
Thus, 

Pr(Sn =A)^Pr(mSLxSk^A) = F„(A) ^qn^- Pr(Sn = 0), 
1S*S» W 

and we readily obtain from Theorem B: 

THEOREM 1. The F.P.T.D. generated by the random variable X with 
E\X\ < co and EX > 0 has an analytic characteristic function if and only 
if X~ has an analytic characteristic function. 

Further, we obtain immediately from Theorem A: 

THEOREM 2. Let r > 1 be a positive integer. Consider the F.P.T.D. 
generated by the random variable X with E\X\ < co and EX > 0. // the 
F.P.T.D. has a finite r-th moment, then E\X~\T < co. If, on the other hand, 
E\X~\r < co, then the F.P.T.D. has finite moments at least up to the {r—l)th. 

In the particular case where A = 0, we can improve this Theorem 
by virtue of the relation (6). In fact, formally differentiating (6) (r — 1) times, 
we see that 

2,nr-*Pr(S„ = 0) < co if and only if J,n'-iqn < co. 
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Thus, in view of our comments above, the r-th moment of the F.P.T.D. 
exists if and only if 

2»r-2
 PR(SN £ 0) < oo. 

We therefore obtain immediately from Theorem A: 
THEOREM 3. LET R > 1 BE A POSITIVE INTEGER. THE ZERO-BARRIER F.P.T.D. 

GENERATED BY THE RANDOM VARIABLE X WITH E\X\ < oo AND EX > 0 HAS A 
FINITE R-TH MOMENT IF AND ONLY IF X~ HAS A FINITE R-TH MOMENT. 

Before ending this section, it is worth remarking that Derman and 
Robbins [2] show that it is possible to have E\X*\ = oo, = oo and 
PR(SN > 0 i.o.) = 1, PR(SN ^ 0 i.o.) = 0 and hence, following Kemperman 
[6], Theorem 15.2, 81, 2 1/« PR(S„ > 0) = oo, 21/» PR(SN ^ 0) < oo. This 
provides us with a limitation on eventual improvements of the Theorems 
given above. 

4. Correction to a theorem of Finch [4] 

Let T] be the difference between the inter-arrival and service time 
in a GI/GJL queue. We refrain from stating the usual queueing assumptions 
for the sake of brevity. Let / / „ be the probability that N customers are 
served in a busy period. Then, as is well known, 

HI = PRHI > o) 

JI„ = P R ( max %+j j 2 - | 1-»?* ̂  0, R,N > 0), N > 1. 
lS*£n-l 

so that PR(T — N) = LTN is a zero-barrier F.P.T.D. 
Finch [4] gives the following Theorem (his Theorem 2, 223). 

THEOREM SUPPOSE THAT E\TJ\ < oo. WRITE II = JX-INI> N^ = 2 ^ i ? / 7

J . 

IF ER) Sr 0 

IF ER)<0 

IF ERI > 0 

IF ER) = 0 

IF EN < 0. 

It is the final part of the statement of this Theorem that is incorrect, 
namely that 

AND AN - PRFA+RJ^ \-N„ > 0). THEN, 

1 
OO 

l-exp{-2«_ 1«„} 
/7 = 

7V = 

e x p { 2 « - 1 ( l - « « ) } 
n=i 

oo 

2«„ exp{-2»-1«„} 
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N = 2 a » e x P { — 2 w _ 1 « n } < oo if En < 0. 
n—1 n—1 

In fact, under the condition Er] < 0, we see from a negative mean analogue 
of Theorem A that 2»=i an < 0 0 if a n < i O I U y if < Q 0 - Thus, N = oo 
if £»7 < 0 and 2i|»7+|2 < oo. Finch's error arises from an invalid application 
of the Borel zero-one criterion which yields Pr(Sn > 0 i.o.) = 0 or 1 
according as 2<*n < oo or = oo. Actually, using Kemperman [6], Theorem 
15.2, 81, Pr(S„ > 0 i.o.) = 0 or 1 according as 2 w _ 1 < l n < °o or = oo. 
Finch's Theorem and his proof of it can easily be repaired in terms of these 
comments. A correct statement of the Theorem is as follows: 

THEOREM. Suppose that E\n\ < oo. Write 17 = Y £ x /7,, N = 2S=i j'77,, 
and a„ = Prfa+n^ \-nn) > 0. Then 

n = 

N -

1 if En>0 
CO 

1—exp {— J if Er) <0 
n- l 

exp {2 n-\l-an)} ifEv>0 
n=l 

oo if En = 0 or En < 0 and i?|j?+| 2 = oo 
00 00 

2 a„ exp {— 2 if En < 0 and £|J?+|2 < oo. 
V n=l n=l 
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