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1. Introduction

Let X;, 7=1,2,3, - be a sequence of independent and identically
distributed random variables and write S, = X,+X,+ -+- +X,. If the
mean of X, is finite and positive, we have Pr(S, < z) - 0 as # — oo for
all z, — o0 < & < o using the weak law of large numbers. It is our purpose
in this paper to study the rate of convergence of Pr(S, < ) to zero. Neces-
sary and sufficient conditions are established for the convergence of the
two series

>n*Pr(S, =z, — << 0
n=1
where % is a non-negative integer, and
o0
Sem Pr(S, = x), —o <z < 0
n=1
where » > 0. These conditions are applied to some first passage problems
for sums of random variables. The former is also used in correcting a
queueing Theorem of Finch [4].

2. Two Probability Theorems

Let X;, 1=1,2,3,--- be independent and identically distributed
random variables. We write S, = X,+X,+ -+ - +X,, X; = min (0, X)
and X} = X+ X7.

We shall establish the following two Theorems:

THEOREM A 1. Suppose E|X| < o, EX > 0 and let k be a non-negative

1 My attention has been drawn to a statement of Theorem A without proof in Smith,
W. L. “On the elementary renewal theorem for non-identically distributed random variables’’
Univ. North Carolina Mimeographed Notes No. 852 (Feb. 1063). Professor Smith states
that a proof of this result will appear in a paper entitled “On functions of characteristic
functions and their applications to some renewal-theoretic random walk problems’.

https://doi.org/10.1017/51446788700023417 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700023417

2] Two probability theorems 215

integer. A necessary and sufficient condition for the convergence of the series
o
> nk Pr(S, < z), —w <z < o,
n=1

is that E|X-|*? < c0.
TuEOREM B. Suppose E|X| < © and EX > 0. 4 necessary and suf-

Jicient condition for the comvergence of the series

S Pr(S, < x), —0 <2 < 0O,

=]

for some » > 0 is that X~ has an analytic characteristic function 2.

(It is clear that analogous Theorems will hold in the case EX < 0).
We defer the proofs of Theorems A and B until some Lemmas have been
established.

LemMmA 1. It E|X|" < oo for some integer r =1 and EX > 0, then
Sa2Pr(S, =z) < o, -0 <z < .
Proor: Write EX = u. Using Katz [5], Theorem 1, we have
> n 2 Pr{|S,—nu| = ne} < oo, every £ > 0

from which we obtain, in particular

) Sn2Pr(S, < (p—e)n) < ©, every ¢ > 0.
Now we choose ¢ so small that ¢ < u. We then have, for » sufficiently
large,

PrS.<z) < Pr(S, = (u—en)
and the result follows immediately from (1).

LEmMMA 2. Let E|\X| < o0 and EX > 0 or else E|X| = oo and, in either
case, E|X-|" < co for some integer r = 1. Then

Sw2Pr(S, <z) < w, —0 < & < 00.
ProoF. We define a new random variable Y as follows

Y=Xif X<K
= 0 otherwise,
where the c-nstant K (> 0) is chosen so that EY > 0. Then, Y < X and
EY|" < . It follows from Lemma 1 that

3 The term “analytic characteristic function’ is used for a characteristic function which
is analytic in a strip containing the origin as an interior point.
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Sn2Pr(Y,+Y,+---+Y,=2x) < oo, —0 <z < 0.
Also, if X,4+-X,+ -+ +X, <z, then Y;+Y,+ ---+Y, <z so that
Pr(Y +Y,+ - +Y, S2) 2 PrX;+X,+ -+ X, Sx)=Pr(S, = z)
and hence
SwtPr(S, =) < o, —0 <z < 0.
This completes the proof.
LeEMMA 3. Let E|X| < o0, EX =pu > 0 and
S ukPr(S, = x) < o, —00 < X < 0

for some non-negative integer k. Then E|X—|¥+2 < oo.
Our proof relies heavily on techniques used by Erdds [3].

PrOOF. Write X* = X,—u and Z, = 3% ; XF. We then have
Pr(S, =z) = Pr{Z, < z—nu) = Pr(Z, = —nc)
for ¢ > u and = sufficiently large.

Now from the fact that E}X| < o0, it follows by a simple rearrangement
that

% Pr(X¥ < —(ct+em) < oo,
fn=l

for arbitrary £ > 0. Also, since the terms in this series are non-increasing,
we have

(2) nPr(X¥ < —(c+eyn) >0 as n —> o,

Write {E} for the event E and {E} for the complement of {E}. We have

C=

{Zﬂ

IA

—ne} QU AT < —nle+e)} 0 {1 X7+ - - + XL+ X0+

+X3 < (r—1)e}],

i

Il

1

and for the sake of brevity, we put

A, = {XT < —n(ct+e)},
B, = {IXi"-i- e +X?~1+X:+1+ ° '+X:l < (”“1)3}:

t1=1, 2, 8,---, % Thus,
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Pr(Z,< —nc) = Pr[U (4, n B,)]

i=1

= PrlU{E A B) n (A0 By - -0 (A 30 By (g B
i=1

— S PIE A B)n - n(@a 0 B)n(4, 0 B)]

=1

(3) giPr(AlnAzn---nA',-_lnA,.an)

i=1

2 3 [Pr(d, 0 B)—Pr{{4,u 4,0 - U A,y) 0 4]

=1

> 3 [Pr(B,)—(i—1)Pr(4,)]Pr(4,)

M=

= 3 [Pr(B)—n Pr(4,)1Pr(4,).

i=1

|

Now take arbitrary p, 0 << p << 1 and 6 > 0 such that 1—24 = p. It follows
from the weak law of large numbers that we can find an integer N, such that

Pr(B,) > 1—6 for n = N,.
Also, from (2), we can find an integer M,-such that
n Pr(4,) < 6 for n = N,.
Thus, for » = max (N,;, N,), we have from (3)
(4) Pr(Z, < —nc) = np PrX? < —(c+e)n),

and hence
D nkt Pr(XT < —(c+e)n) < 0.
We now introduce the random variable Y defined by
Y=X*if X*<0

= 0 otherwise,
and obtain

2 nt Pr(Y < —(c+e)n) < oo.

It follows from this, by a simple rearrangement, that E|Y|**? < c0 and
hence that E|X—|*+2 < co. This completes the proof.

Proor oF THEOREM A. Theorem A follows immediately from Lemmas 2
and 3.

We now go on to give two Lemmas leading up to a proof of Theorem B.
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The development of the proof is similar to that used above in the proof
of Theorem A.

LEMMA 4. Suppose X~ has an analytic characteristic function and either
E|X| < o0 and EX >0 or E|X|= co. There exists a constant R > 0
such that

et Pr(S, Sz < ©

for every z, —0 < x < oo and every r, 0 <r < R.

Proor. Since X~ has an analytic characteristic function, there exists a

constant K > 0 such that
D(0) = E(e%%) < 0
for all 8 in 0 < 6 << K. Now for such a 8, a well-known Chebyshev type
inequality gives
Pr(S, < z) < €% E(e7 %) = 22{®(6) )"

Also, in view of our assumption that E[X-| < o and either E|X] <
and EX > 0 or E|X| = o, we must have @(0) < 1 for sufficiently small
positive 8. We then choose R so small that e®®(f) < 1 and for all 7,

0<r<R,
Sem Pr(S, < z) < oo,

This completes the proof of the Lemma. I am indebted to the referee for
this direct proof. My original proof was based on Baum, Katz and Read
[1], Theorem 2, 190.

Lemma 4 is a generalization of the well-known result of Stein [9]
which deals with the case X~ = 0. It should be noted that although Stein’s
result is correct, his proof is invalidated by a misinterpretation of the
Markov chain property of the sequence {S,} of sums.

Lemma 5. Let E|X| < 0. Suppose EX = u > 0 and
SemPr(S,sz) <

Jor all r, 0 <7 < R and all &, —o0 < x < 0. Then X~ has an analytic
characteristic function.

Proor. We retain the notation of Lemma 3. Proceeding precisely as
in Lemma 3, we obtain (4)

Pr(Z, < —nc) = np Pr(X¥ < —(c+e)n),
so that certainly
Sen PrX] < —(cte)n) < co.
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We now introduce the random variable Y defined by
Y=X*if X*<0
= 0 otherwise,

and obtain
e Pr(Y < —(c+e&)n) < .

It follows immediately, using Lukacs [7], Theorem 7.2.1, 137, that Y
and hence X~ has an analytic characteristic function. This completes the
proof of the Lemma.

Proor oF THEOREM B: Theorem B follows immediately from Lemmas 4
and 5.

It is worth remarking that it is quite likely that in Theorems A and
B the condition E|X| << oo, EX > 0 can be replaced by the condition
E|X{ < o, EX >0 or E|X-| < o0, E|X| = c0.

3. Application to some first passage problems

Let X,,2=1,2,3,--- be independent and identically distributed
random variables and write S, = X;+X,+ -+ +X,. Consider a single
boundary at 4(= 0) so that if

1 x =0
0 z <0,
Fi(x) = Pr(S; = z),

F,(x)=Pr(S, = x;lér:xéax 1Sk < 4), n>1,

the probability , that the first passage time out of the interval (—o0, 4]
for the process S, is # is given by

Pa= Fﬂ—l(A)_Fn(A)’ n=1.

Fo(z) =

This passage problem in the case A = 0 arises, for example, in the busy
period distribution of the queue GI/G/1 which has been considered by various
authors such as Finch [4].

We introduce the probability generating function P(i) = 322,49,
for the first passage time distribution (henceforth abbreviated F.P.T.D.)
Pr(N =n) = p,. We have formally

P'() = EQY) = 14 3 F,(4)

P(1) = S r(r—1)p, = E(N*)—E(N) = 2 3 F,(4),
r=1

r=2
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and in general for % > 1,

P®(1) = (a), (the k-th factorial moment of N)
k

=k 2 (MeFr(4) =23 sk r)EQD)
r=k—1 r=0
where (r), =r(r—1)(r—2)--- (r—k+1) and s(k #) are the Stirling
numbers of the first kind. It is thus clear that E(N") < oo for some positive
integer » if and only if > #™1F,(4) < . Also, the random variable
N has an analytic characteristic function if and only if the radius of con-
vergence of P(4) is greater than unity or equivalently if Y ¢™F,(4) <
for some r > 0.
Now we write

go=Pr(max 5, <0), n=1 g¢,=1L1
1sk<n

Spitzer [8], 332, shows that

o0 o] tﬂ
(6) > g,i" = exp {Z —PrS, = O)} R
n=0 n=1 "

a result originally due, in a slightly different form, to E. Sparre Andersen.
From this we obtain

1
90 = > Pr(S, = 0).
Thus,
1
PriS,=A4A)=ZPr(max S, = Ad)=F,(4)=q¢q, = " Pr(S,=0),
1=ksn

and we readily obtain from Theorem B:

THEOREM 1. The F.P.T.D. generated by the random variable X with
E|X| < © and EX > O has an analytic characteristic function if and only
if X= has an analytic characteristic function.

Further, we obtain immediately from Theorem A:

THEOREM 2. Let v > 1 be a positive integer. Consider the F.P.T.D.
generated by the random variable X with E\X| < oo and EX > 0. If the
F.P.T.D. has a finite r-th moment, then E|X~|" < o0. If, on the other hand,
E|X~|" < o0, then the F.P.T.D. has finite moments at least up to the (r—1)th.

In the particular case where 4 = 0, we can improve this Theorem
by virtue of the relation (6). In fact, formally differentiating (6) (r—1) times,
we see that

272 Pr(S, < 0) < o if and only if 3 »-1q, < co.
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Thus, in view of our comments above, the »-th moment of the F.P.T.D.
exists if and only if
Sw-2Pr(S, =0) < .

We therefore obtain immediately from Theorem A:

THEOREM 3. Let r > 1 be a positive integer. The zero-barrier F.P.T.D.
generated by the random variable X with E|X| < o and EX > 0 has a
finite r-th moment if and only if X~ has a finite r-th moment.

Before ending this section, it is worth remarking that Derman and
Robbins [2] show that it is possible to have E|X*| = oo, E|X~| = oo and
Pr(S, > 01i.0.)=1, Pr(S, = 01i.0.) = 0 and hence, following Kemperman
(6], Theorem 15.2, 81, 3 1/n Pr(S, > 0) = o0, 3 1/n Pr(S, < 0) < co. This
provides us with a limitation on eventual improvements of the Theorems
given above.

4. Correction to a theorem of Finch [4]

Let  be the difference between the inter-arrival and service time
in a GI/G|1 queue. We refrain from stating the usual queueing assumptions
for the sake of brevity. Let I, be the probability that » customers are
served in a busy period. Then, as is well known,

Hl = P’(ﬂl > O)

H,.:Pr(max 771+’72+"'+77k§0:77n>0)’ %> 1,
1<ksn—1

so that Pr(T = n) = II,, is a zero-barrier F.P.T.D.
Finch [4] gives the following Theorem (his Theorem 2, 223).

THEOREM Suppose that E|n| < co. Write II = 32, IT,, N = 332, 4II;,
and a, = Pr(n+ny+ -+« +n, > 0). Then,

1 if En=0
= 1—exp {— %1"_1%} if En <0

exp {En‘l(l—aﬂ)} if En >0
N={( . if En =0

Ja,exp{—3nla,} if En < 0.
n=1 n=1

It is the final part of the statement of this Theorem that is incorrect,
namely that
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N=3a,exp{—3nta,} < w if En<0.
Rl Nl

In fact, under the condition Eyn < 0, we see from a negative mean analogue
of Theorem A that >3, a, < oo if and only if E|y*|? < co. Thus, N =
if En < 0 and E|n*|? < oo. Finch’s error arises from an invalid application
of the Borel zero-one criterion which yields Pr(S, > 0 i0.) =0 or 1
according as ¥ @, < o or = . Actually, using Kemperman [6], Theorem
15.2, 81, Pr(S, > 0 io0.) = 0 or 1 according as X #1a, < o0 or = 0.
Finch’s Theorem and his proof of it can easily be repaired in terms of these
comments. A correct statement of the Theorem is as follows:

THEOREM. Suppose that Eln| < oo. Write II = 332, II,, N = 332,511,
and a, = Pr(n,+ns+ -+ +n,) > 0. Then

1 if En=0
= 1—exp {—'gln‘la,,} if En <0
exp { E n(l—a,)} if En >0
N=| o ”=1 if En =20 or En < 0 and E|y+? = o0

00 [+
Sa,exp{— X nla,} if En < 0 and Elp*2 < oo.
n=1 n=1
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