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Abstract

This paper concerns parabolic submonoids of a class of monoids known as singular Artin monoids. The
latter class includes the singular braid monoid—a geometric extension of the braid group, which was
created for the sole purpose of studying Vassiliev invariants in knot theory. However, those monoids may
also be construed (and indeed, are defined) as a formal extension of Artin groups which, in turn, naturally
generalise braid groups. It is the case, by van der Lek and Paris, that standard parabolic subgroups of
Artin groups are canonically isomorphic to Artin groups. This naturally invites us to consider whether
the same holds for parabolic submonoids of singular Artin monoids. We show that it is in fact true when
the corresponding Coxeter matrix is of 'type FC; hence generalising Corran's result in the 'finite type'
case.
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1. Preliminaries

We begin with some formal definitions. Let / be a finite indexing set, and let

M = (m,7)U e / denote the matrix, indexed by the elements of / , that satisfies:

(i) ma — 1 if i e I;

(ii) rriij = my, € {2, 3, 4 , . . . , oo} whenever i, j € I and / •£ j .

Such a matrix is known as a Coxeter matrix. Every Coxeter matrix M may be

associated with a graph TM defined as follows:
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(i) / is the set of vertices of FM;
(ii) any two nodes i, j e I are joined by an edge if m,; > 3;

(iii) the edge joining two vertices i and j is labelled by m,; if m,; > 4; edge labels
are suppressed whenever m,7 = 3.

Such a graph is referred to as a Coxeter graph of type M. Now let S = [a,< \ i e 1}
be a set in one-to-one correspondence with / . If X is a set, then X* denotes the free
monoid generated by X. If q is a natural number and i, j e / then (OjOj)q indicates
the alternating product CT,CT;CT, • • • of length q (that is, with q factors). The Artin group
of type M, GM, is the group generated by 5 subject to the relations

(OiOj)m'> = (<Tj<ri)mii for i, j e / , mu £ oo;

these relations are denoted by £%\ and called the braid relations. In arguments below
we regard a relation formally as an ordered pair of words. For example, the relation
OiOj = OjOi becomes the ordered pair (CT,CT;, cr,cr,)- If X is a set of ordered pairs of
words then XE = {([/, V) | (U, V) or (V, U) € X). The Coxeter group of type M,
WM, is the group generated by S subject to the preceding braid relations SP,\, together
with the relations of = 1 for every / in / . Hence, Coxeter groups arise as quotient
groups of Artin groups. If WM is finite then M (or TM) is said to be of finite type or
spherical type. A Coxeter group is finite precisely when its graph is a finite disjoint
union of the graphs shown in Figure 1 (see, for example, [14, 21]).

The first, and arguably the most well-known, (non-abelian) example of an Artin
group is the braid group established in 1925 by Artin [3]; thus the terminology Artin
group suggested by Brieskorn and Saito [9]. Indeed, Artin groups are also known as
generalised braid groups. Observe that Bn+U the braid group on n + 1 strings, arises
from the special case when / = { 1 , . . . , n}, niij = 3 when |i — j \ = 1, and m,; = 2
when 11 — j \ > 2. Its associated Coxeter graph is referred to as type An (shown
in Figure 1), and the corresponding Coxeter group is the symmetric group on n + 1
letters.

We now extend Artin groups as follows [11, 19]: put T = {r, | / e / } , and let
S~l = [CT,"1 I / € / } , the set of formal inverses of 5. The singular Artin monoid of
typeM, denoted by SGM, is the monoid generated by SU5"1 U7 and has as its defining
relations the set £$, which is comprised of the free group relations ata~l = a^a, = 1,
the braid relations 8%\, and the relations ^ 2 listed below:

T,CT, = o-,r, for all i in / ;

. \(o'iO-i}
n"'~lTi if m,, < oo and is odd, or

Ti(Oj0i)
mi>-* = \

\{o-jOi)m'' T, if ntiji< oo and is even;

Tixj = TjTi ifm,7 = 2.
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Type

An (n > 1)

Bn ( n>2 )

Dn ( «>4 )

En (n = 6, 7, 8)

F4

H4

hip) (P > 5)

Coxeter graph

n - l

n - 3 n - 2

n - l

FIGURE 1. The irreducible Coxeter graphs of finite type. Unlabelled edges have value 3.

We define the positive singular Artin monoid of type M to be the monoid generated
by SLIT and the set of defining relations comprised of both ^ and &2 listed above.

REMARK 1. The special case when the singular Artin monoid is of type An may
be familiar to some readers as the singular braid monoid on n + 1 strings, SBn+u

which was introduced by Baez [4] and Birman [8] in their study of knot invariants.
We remark that, although singular Artin monoids are defined (abstractly) by the above
generators and relations, SBn+l was originally introduced geometrically in [4, 8] and
was then shown (in [8, Lemma 3] and a subcase of [20, Theorem 2.1]) to admit the
preceding presentation.

Where it does not cause confusion, elements of GM and SGM may be referred to
by words which represent them. If A and B are elements of (5 U T U S"1)*, we write
A « B if A can be transformed into B by the use of the set of defining relations
of SGM, and A = B if the two words are equal letter by letter.

2. Parabolic subgroups and submonoids

Now let J be any subset of /. Recall that M is a Coxeter matrix over the finite
indexing set / . Denote by Mj the submatrix of M containing the entries indexed by J;
it is clear that Mj is also a Coxeter matrix. In accordance with Corran [12, Section 5],
we use the notation: Sj = {CT, | j 6 J}, SJl = {a~l | j € J}, Tj = {r, | j e J}.
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We denote by S?,\, and S%] the defining relations of GMj and SGM, respectively.
Then by the definition of these relations it is evident that J?i, c ^?, and 3?,j c <%.
The subgroups of WM and GM generated by Sj are denoted by WJ

M and GJ
M and are

called the standard parabolic subgroups of WM and GM respectively. Let Pj denote
the submonoid of SGM generated by Sj U SJ1 U Ty, that is, the set of equivalence
classes of words over Sj U SJ1 U Tj under « . Then Pj is referred to as the parabolic
submonoid defined by J [12, Section 5]. Notice that GJ

M is a homomorphic image
of the Artin group GMj. Lek [23] and Paris [24] showed that this homomorphism
is an isomorphism. This result was first discovered for Artin groups of finite type
in [9, 15] (it was also later proved in [10]); for 'extra-large' type Artin systems in [2];
and was gradually extended to include all types in [23, 24]. It is also well-known that
the subgroup W^ is canonically isomorphic to the Coxeter group associated with the
matrix My, its graph TM' is the full subgraph of TM generated by Sj.

An analogous result holds for singular Artin monoids of finite type: namely, that
SGMj naturally injects into SGM whenever M is of finite type, so that the image of
that embedding is precisely Pj [12, Proposition 33]. Hence the following holds.

THEOREM 2 (Corran [12, Theorem 34]). Parabolic submonoids of singular Artin
monoids of finite type are {isomorphic to) singular Artin monoids.

The Coxeter matrix M is said to be right-angled if

my € {2, oo] for i, j e / , i ^ ;'.

Right-angled Artin groups are also known as graph groups ox free partially commu-
tative groups [19]. Their applications extend to areas such as random walks, parallel
computation and cohomology of groups (see, for example, [7]). The Coxeter matrix
M is said to be of type FC if it satisfies the ensuing condition:

• For every / c / , either WMj is finite or ms, = oo for some s,t € J, s ^ t.

For example, the Coxeter group associated with the graph shown in Figure 2 is of
type FC [18]. The terminology FC refers to 'flag complex'; it is introduced in [10]
where the reader can find a detailed exposition and classification of such types.

FIGURE 2.

REMARK 3. Observe that both right-angled and finite type Artin groups are of
type FC. Furthermore, if M is of type FC and J c / , then Mj (the submatrix of M
containing the entries indexed by J) is also a Coxeter matrix of type FC.
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In [12, Section 5], Corran postulates that although it is not clear how to generalise
Theorem 2 to include singular Artin monoid of all types, she suspects that it does hold
for arbitrary types. The object of this paper is to extend this theorem of Corran to
singular Artin monoids of type FC. That is, we prove the following result.

THEOREM 4. Parabolic submonoids of singular Artin monoids of type FC are
(isomorphic to) singular Artin monoids.

Except when explicitly stated, we assume throughout this paper that M is of any
type. If V and W are words over Sj U SJ1 U Tj and represent the same element
of SGMj, write V %y W. By [23, 24], we have the following.

THEOREM 5. Let U, V be words over Sj U SJ1 such that U ^ V. Then U %y V.

In [16], it was shown that the singular braid monoid on n + 1 strings (that is,
the singular Artin monoid of type An) can be embedded in a group. The group
constructed by the authors relies heavily on the geometry of singular braids in space;
more specifically, it has a geometric interpretation as singular braids with two types
of (cancelling) singularities. By employing purely algebraic methods, Paris [25] gave
another proof of the fact that singular braid monoids inject into groups. In fact, all
singular Artin monoids embed into groups. This was shown (chronologically and with
completely different proofs) in [5, 22, 19]. An evident corollary of this is that left and
right cancellation hold in SGM.

PROPOSITION 6. LetC, W, V be words over SUS~lUT such that either CW «» CV
or WC % VC. Then W % V .

The next proposition is a subcase of what is known as the 'FRZ' property [19,
Proposition 4.1]. The property was first discovered in [17, Theorem 7.1] for the
singular braid monoid on n + 1 strings (defined in Remark 1); it was later shown to
hold for singular Artin monoids of finite type [12, Theorem 31] and of type FC [19,
Proposition 4.1]. B y [ 1, Appendix], the FRZ property holds for positive singular Artin
monoids of any type.

PROPOSITION 7. Assume M is of type FC. Let U be a word over S U S~' U T,
s, t € / and suppose crsU "» Uat. Then zsU & Ux,.

3. Proof of the main theorem

Let U, V be words over 5 U S~l U T. We say U and V differ by an elementary
transformation if there are words X and Y and a relation (/Ci, K2) € (M\ U ̂ 2 ) E such
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that V = XK\ Y and U = XK2 Y. We say that a word V is obtained from U by a trivial
insertion if there are words X, Y and a letter a € S U S~l such that £/ = XY and
V = Xaa~lY. In this case we also say that U is obtained from Vbya trivial deletion.

Define a monoid homomorphism Af from SGM to (2, +) by

Af : of1 •->• 0, r,- h-> 1 for i € /.

Thus N counts the number of taus in any given word. Now let W be a word over
5 U S~l U T, and supposeAf(W) = k>\. Then there are words W, over 5 U S~l and
generators xa. 6 7 such that W = W0xOl Wira2 • • • Wk-izat Wk. For r = 1, . . . , it, let

Ta,_, Wr_,aflr Wrrflr+1 Wr+1 • • • xat Wk

and

er(W) = Woxat W{ • • • Tflr., W r _!W r r a r + I Wr+l • • • xak Wk.

Hence both pr and 9r reduce the number of taus of W by 1. We observe that pr has
been previously defined in, for example, [6, 13].

LEMMA 8. Let W, V be words over S U S~l U T such that W % V, and suppose
J\f(W) = k is at least 1. Then for every r € { 1 , . . . , k} there exists an s € {1, . . .,k)
such that pr(W) % ps(V) and0r(W) % 0s(V).

PROOF. Let r be any integer such that 1 < r <k. Since W «s V, there is a sequence
Z i , . . . , Z, of words over 5 U S"1 U T such that W = Zx « Z2 « • • • « Z, = V
and Z,+i is obtained from Z, by an elementary transformation or by a trivial deletion
or insertion. If t = 1 the result is trivial and hence starts an induction. Suppose then
that t is least 2. If Z2 is obtained from Zy by a trivial deletion or insertion, it is evident
that Pr(Zi) «» pr(Z2) and 9r(Z\) « ^(Z2). So assume that Zi and Z2 differ by an
elementary transformation. If the relation involves any a, then inspection of 8%x U ^?2

gives Pr(Zi) % pr(Z2) and 0r(Zt) « 6r(Z2). Hence suppose the relation is of the form
(T,T,, XJXJ) where m,7 = 2. Then we see that either

pr(Zi) « pr+1(Z2) and

or

pr(Z.) «8 pr(Z2) and

or

and

Thus there exists an integer q € { 1 , . . . , k] such that

* P,(Z2> and 0r(Z,) « 0,(Z2).
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By the inductive hypothesis, we deduce that pq(Z2) « ps(Z,) and 0q(Z2) ^ 0s(Z,)
for some s e { 1 , . . . , k], whence pr(W) = pr(Zx) % Pq(Z2) ^ ps(Zt) = ps(V), and
similarly 0r{W) « #S(V), as required. The result now follows by induction. •

THEOREM 9. Suppose M is of type FC. Let J c /, and suppose U ^ V where U
and V are words over Sj U SJ1 U Tj. Then U ^j V.

PROOF. Lett/, V be words over S./USj'u Tj such that [/ « V,andputAT([/) = it.
If fc = 0, the result follows by Theorem 5 and starts an induction. So suppose k > 1.
Then there exists an a € 7 and words Xx> X2 over S, U SJ1 and 57 U SJ1 U 7y

respectively such that U = X1raX2. Thus

(1) X,TaX2 = £/ * V,

so by Lemma 8, there exists an r 6 {1, . . . , k} such that

(2) XlaaXi = pl(U)*pr<y) and XlX2 = 9l(U) * 0r(V).

Since jV(t/) = M(V) = k > 1, there are words 7,, 72 over Sj U SJ1 U Tj and a
generator r* € Tj such that

(3) V = YxxbY2, where Af(F,) = r - 1 and jV(72) = Jt - r.

Then

p r ( ) , f c 2 and

so by (2),

(4) XxaaX2^YxobY2 and

By noting that Xx is over 5y U SJ1, we deduce that XJ"1 is also over Sj U SJ1, so by
(4), we obtain

(5) aaX2^X;lYxabY2 and X2*X~lYxY2;

moreover by (3), we see that

(6) k-l=Af(YxY2)=M(X;lYxY2)>N(Yx)=Af(aaX;lYx).

Observe that by (5), aaXx
 lYxY2 % aaX2 % X~x

xYxobY2, so by Proposition 6,

(7) oa
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Since a, b € J, and Xx
l, X2, Yu Y2 are all words over Sj U SJ1 U Tj, (6) and (7)

together with the inductive hypothesis give

furthermore, by (6) and the inductive hypothesis applied to the second equivalence
of (5), we also infer that

\?) A2 ~y A, I\I2.

By Remark 3, Mj is also of type FC; thus Proposition 7 may be applied to (8), and
this yields

Hence

U = XxxaX2 by(l)

»y X.T.Xf'y,^ by (9)

^ X . X - ' ^ T , , ^ by (10)
t*jYiTbY2 = V by (3).

The result now follows by induction. Ill

PROOF OF THEOREM 4. Suppose M is of type FC. Recall that Pj denotes the
submonoid of SGM generated by Sj U SJ1 U Tj. By Theorem 9, <SGW, naturally
embeds in SGM with image Pj. Hence the parabolic submonoid Pj is canonically
isomorphic to the singular Artin monoid SGMj. •

REMARK 10. The reader may notice that the only part of the proof of Theorem 9 that
requires the FC condition is Proposition 7. Hence in order to strengthen Theorem 4
to show that it holds for singular Artin monoids of arbitrary type it suffices to prove
Proposition 7 for any Coxeter matrix M; the proof would then proceed unmodified to
that of Theorem 9.
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