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ESSENTIALLY COMMUTING TOEPLITZ OPERATORS
WITH HARMONIC SYMBOLS

KAREL STROETHOFF

ABSTRACT  In this paper we characterize the bounded harmonic functions f and g
on the unit disk for which the Toeplitz operators 7y and T, defined on the Bergman
space of the unit disk are essentially commuting

1. Introduction. We use dA to denote the area measure on the open unit disk D in
the complex plane, normalized so that D has measure 1. The Bergman space L2 1s the
set of analytic functions on D which are in L*(D, dA). Since the Bergman space L2 is a
closed subspace of L*(D, dA) there is an orthogonal projection P from L*(D, dA) onto L2
For f € L>(D, dA), the Toeplitz operator with symbol f, denoted by T}, is the operator on
L2 defined by T;h = P(fh), h € L2. Recently Sheldon Axler and Zeljko Cuckovié char-
acterized the bounded (complex- valued) harmonic functions on D for which the Toeplitz
operators 7; and T, commute. In [4] they proved that for bounded harmonic functions
f and g on D, the Toeplitz operators Ty and T, commute if and only if (i) both f" and g
are analytic on D, or (ii) both f and g are analytic on D, or (iii) there are constants ¢ and
b, not both 0, such that af + bg is constant on D. In this paper we will characterize the
bounded harmonic functions f and g on D for which the Toeplitz operators Ty and T, are
essentially commuting, that is, 7y T, — T, T; is compact: we will prove that this 1s the case
if and only if f and g satisfy one of the above statements (i), (ii), or (iii) “locally”. To
make this precise we will need to introduce more notation.

Let H* denote the algebra of bounded analytic functions on D, and for f € H™ let
Ifll denote the supremum of |f| on D. The maximal ideal space of H>, denoted by
M, is the set of multiplicative linear functionals on H>. Endowed with the weak-star
topology it inherits as a subspace of the dual of H>, the space M is a compact Hausdorff
space. Identifying a point in D with the functional of evaluation at this point, we may
regard the disk D as a subset of M. Carleson’s Corona theorem says then that D is a
dense subset of M. Using the Gelfand transform we regard every function in H> as a
continuous function on M. Furthermore, every bounded harmonic function on D can
be uniquely extended to a continuous function on M ([6], Lemma 4.4). We will use the
same notation to denote a bounded analytic or harmonic function on D and its continuous
extension to M.
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If my,my € M, then the pseudohyperbolic distance d(m;, m;) between m; and m,
is defined by d(m,my) = sup{|ma(h)| : h € H®,||h||xx < 1, and m (h) = 0}. For
m € M, the Gleason part containing m, denoted by P(m), is defined by P(m) = {m, €
M : d(m,m;) < 1}. The Gleason parts form a partition of M, and for each z € D, the
Gleason part containing z equals D.

For A € D, the Mobius function p,: D — D is defined by ¢,(z) = l/\:XZ;’ z€D. Itis
easy to see that for z, A € D we have d(z, \) = |, (2)|. Foreach m € M, K. Hoffman [6]
constructed a canonical map L,, from D into M. This map L,, is defined by taking a net
{A\¢} in D such that A\, — m, and defining L,,z(h) = limy h o ¥, (2), forz € D and
h € H*. The mapping L,, maps D onto the Gleason part P(m), and is one-to-one if
P(m) consists of more than one point. For each f € H>* and m € M the composition
fo L, isin H*; in fact, we will see that if f is a continuous function on M and {Aa}is
anetin D tending to m in M, thenf o ¢, — f o L, uniformly on compact subsets of D.

If P is a Gleason part in M andf is a function on M, then we will say that f is analytic
on P if the function f o L, is analytic on D, where m € P. Note that this definition does
not depend on the chosen representative m from P: if m; € P is distinct from m, then
m; = L,,()\) for some A € D, and by Schwarz’s lemma there is a unimodular constant {
for which L, (w) = L,, o ¢\(¢w), for all w € D, so that f o L,,, is analytic on D if and
onlyif fo L, is.

Our main result is the following theorem.

THEOREM 1. Let f and g be bounded harmonic functions on D. Then the following
statements are quivalent:
(a) Ty and Ty are essentially commuting;
(b) on each Gleason part P of M except D:
(i) bothf and g are analytic on P, or
(ii) both f and g are analytic on P, or
(iii) there are constants a and b, not both 0, such that af + bg is constant on
P:

(c) timy g (1= APDHENFEQ) = FOFEN} =0,

After some preliminaries in the next section, we will prove the implications “(a) = (c)”
and “(c) = (b)” of the above theorem in §3. To prove the implication “(b) = (a)” we
will introduce Hankel operators in §4, and obtain a sufficient condition for compactness
of certain operators involving these Hankel operators. In §5 we will then complete the
proof of the above theorem. For the operators of §4 we will get more descriptions of
compactness in §6. In the final section of the paper we discuss some open questions.

2. Preliminaries. For i in L'(D, dA) define its Berezin transform i by
iz) = /D u(p.(w)) dAw), ze€D.

Note that an integrable function on the unit disk satisfies the so called “‘area version of the
invariant mean value property” if and only if it is invariant under the Berezin transform.
In particular, # = u if u is harmonic on D.
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For a continuous function u on D let R (1) denote the radialization of the function u,

that is,
2

Rmm=£um%§,zen

Note that if u is a harmonic function on D and z € D, then the radialization of u o . on
D is constant and thus extends to a continuous function on D. Axler and Cuckovié [4]
discovered that these properties characterize harmonicity; more precisely, they obtained
the following lemma.

LEMMA 2. Suppose u € L'(D,dA) is continuous on D. Then u is harmonic if and
only if i = u and for each z € D the function R (u o ¢,) extends continuously to D.

For an analytic function f on D, the Bloch norm ||f|| 5 is defined by

Ifllg = sup{(1 — |2/)|f'@)| : z € D}.

If 1 <p <ooand | |, denotes the usual p-norm on L(D, dA), then there exists a finite
positive constant C,, such that for every analytic function f on D

G, Iflls < sup{llf o wx = fFMIp : A € D} < Gyllf | 3.
(See [2]). The BMOA norm ||f||smoa of an analytic function f on D is defined by

IfllBmoa = sup{]|f o wx —f(N)]

where || ||z denotes the usual Hardy space H*-norm. An analytic function f on D is
called a Bloch function if ||f||g < 0o and a BMOA function if ||f||gmoa < 00. Since the
Hardy space H?-norm is larger than the Bergman space norm || ||, it is clear that every
BMOA function is a Bloch function.

HZZ)\ED},

PROPOSITION 3. Let f and g be analytic functions on D. If f + g is bounded on D,
then both f and g are in BMOA.

PROOF. Putu = f+g. By the mean value property the functions f —f(0) and g — g(0)
are orthogonal on the circle {z € C: |z| = r} with0 < r < 1, so that

LR P T T R LA 2 do
bl = O =+ [T gy — 20 5 = [ utre) — u)? .

2r Jo

We conclude that

e = |lu — u(0)]

If = O+ llg — 80|
For \ € D replace f by f o ¢ and g by g o ¢, to obtain
o @x = fWllie +llg 0 0x — gWllip = lluo @x — ul[3e < 4lul.-

Thus both f and g are in BMOA. .

Axler and Cutkovi¢ showed in [4] that if f and g are in H2, then the radialization
R (fg) extends to a continuous function on D. Using the Mobius-invariance of BMOA
their result yields the following lemma.

2
H
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LEMMA 4. Iff,g € BMOA, then R (f o p,g o ;) extends to a continuous function
onD, forall z € D.

We will need to use some elementary properties of reproducing kernels. Let (, ) de-
note the usual inner product in L*(D, dA), that is, (f,g) = [pf(2)g(z)dA(z) for f,g €
L>(D,dA). For A € D the functional of evaluation at ) is bounded on L2, and thus
there exists a unique function K in L2, called the reproducing kernel at A, for which
{f.Ky) = f(\), for all f € L2 Tt s easily verified that K,(z) = (1 — Az)~2. Using the
reproducing property we have ||K, |3 = K\(\) = (1 — |A\|?)72. We will write k) for the
normalized reproducing kernel, that is, ky = (1 — [A\|?)K). If h € L2, then it is easily
verified that P(hky) = h(\)k,, for each A € D. In particular, P(h) = h(0), for every
hell

Note that ky = —¢/. Thus for an integrable function # on D we have the following
change-of-variable formula:

Amgﬁwr:khow¢¢

In particular, i#i(\) = (uk, k), for every u € L'(D, dA).
We will also need the following well-known result; for completeness we include a
proof.

LEMMA 5. Iff is a continuous function on M, m € M, and {\,} is a net in D
converging tom in M, then f o oy, — f o Ly, uniformly on each compact subset of D.

PROOF. If f is a continuous function on M, then f can be uniformly approximated
by functions of the form gia; + - - - + guh,, Where gi,...,gn, h1,...,hy, € H®, and n
is a positive integer (by the Stone-Weierstrass theorem). Thus it suffices to prove the
lemma for the case where f € H*. Without loss of generality we may assume that also
Ilfll« < 1. By the definition of L,, we have f o ¢, — f o L,, pointwise on D, so it
suffices to show that the family {f o ¢, : A € D} is equicontinuous on each set rD, for
0 <r<1.Forz,w € D we have [f(2) —f(w)| = |1 = FW)f(D)| |ron (f@))| < 2d(z, ).
Replacing f by f 0 ¢ we get [(f 0 9,)(2) — (f 0 )W) < 2d(z,w) < 125z — ], for
z,w € rD, proving the equicontinuity of {f o p, : A € D} on rD. =

3. Towards the Proof of Theorem 1. In this section we will prove the implications
“(a) = (¢)” and “(c) = (b)” of Theorem 1.

Suppose f and g are bounded harmonic functionson D. Let f}, f2, g1, and g, be analytic
functions on D such that f = f; +f, and g = g + 2.

(a) = (c): Suppose that Ty and T are essentially commuting, that is 7T, — T, T is
compact. Then:

(T Tk, ky) = (fP(gka).ky) = ((fi + /o) (81ks + 22Nk ) Ky )
= (f1. g1k, kr) + (g1kn. kr) + 22N (fikx, k) + 8200 (faky, k)
= iGN + (hgik, k) + /()22 + (Mg (N).
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Combining the above result with a similar formula for (T, T;k,, k) (obtained by inter-
changing the f;’s and g;’s) we conclude

((TyTy — TeTpky, k) = @A) — u(N),

where u = fog) —f1g». It is easy to show that k, — 0 weakly on L2 as |A| — 17 (see [2]),
so that the compactness of 7;T, — T, Ty implies that || (T; Ty — T, Tp)ky ||, — Oas |\ — 1,
and thus

a\) —u(\) —0as |\ — 1.

It follows with the help of Lemma 5 that both functions f oL, and go L, are harmonic
on D, so that there exist analytic functions Fy, >, G}, and G, on D for whichf o L, =
F\+F; and goL,, = G+G,.Putv = F,G|—F;G,. We will show that ¥ = v. By Lemma 5,
fopn, —f(Aa) — f oLy —foLy(0)uniformly on compact subsets of D. Because f is
bounded, we have fop,,—f(Aq) — foLu—foL,(0)in L*(D, dA). Using the boundedness
of the Bergman projection P it follows that f; o ¢, — fi(Ao) = P(f o Py, —f(/\(,)) —
P(foLn—foLn(0)) = Fi—Fi(0)in L2. Also,fy0 o5, —fr(Aa) = P(fo oy, —f(Aa)) —
P(f o Ly —f o Ln(0)) = F» — F5(0) in L2. Likewise g; 0 ), — gj(Aa) — G; — Gj(0) in
L2, forj = 1,2. Then:

50) = v(0) = [ ((F2 = F20))(Gi = G1(©)) = (Fi = Fy(0)(G2 = Ga(0)) ) A
N lig(n/l){(fz oo, =) (810 0x, — 81(Aa))
— (82005, — 20 (fi o pr, —fia)) } dA
= lign iA(A\o) — u(Ag) = 0.

Fix z € D. It is an easy consquence of Schwarz’s lemma that there is a unimodular
constant ¢ such that Ly, (w) = Ly, o ¢, (Cw) forw € D. Thenf o Ly, = @) + @, and
g0 Ly = W1 + ¥, with @j(w) = Fj o . ((w) and ¥j(w) = Gj o ¢.((w). By the above
paragraph,

(@2 = &:0)) (%) = ¥1(0)) — (@1 — @1(0)) (%2 — P2(0)) ) da = 0.
By a simple change-of-variable this implies
S (B0 0w = B2@) (Gr 0 pw) = Gi(2)
— (Fi 0 @:(0) = Fi(9)(G2 0 w:w) = Ga(2)) ) dA(w) = 0,

that is, ¥(z) — v(z) = 0.

By Proposition 3 the functions F, and G, are in BMOA, so that by Lemma 4 the func-
tion R(F, o 50;(-?2 o ¢.) extends continuously to D. The same is true for
R(Fy 0 .Gy 0 ¢,), and thus R (v o p.) extends continuously to D. By Lemma 2 the
function v is harmonic on D. Since v is harmonic, we have F_’zGQ — F’lG_’2 = aa_a‘ =0on

https://doi.org/10.4153/CJM-1993-059-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-059-2

TOEPLITZ OPERATORS 1085

D. In particular, F5(0)G}(0) — F} (O)G—Q(O) = 0. Using the inequality |h'(0)| < v/2||h||2,
valid for every h € L2 (as is easily verified by using power series), it follows from
the convergence f, o vy, — f,(Aa) — F, — F,(0) in L2 that (|\o|*> — Df(Aa) — F(0).
Likewise (| \o|? — 1)g/(Ae) — G/(0) and we conclude that (1 — A D?{fIA0)g) (Ne) —
FlO0)85(0a)} — FH(0)G}(0) — F}(0)G4(0) = 0. Thus (c) holds.

(c) = (b): Suppose that (c) holds. Take m € M \ D. Let F;, F», Gy, and G, be
analytic functions on D such thatf o L,, = F; + F, and g o L,, = G + G,. We claim that
F,G} = F|G), on D. First, picking a net {\,} in D converging to m in M, it follows as
in the previous paragraph that

F5(0)G(0) = F{(0)G3(0) = lim(1 — [Aa)* {ff(Aa)g1 Aa) — f{(Aa)82(Aa)} = 0.

For fixed z € D let ¢ be a unimodular constant such that L,,;)(w) = L,, o ¢,(Cw), for
allw € D. Then f o Lyy;) = @) +D; and g o L) = Vi + P2, with @,(w) = F, 0 ,(Cw)
and ¥,(w) = G, o p,(Cw). By the previous paragraph 3’2(0)‘1”1 0) = @ (0)@2_(0). An
easy computation shows that (Dj'(O) = ((|z]*> = l)F]’(z) and ‘I’j’(O) ={(|z)* - 1)Gj'(z) for
j = 1,2. Thus F}(2)G}(z) = F} (z)G—é(z), and our claim is verified.

To show that one of statements, (i), (ii), or (iii) in (b) holds we argue as in [4]. If G|
is identically zero on D, then it follows that either F| identically zero on D (so that F; is
constant and thus both f o L,, and g o L, are analytic on D) or G} is identically zero on
D (in which case g o L,, is constant on D and (iii) holds). Similarly, if Gg is identically
zero on D, then either (i) or (iii) holds. If neither G| nor G} is identically zero on D,
then on the region {z € D : Gj(z) # 0 and Gj(z) # 0} we have F,/G, = F}/G.
Since the complex conjugate of an analytic function on a region is only analytic if the
function is constant, we conclude that for some constant ¢ we must have F; = ¢G} and
F', = ¢G), and therefore both F; — ¢G; and F, — ¢G; are constant on D. It follows that
folL, —c(goL,)is constant on D, and thus (iii) holds.

4. Hankel operators. In this section we will introduce Hankel operators, and af-
ter showing how they relate to the commutator of Toeplitz operators we will prove a
sufficient condition for compactness of a certain operator involving Hankel operators.

For f € L>(D, dA), the Hankel operator with symbol f, denoted by Hy, is the operator
from L2 into (L2)*, the orthogonal complement of L2 in L*(D, dA), defined by Hih =
fh — P(fh), h € L2. The following proposition relates the commutator of two Toeplitz
operators to these Hankel operators.

PROPOSITION 6. Let f,g € L>*(D,dA). Then
TyTy — T, Ty = HyHy — H;Hg.

PROOE. Leth € L2. Then

(T Toh, k) = (fP(gh), h) = (P(gh),fh)
= (gh.fh) — (Hgh.fh) = (fgh. h) — (Hgh, Hzh).
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Swmilarly (T, Tyh, h) = (fgh, h) — (H;h, Hgh), and 1t follows that
(TyT, — Ty h) = (Hih Hoh) — (Hoh, Hoh) = ((HZH; — H Hh,h),

so that T;T, — T, Ty = H Hy — H;Hg u

To complete the proof of Theorem 1 1t remains to show that (b) = (a) In order to
prove this implication we will have to extend our definition of Hankel operators

For f € L*D,dA), the operator H; 1s defined by Heh = (I — P)(fh), for h in H>
In [2] Axler proved that for f € L2, the densely defined operator H, 1s bounded 1f and
only 1f f 1s a Bloch function Axler also obtained a characterization for compactness of
the operator H, In [7] the author characterized the f € L>(D, dA) for which the Hankel
operator Hy 1s compact In the proof of the implication ““(b) = (a)” of Theorem 1 we will
need the following sufficient condition for compactness of a difference of products of
Hankel operators with adjoints of Hankel operators

THEOREM 7 Iffi, f>, &1, and g, are Bloch functions on D and

/Dl(f_z opx — V) (g1 0px —g1N)
— (82000 — 22)(fi 0 pa —AiN)|dA — 0, as || — 1,
then Hy H, — H;l Hg, 1s compact

In the proof of the above theorem we will need two lemmas The following lemma 15
well-known For an elementary proof we refer the reader to [2]

LEMMA 8 Let M = SUPyep fD W dA(W’) Then M < o0
We will need another lemma, which 1s a one-sided Schur Test

LEMMA 9 Let F be measurable on D X D IfY 1s a positive constant such that

[F(z, M)|? 1
dA(D)) < V——-——"7—, I\ €D,
/D |l—/\212(1"lZ|2)]/2 (Z)_"Y(l~|>\|2)l/2 fOra S
then the operator S defined on L? by
F(z,\) 2
N= | ———h(2)dA(z), helL;
ShOV = [ g @dA@. e L

1s bounded with norm ||S||> <YM

PROOF Let h € L2 Then by Cauchy-Schwarz’s Inequality

s |F(z, M) 1 (1—|zH/4 :
|Sh(V)| S(/DII—AZI(1~|ZI2)‘/4 = Wz)ldA(z))

R (TG
= /D =222 (1 —[z]2)1/2 dA(z) X /D TESYE |h(2)]"dA(2)

! (1—[z[»'/?
< AN S ol BE NN
BNTEDRTE “ 1= A2

|h(2)|* dA(z)
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Using Fubint’s Theorem

Jo SHOOE dA) <7 [ =) PP [ i dAN) dA(2)

1
)\2‘2(1 _ |)\|2)1/2

Now, 1t 1s easy to show that

1 1
b =g — a7 A <M

and the proof 1s completed n
We are now ready to prove Theorem 7

PROOF OF THEOREM 7  Putting
Rz ) = (A2 — HOV) (1) — g1(V) — (8202) — 22) (fi) — iLV)).

we have
[ IR(0w), X)| dAGw) = 0, as [\ — 1

Let i € H® and A € D Then
Hj H h(\) = (H; H b, Ky) = (H, b Hy K)\) = (foh. (81 — 81(V)K))
Using the reproducing property of K, we also have (h, (g1 — &i(M))Ky) =
(h(g1 —g1(N).Ky) =0 Thus
H; H h()) = (o —AW)h. (31 — 81(V)K))

Combining this with a similar formula for H;] Hyg,h()\) we obtain

(H},H, — H' Hy )h()) = /D R(z Mh(2)K\(2) dA(z), for h € 2

For 0 < r < 1 define S, L2 — L*(D,dA) by

S = xm(N) [ Rz MK () dAC), forh € 12

We claim that S, 1s Hilbert-Schmidt To verify this claim we need to show that the ker-
nel of S, 1s square-integrable over D X D By a change-of-variables 1t suffices to show

that the integrals fD’R(<p A(w), A)‘z dA(w) are uniformly bounded in A € D By Cauchy-
Schwarz’s inequality

1/2
(fIR(ex00 N[ dAen) ™ < oo ox =L llgr 0 o2 = g1
+{[fiopr —fitM)|lallg2 0 ox — g2(N)

which 1s uniformly bounded in A € D, because fi,f>, g1, and g, are Bloch functions on
D Now,

45

(Hy Hy, — Hy Hy, = $)hO) = [ Fz, V(@K (2) dAG), for h € L,
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where F(z, A) = xp\,p(AM)R(z,A) By a change-of-variables

|Fz, )
/D [T — Xz2(1 — (le)l/sz(Z)

1 R(pa0m.0)]
mem/[, T e

dA(w)

An application of Holder’s inequality yields

R A
/‘1’ Pr(w), )' dAOw)

._)\Wl(l |2)l/2
SM(A)!R(m(w),)\)ledA(w)>l/6

12

SM(/DIR(w(w),A)[dA(w))W(/D}R(m(w),x)’23 dA(W)>l

Using that fi, f>, g1 and g are Bloch functions on D, 1t follows as above that the integrals

fD’R(goA(w),/\) > dA(w) are uniformly bounded in A € D Thus there exists a finite
constant C such that

R( A
/“ R(pro0,\)[ dA(w)gC(/D}R(W(w),A)(dA(w))l/lz,

_ )\w|(l |W|2)1/2

for all A € D With the help of Lemma 9 we get

X - 2 1/12
IH;,Hy — H He, — S,[> < CM sup (/D'(m(w),)\)ldA(w)) :
AED\rD
from which we see that S, — H* H H Hg, n operator norm as ¥ — 1 Since each
S, 1s compact we conclude that H* H H Hg 1S compact u

5 Completion of the Proof of Theorem 1. It remains to show that (b) imphes
(a) Suppose f and g are bounded harmonic functions on D for which statement (b) in
Theorem 1 holds Let fi, f>, g1, and g» be analytic functions on D such that f = f; + f>
and g = g + g2 We claim that

/D’(fz o px —HN)(g1oer—giN) — (820 x — 82N)(fi 0 s — i) dA

—0, as A\ — 1,

so that by Theorem 7, H; H, — Hf*I H,g, 1s compact Using that a Hankel operator with
symbol 1n Lﬁ 1s the zero operator, we have H;Hf — H;Hg = H;IHf2 —H /’f] H, , and by
Proposition 6 statement (a) follows

To prove our claim let {)\,} be a sequence in D tending to dD Let {\,} be a subnet
in D such that Ay, — m 1n M Because im, |\o| = | we havem € M \ D Let Fy, F>

2s
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G|, and G; be analytic functions on D such that fo L,, = F| + F, and golL, =G+ G,.
As in the proof of the implication “(a) = (c)” we have

1i0I(11/D‘<]F2 o ¢, —H0) (810 ¢a, — 81(Aa))
— (820 ¢, — 220)(fi 0 P2, —fi(Aa))| dA
= [[(F2 = 220)(G1 = Gi()) = (F1 = F1(0))(G2 — G2(0)) | dA.

We will be done if we show that (F,—F,(0))(G1—G(0))—(Fi—F(0))(G2—G1(0)) = 0
on D.

If f and g are both analytic on P(m), then f o L,, and g o L,, are both analytic on D, and
consequently F, and G, are both constant on D, so that the statement follows. Similarly
if both f and g are both analytic on P(m). If there are constants a, b, not both zero, such
that af + bg is constant on P(m), then a(f o L,,) + b(g o L,,) is constant on D, and without
loss of generality we may assume that for a constant c the function f o L,, — c¢(g o L,,) is
constant on D. Differentiating with respect to Z we obtain F—g = CG—é, so that F, — ¢G; is
constant on D. It follows that (Fz —F (0)) (Gl — GI(O)) = C(GZ — Gz(O)) (Gl -G (O)).
Likewise, differentiation with respect to z yields that F; — ¢G is constant on D, hence
(F1 = F1(0))(G2 — G2(0)) = ¢(G2 — G2(0))(G1 — G1(0)) on D. This proves our claim,
and completes the proof of Theorem 1. (]

Recall that an operator S is called essentially normal if $§* — S*S is compact. If f €
L>(D, dA), then it is easy to check that 7}“ = Tf, and we obtain the following corollary
of Theorem 1.

COROLLARY 10. Let f be a bounded harmonic function on D. Then the following
statements are equivalent:

(a) Ty is essentially normal;

(b) f maps each part of M except D into a line in C;

(e) limpy -1 = AP{IEOP = £} = 0.

PROOF. Note that if P is a part of ‘M except D, then f(P) is part of a line in C if and
only if there are a, b € C, not both 0, such that af + bf is constant on P. [

6. More on Hankel operators. In this section we will give several descriptions for
compactness of the difference of products of certain Hankel operators and their adjoints.

For A € Dand 0 < r < 1 we will write D(A, r) for the pseudo-hyperbolic disk
{z € D : d(z,\) < r}. The pseudohyperbolic disk D(}, r) is in fact a euclidean disk
whose normalized area is [D(), )| = (1 — |A|?)?F? /(1 — *|)\|?)? (see [5], p. 3). We have
the following theorem for compactness of a difference of products of Hankel operators
and their adjoints.

THEOREM 11. Let fi, >, g1, and g be bounded analytic functions on D, and let
0 < r < 1. Then the following statements are equivalent:
(a) Hy H; — H;; H;, is compact;
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(b) limyy fD!(fz o gn — HMN) (g1 © er — 21N) — (&2 © va — 2N)
(fioer—filV)|dA =0

(¢) limyy Sp|(fa © ex — M) (&1 0 @x — &) — (82 0 w1 — 2OV)
(fiowa —iV)]dA = 0;

(d) limjy 1 5o Joown | (B—R0)) (g1 =8100) = (82—8(0) (fi—A(V) | dA = 0;

(e) limyy_i- fpon fagh — i85l dA = 0;

() limpy (1= APDHAN ) = fi)ghN)} = 0.

PROOF. (a) = (f): Letf = fi +f, and g = g| + g>. Then, using Proposition 6, we
have T;T, — T, Ty = H; Hy — H}‘l Hg,, so Ty and Ty are essentially commuting, and by
Theorem 1 statement (f) holds.

(f) = (e): This implication follows from the inequality

/D()\,r) 182| dA

< sup (1—|2Hf()81 () — f1(85(2)] / — 2% 2dAG)

z€eD(\,r)

rZ
=72 sup (- 12192fi(2)81(2) — f1(2)gh(2)],

z2€D(\,1)

and the fact that sup{(1 — |z|?) : z€ D\, )} — O as |\| — 1°.

(e) = (c): Let {\q} be a net convergingtom € M \ D. Let F, = f, oL, and
G, =g 0oLy, forj=1,2. By Lemma 5, f, o ¢, — F, uniformly on compact subsets of
D, and thus (f; o ¢,,) — F, uniformly on D. It follows that

[ B0 ~ FiGi)]| dAG)
- lim/ (o 2 ) (@810 ¢2.)' (@) — (i © p.)(2)(82 0 P V()] dA(2)
= tim [ [ongion — fonggon| dAe) =

Hence F', ()G (2)—F) (Z)G (z) = O onrD, and as in the proof of the implication (c) = (b)
in Theorem 1, it follows that

(F2(2) = F2(0))(G1(2) — G1(0)) = (F1(z) — F1(0))(Ga(2) — Ga(0)) =

on rD. Hence

li;n/rni(fz ° ¢x, =) (810 9x, — 8100))

— (820 ¢r, —2200))(fi 0 2, —filAa))| dA
F2(0))(Gi(2) — Gi(0))
— (Fi@) = F1(0))(Ga(2) — Ga(0))] dA = 0.
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(c) & (d): A change-of-variables yields
o |2 =) (81 = £100) = (82 — 8200) (fi —i(0)] dA
= [ | o er@—AN)(g10 0@ — a1 V)
— (820 1) — 220 (fi 0 pa() — AN) [ T -2 '2’ dA(z),
and it is easily seen that

(1+7r)? o (1—|/\|2)2< 1 —r?
P(L=r? — DD 1= X4 — P+

whenever z € rD.

(c) = (b): Again let {)\,} be a net converging tom € M \ D, and let F; = fjo L,
and G; = gjo L, for j = 1,2. As in the proof of the implication “(e) = (c)” it follows
that (F2(z) — F2(0))(G1(2) — Gi(0)) — (Fi(z) — F1(0))(Ga(2) — G2(0)) = 0 on rD.
We claim that there is in fact equality on all of D. This is obvious if either G| or G, is
constant on D. If neither G, nor G, is constant on D, then (Fz — FZ(O))/(GZ — G’_)(O)) =
(Fi — Fi(0)/(G1 — G1(0)) on the region {z € /D : Gi(z) # Gi(0) and Gy(z) #
G(0)}, thus there is a constant such that F — F;(0) = ¢(Gy — G1(0)) and F — F»(0)
= (:(Gz - (_;2(0)) on rD, and hence on D. This proves the claim. Now it is easy to see
that

tim (720 02, ~F0) (810 2, — £10)
— (82002, — 20 (fi © 2r, —fiha))| dA
= [[(F20) ~ F2(0)) (G1(2) — G1(0))
— (A1) ~ F10))(G2(2) — G2(0))| dA = 0,

proving (b).
(b)=(a). By Theorem 7. n

In particular we have the following result.

COROLLARY 12. Let f and g be bounded analytic functions on D. Then the following
statements are equivalent:

(a) Hgi‘Hj- — H;Hg is compact;

(b) limpy 1 Jp|(Foer—F(N) (o0 —gN) = (8002 —8(N)) (forr—f (V) |dA = 0;

(¢) limy .y fp|(Foer—F(N)(gowa—8N)—(g0er—8(N)(forr—f(N)|dA = 0;

(d) limyy 1 gy Joon | (F —FV) (8 —8N) = (8 = 8N)(f — fN)[dA = 0;

(e) limy i~ fpon lf'g’ —f'g'ldA=0;

(f) limpyy_i- (1 = (AN’ = (NN} = 0;

PROOF. Letf; =f>, =fand g, = g» = g in Theorem 11. =
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7. Open questions. In this section we discuss some questions suggested by the
results in the paper.

1. Do Theorem 11 and Corollary 12 hold for Bloch functions instead of H> functions?
The problem seems to be the condition on the radializations in Lemma 2. The above
question has an affirmative answer if the requirement on the radializations can be dropped
from Lemma 2, that is, if for integrable (sufficiently nice) functions u on D the condition
il = u is equivalent to the harmonicity of u. Whether this is indeed the case is an open
problem.

2. Is there an analogue for the equivalence of (a) and (b) in Theorem 1 for Toeplitz
operators on the Hardy space? Let C denote the algebra of complex-valued continuous
functions on the circle dD. A subset of the maximal ideal space of L™(dD) is called
a support set for H® + C if it is the closed support of the representing measure for a
functional in the maximal ideal space of H* + C. The combined results of [3] and [8]
characterize the bounded measurable functions f and g on dD for which the Toeplitz
operators Ty and T, have compact semi-commutator 7,7, — Tf,; an answer is that for
each support set S for H* + C either f or g is analytic on S. In [9] Dechao Zheng obtained
the analogous result for semi-commutators of Toeplitz with bounded harmonic symbols
on the Bergman space L2; he showed that for such f and g the semi-commutator 7; 7, — T,
is compact if and only if for each Gleason part P except D either f or g is analytic on
P. Note that the maximal ideal space of H* + C can be identified with the corona, that
is, M \ D. The Gleason parts other than D seem to play the same role in the Bergman
space setting as the support sets for H* + C in the Hardy space setting. These results
and our Theorem 1 give support to the conjecture that for f and g in L*°(dD) the Toeplitz
operators Ty and T, are essentially commuting operators on the Hardy space H? if and
only if for each support set S for H® + C: (i) both f and g are analytic on S, or (ii) both f
and g are analytic on S, or (iii) there are constants a and b, not both 0, such that af + bg
is constant on S.

Recall that subset S of the maximal ideal space of L°(dD) is called an anti-symmetric
set for H* + C if every function in H* + C which is real-valued on § 1s necessarily
constant on S. An anti-symmetric set for H>* + C is called a maximal anti-symmetric
set if it is not properly contained in another anti-symmetric set for H> + C. It is easily
verified that each support set for H + C is a set of anti-symmetry for H> + C, and thus is
contained in a maximal set of anti-symmetry for H* + C. It is a result of Sheldon Axler
({1], Corollary 7.3) that the Toeplitz operators 7; and T, are essentially commuting if for
each maximal anti-symmetric set S for H> + C one of conditions (i), (ii), and (iii) holds.
It is however unknown whether a maximal anti-symmetric set for H> + C is in fact a
support set for H> + C.
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