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ESSENTIALLY COMMUTING TOEPLITZ OPERATORS 
WITH HARMONIC SYMBOLS 

KAREL STROETHOFF 

ABSTRACT. In this paper we characterize the bounded harmonic functions/ and g 
on the unit disk for which the Toeplitz operators Tf and Tg defined on the Bergman 
space of the unit disk are essentially commuting. 

1. Introduction. We use dA to denote the area measure on the open unit disk D in 
the complex plane, normalized so that D has measure 1. The Bergman space L?a is the 
set of analytic functions on D which are in L2(D, dA). Since the Bergman space L2 is a 
closed subspace of L2(D, dA) there is an orthogonal projection P from L2(D, dA) onto L2. 
For/ G L°°(D, dA), the Toeplitz operator with symbol/, denoted by 7), is the operator on 
L2 defined by Tfh = P(fh), h G L2

a. Recently Sheldon Axler and Zeljko Cuckovic char­
acterized the bounded (complex-valued) harmonic functions on D for which the Toeplitz 
operators 7} and Tg commute. In [4] they proved that for bounded harmonic functions 
/ and g on D, the Toeplitz operators 7} and Tg commute if and only if (i) both/ and g 
are analytic on D, or (ii) both/ and g are analytic on D, or (iii) there are constants a and 
b, not both 0, such that af + bg is constant on D. In this paper we will characterize the 
bounded harmonic functions/ and g on D for which the Toeplitz operators 7} and Tg are 
essentially commuting, that is, TfTg — TgTf is compact: we will prove that this is the case 
if and only if/ and g satisfy one of the above statements (i), (ii), or (iii) 'locally". To 
make this precise we will need to introduce more notation. 

Let H°° denote the algebra of bounded analytic functions on D, and for/ G H°° let 
ll/Hoo denote the supremum of \f\ on D. The maximal ideal space of H°°, denoted by 
fM, is the set of multiplicative linear functional on H°°. Endowed with the weak-star 
topology it inherits as a subspace of the dual of//00, the space fAf is a compact Hausdorff 
space. Identifying a point in D with the functional of evaluation at this point, we may 
regard the disk D as a subset of fW. Carleson's Corona theorem says then that D is a 
dense subset of fW. Using the Gelfand transform we regard every function in H°° as a 
continuous function on fW. Furthermore, every bounded harmonic function on D can 
be uniquely extended to a continuous function on 9A. ([6], Lemma 4.4). We will use the 
same notation to denote a bounded analytic or harmonic function on D and its continuous 
extension to !M. 
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If m\,m2 G 94, then the pseudohyperbolic distance d(m\,mi) between mj and m2 

is defined by d{m\,m{) — sup{\m2(h)\ : h G //°°, ||^||oo < 1, and mi(/z) = 0}. For 
m G fW, the Gleason part containing m, denoted by fP(m), is defined by T(m) — {m\ G 
fAf : d(m, m\) < 1}. The Gleason parts form a partition of 94, and for each z G D, the 
Gleason part containing z equals D. 

For À G D, the Môbius function ipx: D —» D is defined by <p\(z) = rft> z G D. It is 
easy to see that for z, A G D we have d(z, A) = | (f\(z)\. For each m G 94, K. Hoffman [6] 
constructed a canonical map Lm from D into 94. This map Lm is defined by taking a net 
{Aa} in D such that \a —> m, and defining Lmz(h) — lima /i o (£A„(Z), for z G D and 
h G //°°. The mapping Lm maps D onto the Gleason part (Pirn), and is one-to-one if 
fP(m) consists of more than one point. For each / G //°° and m G fW the composition 
/ o Lm is in //°°; in fact, we will see that if/ is a continuous function on 94 and {Aa} is 
a net in D tending to m in fW, then/o 99Aa —>foLm uniformly on compact subsets of D. 

If P is a Gleason part in 94 and/ is a function on fW, then we will say that/ is analytic 
on fP if the function/ o Lm is analytic on D, where m G CP. Note that this definition does 
not depend on the chosen representative m from fP: if mi G P̂ is distinct from m, then 
mi = Lm(A) for some A G D, and by Schwarz's lemma there is a unimodular constant £ 
for which Lm, (w) = Lm o (fx(C,w), for all w G D, so that/ o LW| is analytic on D if and 
only if/ o Lm is. 

Our main result is the following theorem. 

THEOREM 1. Letf and g be bounded harmonic functions on D. Then the following 
statements are quivalent: 

(a) Tf and Tg are essentially commuting; 
(b) on each Gleason part Q of 94 except D: 

(i) bothf and g are analytic on fP, or 
(ii) bothf and g are analytic on fP, or 

(Hi) there are constants a and b, not both 0, such that af + bg is constant on 

V; 
(c) lim |AM^(l - |A|2)2{|(A)|(A) - | (A) | (A)} = 0. 

After some preliminaries in the next section, we will prove the implications "(a) => (c)" 
and "(c) => (b)" of the above theorem in §3. To prove the implication "(b) => (a)" we 
will introduce Hankel operators in §4, and obtain a sufficient condition for compactness 
of certain operators involving these Hankel operators. In §5 we will then complete the 
proof of the above theorem. For the operators of §4 we will get more descriptions of 
compactness in §6. In the final section of the paper we discuss some open questions. 

2. Preliminaries. For u in l) (D, dA) define its Berezin transform u by 

u(z) = f u(ipz(wj) dA{w), z E D . 

Note that an integrable function on the unit disk satisfies the so called "area version of the 
invariant mean value property" if and only if it is invariant under the Berezin transform. 
In particular, u = u if u is harmonic on D. 
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For a continuous function «onD let %fu) denote the radialization of the function w, 
that is, 

/ • 2 T T .a d6 

$Su)(z) = I u(zel9)--, z G D. 
Jo 2TT 

Note that if u is a harmonic function on D and z G D, then the radialization of u o tpz on 
D is constant and thus extends to a continuous function on D. Axler and Cuckovic [4] 
discovered that these properties characterize harmonicity; more precisely, they obtained 
the following lemma. 

LEMMA 2. Suppose u G Lx(D,dA) is continuous on D. Then u is harmonic if and 
only ifu — u and for each z G D the function %XU o ipz) extends continuously to D. 

For an analytic function/ on D, the Bloch norm ||/||# is defined by 

\\f\\<B=sup{(l-\z\2)\f'(z)\:zel>}. 

If 1 < p < oo and || ||p denotes the usual p-norni on Z/(D, dA), then there exists a finite 
positive constant Cp such that for every analytic function/ on D 

q ' l i / k < sup{|l/-o ^A - / (A) | | p : A € D} < Cp\\f\\* 

(See [2]). The BMOA norm |[/||BMOA of an analytic function/ on D is defined by 

11/HBMOA = sup{|[/o ^A -f(\)\\H2 : A G D}, 

where || | |^ denotes the usual Hardy space 7/2-norm. An analytic function/ on D is 
called a Bloch function if \\f\\$ < °° a nd a BMOA function if |[/*||BMOA < oo. Since the 
Hardy space //2-norm is larger than the Bergman space norm || ||2, it is clear that every 
BMOA function is a Bloch function. 

PROPOSITION 3. Let f and g be analytic functions on D. Iff + g is bounded on D, 
then bothf and g are in BMOA. 

PROOF. Put u = / + £ . By the mean value property the functions/~/(0) and g — g(0) 
are orthogonal on the circle {z G C : \z\ — r} with 0 < r < 1, so that 

f \fire") - / (0) | 2 d± + /** | | ( ^ ) _ ê(0f f = t \u(re>°) - „(0)f ** 
Jo 2TT JO 2TT JO 2TT 

We conclude that 

\\f -f(0)\\«* + \\g - *(0)|& = ||« - n(0)||^. 

For À G D replace/ b y / o if x and g by g o tp\ to obtain 

\\f o ^A - / ( A ) | & + ||g o ĉ A - ^(A)||^2 - \\u o ^A - u(A)||^ < 4 | | I I |& . 

Thus both/ and g are in BMOA. • 
Axler and Cuckovic showed in [4] that if/ and g are in H2, then the radialization 

%ffg) extends to a continuous function on D. Using the Mobius-invariance of BMOA 
their result yields the following lemma. 
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LEMMA 4. Iff, g G BMOA, then %Jf o (fzg o <pz) extends to a continuous function 
on D, for all z G D. 

We will need to use some elementary properties of reproducing kernels. Let (,) de­
note the usual inner product in L2(D,dA), that is, (f,g) = fof(z)g(z)dA(z) for/ ,g G 
L2(D,dA). For À G D the functional of evaluation at À is bounded on L2, and thus 
there exists a unique function Kx in L2, called the reproducing kernel at A, for which 
(f,Kx) = /(A), for a l l / G L2. It is easily verified that Kx(z) = (1 - \z)~2. Using the 
reproducing property we have \\KX\\2 = KX(X) — (1 — |A|2)~2. We will write kx for the 
normalized reproducing kernel, that is, kx = (1 — \X\2)KX. If h G L2, then it is easily 
verified that P(hkx) — h(X)kx, for each A G D. In particular, P(h) = /ï(0), for every 

Note that kx = —v?A. Thus for an integrable function /i on D we have the following 
change-of-variable formula: 

J h\kx\
2dA = [ ho<pxdA. 

In particular, w(A) — (ukx,kx), for every u G Ll(D,dA). 
We will also need the following well-known result; for completeness we include a 

proof. 

LEMMA 5. Iff is a continuous function on fTVf, m G t\f, and {Xa} is a net in D 
converging to m in ïM, thenf o LpXa —>foLm uniformly on each compact subset o/D. 

PROOF. If/ is a continuous function on M, then/ can be uniformly approximated 
by functions of the form g\h\ + • • • + gnhn, where g\,..., gn, h\,..., hn G //°°, and n 
is a positive integer (by the Stone-Weierstrass theorem). Thus it suffices to prove the 
lemma for the case where/ G H°°. Without loss of generality we may assume that also 
ll/Hoo < 1. By the definition of Lm we have/ o LpXa —» / o Lm pointwise on D, so it 
suffices to show that the family {/ o ipx : A G D} is equicontinuous on each set rD, for 
0 < r < 1. For z ,wGDwe have \f(z)-f(w)\ = \l-fMf(z)\\<pm(f(z))\ <2d(z,w). 
Replacing/by/o^ A we get \(f o <px)(z) - if o (px)(w)\ < 2d(z,w) < jrpt\z- w|,for 
z, w G rD, proving the equicontinuity of {f o ipx : A G D} on rD. • 

3. Towards the Proof of Theorem 1. In this section we will prove the implications 
"(a) => (c)" and "(c) => (b)" of Theorem 1. 

Suppose/ and g are bounded harmonic functions on D. Let/ ,/>, g\, and #2 he analytic 
functions on D such that/ = / +/2 and g = gi + #2-

(a) => (c): Suppose that 7} and 7^ are essentially commuting, that is TfTg — TgTf is 
compact. Then: 

{TfTgkx,kx) = <jP(gkx),kx) = ( ( / +/2)(gi*A + *2(A)*A),*A) 

= ( / l , g l ^ ^ A ) + ( / 2 g l ^ , ^ ) + g 2 ( A ) ( / l ^ ^ A ) + g 2 ( A ) ( / 2 ^ ^ A ) 

= /i(Afei(A) + ^i*A,*A>+/i(A)g2(A)+/2(A)g2(A). 
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Combining the above result with a similar formula for (TgTfkx,kx) (obtained by inter­
changing the//'s and g/s) we conclude 

{(TfTg - TJf)kx,kx) = w(A) - K(A), 

where u = fig\ —f\gi- It is easy to show that k\ —+ 0 weakly on L2
a as |A| —-> l - (see [2]), 

so that the compactness of TfTg — TgTf implies that ||(7) Tg — TgTf)k\ || 2 —> 0 as | À | —-> 1~~, 
and thus 

M(A)-w(A)->0as|A|—> 1". 

It follows with the help of Lemma 5 that both functions/ o Lm and g o Lm are harmonic 
on D, so that there exist analytic functions F\, F2, Gi, and G2 on D for which/ o Lm — 
F1+F2 andgoLm = Gi+G2.Putv = F2Gi—FiG2. We will show that v = v. By Lemma 5, 
/ o tpXa —f(Xa) —*f o Lm —f o Lm(0) uniformly on compact subsets of D. Because/ is 
bounded, we have/o(^Aa—/(Aa) —>/oLm—/oLm(0) in L2(D,JA). Using the boundedness 
of the Bergman projection P it follows that/i o ipXa —f\(\a) — P(f ° ^Xa —/(A«)) —̂  
P(foLm-foLm(0)) = Fi - F K O ) ^ ^ . A l so , / 2 o^- /2 (A«) = P(fo^Xa-f(\a)) — 
P( / o Lm - / o Lm(0)) = F2 - F2(0) in L2. Likewise a o ^ - gj(Xa) -> G7 - G;(0) in 
L2,forj = 1,2. Then: 

v(0) - v(0) = ^ ( ( F 2 - F2(0))(G, - Gi(0)) - (F! - F1(0))(G2 - G2(0))) </A 

= l i m ^ { ( / 2 o ^ A a - /2(A a))(g! ov9Aa-^!(Aa)) 

- (g2 ° V\a ~ giiK)) (/1 o tpXa - / 1 (A„))} dA 

= limw(Aa) — u(Xa) — 0. 
a 

Fix z £ D. It is an easy consquence of Schwarz's lemma that there is a unimodular 
constant £ such that Lm^(w) — Lm o (fz(C,w) for w G D. Then/ o Lm(z) = Oi + Ô2 and 
g o Lm(z) = 4*1 + 4^2, with 0/(w) = F7 o (/?z((w) and ^ ( w ) = G7 o </>z(Cw). By the above 
paragraph, 

JÎ>((®2 " *2(0))(^Fi - V,(0)) - (*, - O!(0))(*2 - *2(0))) </A - 0. 

By a simple change-of-variable this implies 

lDy(F2 o (fz(w) - F2(z))(Gi O ifz(w) - G\(z)) 

- (Fi O (^(W) - Fi(z))(G2 O ifz(w) - G2(z))) ^A(w) = 0, 

that is, v(z) - v(z) = 0. 
By Proposition 3 the functions F2 and G\ are in BMOA, so that by Lemma 4 the func­

tion %iFi o ^pzGi o (fz) extends continuously to D. The same is true for 
%iF\ o (fzG2 o ipz), and thus ^ ( v o ipz) extends continuously to D. By Lemma 2 the 
function v is harmonic on D. Since v is harmonic, we have F'2G\ — F[G'2 = J^p = 0 on 
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D. In particular, F2(0)G;(0) - F\(0)G2(0) = 0. Using the inequality |ft'(0)| < V2\\h\\2, 
valid for every h G L2 (as is easily verified by using power series), it follows from 
the convergence/ o <pXa -fj(\a) -> Fj - Fj(0) in L2

a that (|Aa|
2 - \)fJ(Xa) -> 7*(0). 

Likewise (|Aa|
2 - l)gj(Aa) —• Gj(0) and we conclude that (1 - \Xa\

2)2if^Xa)g[(Xa) -
fl(Xa)72(K)} - ^(0)GÎ(0) - F ; (0 )G£(0) - 0. Thus (c) holds. 

(c) => (b): Suppose that (c) holds. Take m 6 M \ D. Let Fi, F2, Gj, and G2 be 
analytic functions on D such that/o Lm = F\ + F2 and goLm — G\ + G -̂ We claim that 
F2Gj = Fj G2 on D. First, picking a net {Aa} in D converging to m in fAf, it follows as 
in the previous paragraph that 

/^(0)Gi(0) - ^ ( 0 ) ^ ( 0 ) - lim(l - |Aa|
2)2{^(Aa)g;(Aa) -f[(Xa)72(Xa)} = 0. 

For fixed z G D let (" be a unimodular constant such that Lm(z)(w) — Lmo (pz(Çw), for 
all w G D. Then/ o Lm(z) = Oj + <f>2 and g o Lm(z) = *Fi + *F2, with 0,(w) = Fj o y?z((» 
and ^ (w) = G, o <pz(Çw). By the previous paragraph W2(0)%(0) = &\(0)%(0). An 
easy computation shows that Oj(0) = C(k|2 - l)F-(z) and *Fj(0) = C(k|2 - l)Gj(z) for 
j = 1,2. Thus F2(z)G| (z) — F\ (z)G2(z), and our claim is verified. 

To show that one of statements, (i), (ii), or (iii) in (b) holds we argue as in [4]. If G\ 
is identically zero on D, then it follows that either F[ identically zero on D (so that F\ is 
constant and thus both/ o Lm and g o Lm are analytic on D) or G2 is identically zero on 
D (in which case g o Lm is constant on D and (iii) holds). Similarly, if G2 is identically 
zero on D, then either (i) or (iii) holds. If neither G\ nor G2 is identically zero on D, 
then on the region {z G D : G[(z) ^ 0 and G2(z) ^ 0} we have F2 /G2 = F[/G[. 
Since the complex conjugate of an analytic function on a region is only analytic if the 
function is constant, we conclude that for some constant c we must have F\ — cG\ and 
F'2 = cG2, and therefore both F\ — cG\ and F2 — cG2 are constant on D. It follows that 
/ o Lm — c(g o Lm) is constant on D, and thus (iii) holds. 

4. Hankel operators. In this section we will introduce Hankel operators, and af­
ter showing how they relate to the commutator of Toeplitz operators we will prove a 
sufficient condition for compactness of a certain operator involving Hankel operators. 

For/ G L°°(D, dA), the Hankel operator with symbol/, denoted by Hf, is the operator 
from L2

a into (L2)1, the orthogonal complement of L2 in L2(D,d!A), defined by Hfh = 
fh — P(fh), h G L2. The following proposition relates the commutator of two Toeplitz 
operators to these Hankel operators. 

PROPOSITION 6. Letf, g G L°°(D, dA). Then 

TfTg -T8Tf = HlHf ~ HfH8-

PROOF. Let h eL2
a. Then 

(TfTgh,h) = <JP(gh),h) = (P(gh)Jh) 

= (ghjh) - (Hghjh) = {fgKh) - (Hgh,Hfh). 
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Similarly (TgTfh,h) = (fgh,h) - (Hfh,Hgh), and it follows that 

{(TfTg - TgTf)h,h) = {HfKHgh) - (Hgh,Hfh) = {{H\Hf - HjHg)h,h), 

so that TfT8 - TgTf = H*gHf - H*fH8. 
To complete the proof of Theorem 1 it remains to show that (b) =̂> (a). In order to 

prove this implication we will have to extend our definition of Hankel operators. 
For / G L2(D,dA), the operator Hf is defined by Hfh = (I - P)(Jh), for h in H°°. 

In [2] Axler proved that for/ G l}a, the densely defined operator Hj is bounded if and 
only if/ is a Bloch function. Axler also obtained a characterization for compactness of 
the operator Hj. In [7] the author characterized the/ G L°°(D, dA) for which the Hankel 
operator Hf is compact. In the proof of the implication "(b) => (a)" of Theorem 1 we will 
need the following sufficient condition for compactness of a difference of products of 
Hankel operators with adjoints of Hankel operators. 

THEOREM 7. Iff\, fi, g\, and gi are Bloch functions on D and 

[\(/2 ° Vx -fiW){g\ 0(fx~ 8\W) 

- {gi o <px - 12(A))(fi o ̂ A - / i (A)) | dA -+ 0, as |A| -> 1", 

then H^H^ — W, Hg2 is compact. 

In the proof of the above theorem we will need two lemmas. The following lemma is 
well-known. For an elementary proof we refer the reader to [2]. 

LEMMA 8. Let M = supAGD JD (1__[vv[2)3/j|1_^vv|6/5 dA(w). Then M < oo. 

We will need another lemma, which is a one-sided Schur Test. 

LEMMA 9. Let F be measurable on D x D. Ifl is a positive constant such that 

I J B ^ Ô H W ^ - V H W /ora//AeD' 
then the operator S defined on L2 by 

Sh(X) = /D j^~~h(z) dA(z), h G Li 

is bounded with norm \\S\\2 < 1M. 

PROOF. Let h G L2
a. Then by Cauchy-Schwarz's Inequality 

Az|2(l- |z |2)i /2 w ,/D | 1 - A Z | 2 

< 7 -
n-Wtn*L(10^r^'iA^ 
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Using Fubini's Theorem: 

jjsKxfdMX) <7/Dd - izmm2 /D |t _ ml_m,2 ^)mz). 
Now, it is easy to show that 

J» | l - A z T ( l - | A P ) ' / 2 dMX) ~ Mi^W 
and the proof is completed. • 

We are now ready to prove Theorem 7. 

PROOF OF THEOREM 7. Putting 

R(z,\) = (f2(z)-/2(A))(gi(z)-gi(A)) - (|2(z)-g2(A))(fi(z)-/i(A)), 

we have 
| |/?((^A(w), A)| dA(w) -+ 0, as |A| -> 1". 

Let /z G //°° and A G D. Then 

H*ËxHhh(\) = (H*ËlHj2h,Kx) = (Hf2h,HËlKx) = (f2h, (g{ -gi(A))tfA).. 

Using the reproducing property of Kx we also have (/z, (gi — gi(A))^T\) — 

(ft(g,-gi(A)),ffA)=O.Thus 

H*glHf2h(\) = ((f2-f2W)h,{g\ -g\W)K\). 

Combining this with a similar formula for ffi Hg2h{\) we obtain: 

(H*gHf2-HfHg2)h(\) = fDR(z,\)h(z)Kx(z)dA(zl for h G 4 

For 0 < r < 1 define Sr: L2
a -> L2(D, <M) by 

5rA(A) = XrD(\)JDR(z, \)h(z)Kx{z)dA(z\ for ft G 4 

We claim that 5r is Hilbert-Schmidt. To verify this claim we need to show that the ker­
nel of Sr is square-integrable over D x D. By a change-of-variables it suffices to show 

12 

that the integrals JD/?(<£A(w), A) dA(w) are uniformly bounded in A G D. By Cauchy-
Schwarz's inequality 

i /? 

(JD\R(<px(w),\)\2dA(w)) < \\f2 o V?A -/2(A)| |4 \\gi o ^A ~ gi(A)||4 

+ ll/l ° ^A - / l ( A ) | | 4 ||g2 ° ^A ~ g2(A)||4, 

which is uniformly bounded in A G D, because f\,f2,gi, and g2 are Bloch functions on 
D. Now, 

(H;Hf2 - H}HË2 - Sr)h(\) = J F(z, X)h(z)Kx(z)dA(zl for h G L*, 
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where F(z, A) = XD\/D(A)^(Z, A). By a change-of-variables: 

r \J^t dA(z) 

1 , |/?(V?A(W),A)|Z i2 

(i - \\\iy/2™v"^jv |i _xw\a - lufj'/z 

An application of Holder's inequality yields 

i | i-ÂH(i-H2) ' /2 (w) 

<M(^|fl(^A(vv),A)|'2<iA(R>))' 6 

<M(^|/?(^(w),A)|rfA(w))' ( / D | / ? ( ^ A ( W ) , A ) | 2 3 ^ ( W ) ) ' '2. 

Using that/i ,/2, gi and gi are Bloch functions on D, it follows as above that the integrals 
Jb|^(vA(w)> A) I dA(w) are uniformly bounded in A £ D. Thus there exists a finite 
constant C such that 

, \R(ifx(w),X)\ / , xi/12 

/o |1 - ÂH(1 - | „ V <"(»> ^ C ^ K ^ W . A ) ! ^ ) ) , 

for all A G D. With the help of Lemma 9 we get 

\\HlHh-HlHè2-Sr\\
2<CM sup ( /J(</?A(W>), A)| <£4(HOV '*, 

AGD\rD V ' / D 7 

from which we see that Sr —> 7/| H? — H^Hg2 in operator norm as r —> 1 ~. Since each 
Sr is compact we conclude that #| ,#/2 — H*. Hg2 is compact. • 

5. Completion of the Proof of Theorem 1. It remains to show that (b) implies 
(a). Suppose/ and g are bounded harmonic functions on D for which statement (b) in 
Theorem 1 holds. Let/1,/2, gi, and g2 be analytic functions on D such that/ = / +fi 
and g = g\ + g2. We claim that 

JD\{f2Q(fX - / 2 W ) (gl °^A-gl(A)) - (|2 o^A-12(A)) (/1 oipx -f{(X))\dA 

- •O , as |A| —> r , 

so that by Theorem 7, H^Hf2 — H}Hg2 is compact. Using that a Hankel operator with 
symbol in L2

a is the zero operator, we have H^Hf — H*,Hg = H^H; — H*,Hg2, and by 
Proposition 6 statement (a) follows. 

To prove our claim let {Xn} be a sequence in D tending to 3D. Let {Aa} be a subnet 
in D such that Aa —> m in fW. Because lima | Aa| = 1 we have m G 94 \ D. Let Fj, F2, 
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G\, and G2 be analytic functions on D such tha t / oLm = F\ + F 2 and g o Lm = G\ + G2. 

As in the proof of the implication "(a) => (c)" we have 

limj\(f2 o (fXa -f2(K))(gi ° ^Aa - gi(Aa)) 

- (#2 o (fXa - g2(K)) (f\ o <£Aa - / l (Aa)) I dA 

= JD\{F2 - F2(0))(G, - Gi(0)) - (F, - Fi(0))(G2 - G2(0))| dA. 

We will be done ifwe show that ( F 2 - J F 2 ( 0 ) ) ( G I - G 1 ( 0 ) ) - ( F 1 - F I ( 0 ) ) ( G 2 - G 2 ( 0 ) ) = 0 

o n D . 

If/ and g are both analytic on ^P(m), then /o Lm and g o Lw are both analytic on D, and 

consequently F 2 and G2 are both constant on D, so that the statement follows. Similarly 

if b o t h / and g are both analytic on ^P(ra). If there are constants «, b, not both zero, such 

that af + bg is constant on ^P(ra), then a(f o Lm) + Z?(g o Lw) is constant on D, and without 

loss of generality we may assume that for a constant c the function/ o Lm — c(g o Lw) is 

constant on D. Differentiating with respect to z we obtain F'2 = cG2, so that F 2 — cG2 is 

constant on D. It follows that (F2 - F2(0))(Gi - G i ( 0 ) ) = C ( G 2 - G 2 ( 0 ) ) ( G I - G i ( 0 ) ) . 

Likewise, differentiation with respect to z yields that F\ — cG\ is constant on D, hence 

(Fi - Fi (0)) (G2 - G2(0)) = c(G2 - G2(0)) (Gi - Gi (0)) on D. This proves our claim, 

and completes the proof of Theorem 1. • 

Recall that an operator S is called essentially normal if SS* — S*S is compact. If/ G 

L°°(D, dA), then it is easy to check that TÏ — Tj, and we obtain the following corollary 

of Theorem 1. 

COROLLARY 10. Let f be a bounded harmonic function on D. Then the following 

statements are equivalent: 

(a) Tf is essentially normal; 

(b) f maps each part of fW except D into a line in C; 

r c ) l i m ) A M - ( l - | A | 2 ) 2 { | | ( A ) | 2 - | | ( A ) | 2 } = 0. 

PROOF. Note that if P̂ is a part of 5W except D, then f((P) is part of a line in C if and 

only if there are a, b G C, not both 0, such that af + bf is constant on T. m 

6. More on Hankel operators. In this section we will give several descriptions for 

compactness of the difference of products of certain Hankel operators and their adjoints. 

For À G D and 0 < r < 1 we will write D(\, r) for the pseudo-hyperbolic disk 

{z G D : d(z, A) < r}. The pseudohyperbolic disk D(A, r) is in fact a euclidean disk 

whose normalized area is |D(A, r)| - (1 - | A | 2 ) V / ( 1 - r2! A|2)2 (see [5], p. 3). We have 

the following theorem for compactness of a difference of products of Hankel operators 

and their adjoints. 

THEOREM 11. Let f\, /2 , g\, and g2 be bounded analytic functions on D, and let 

0 < r < 1. Then the following statements are equivalent: 

(a) H^Hf — H*fHg2 is compact; 
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(b) lini|A|_i- JD|(/2 O ifX - f2(X))(g\ o </>A - gl(X)) - ( |2 o <px - g2(A)) 

(^io^A-/i(A))|dA = 0; 

fcj lim )AH1-J rD |(/2 o ifX - /2(A))(gi o yx - g{(\)) - ( |2 o </>A - #2(A)) 

( / ' i o^ - / i (A) ) | dA = 0; 

(J) lim|AHl- p ^ V , r ) | ( / i ^ ^ - 0; 

(W lim ( A M- JDM l/*^; - / i ^ | dA = 0; 

(f) lim,AM (1 - \\\2)2fâ(\)g[(\) -//(A)g(A)} = 0. 

PROOF, (a) => (f): Let / = /1 +/2 and g = gi + g2. Then, using Proposition 6, we 
have 7} 7^ — TgTf = H^H? — H^Hg2, so 7} and 7g are essentially commuting, and by 
Theorem 1 statement (f) holds. 

(f) => (e): This implication follows from the inequality 

< sup (1 - \z\2)2[fl(z)g[(z) -f[{z)72{z)\ f (1 - \z\2y2dA(z) 
zeD(X,r) JD{\,r) 

r2 - — 
= 5 sup (1 - |z |2)2[/2Wia) ~f[{z)g'2{z% 

1 ~" r z£D(A,r) 

and the fact that sup{(l - |z|2) : z G D(A, r)} —• 0 as |A| —> 1". 
(e) => (c): Let {Aa} be a net converging to m G fW \ D. Let Fj = f}• o Lm and 

Gj = gj o Lm, for7 = 1,2. By Lemma 5 , / o (pXa —+ Fj uniformly on compact subsets of 
D, and thus (fj°ip\a)'—*F'j uniformly on rD. It follows that 

/ |^(z)Gi(z) - Fl(z)G^(z)| dA(z) 
JrD 

= lim f |(/2 0 ^ J ' ( z ) t e i o (pAi,)'(z) - (/, o ^Aa)'(z)(«2 0^Ao)'(z)| <M(z) 

= lim / \fl(w)g[(w) -fl(w)72(w)\ dA(w) = 0. 
a JD(\a,r) 

Hence F ^ z ^ t e ) —Fj (z)Gf
2(z) — 0 on rD, and as in the proof of the implication (c) =̂> (b) 

in Theorem 1, it follows that 

(F2(z) - F2(0))(Gi(z) - Gi(0)) = (F{(z) - F,(0))(G2(z) ~ G2(0)) - 0 

on rD. Hence 

limj \(f2oipXa -M^a))(g\ 0(fxa -gi(Aa)) 

- {g2 0ifXa -^2(A«))( / i o(^Aff -f\(Xa))\dA 

= fjihiz) -F2(0))(Gi(z) - G,(0)) 

- (Fi(z) - Fi(0))(G2(z) - G2(0))|dA - 0. 
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(c) & (d): A change-of-variables yields 

JD{XJ{f2 -/2(A))(*i -gi(A)) - (g2 - g2(A))(/i -/,(A))|<È4 

= /D |(/2 o ^A(Z) -/2(A))(gi o ̂ A(z) - gl(A)) 

- (gi o ̂ Afe) - S2(A))(/j o ̂ A(z) _ / , ( A ) ) | ^ l ^ dA(z), 

and it is easily seen that 

(1+r)2
 < 1 (1-jAj2)2

 < (l-r)2 

r 2 ( l - r ) 2 ~ |D(A,r)| | l - A z | 4 ~ r 2 ( l + r ) 2 , 

whenever z G rD. 
(c) => (b): Again let {Xa} be a net converging to m G fW \ D, and let F7- — fj o Lm 

and G7 = gy o Lm, forj = 1,2. As in the proof of the implication "(e) => (c)" it follows 
that (F2(z) - F2(0))(G,(z) - G,(0)) - (F,(z) - F,(0))(G2(z) - G2(0)) = 0 on rD. 
We claim that there is in fact equality on all of D. This is obvious if either G\ or G2 is 
constant on D. If neither G\ nor G2 is constant on D, then (F2 — F2(0)) / (02 — G2(0)) = 
(Fj - F,(0))/(Gi - Gi(0)) on the region {z G rD : Gj(z) ^ G,(0) and G2{z) ^ 
G2(0)}, thus there is a constant such that F, - F}(0) = c(Gx - Gi(0)) and F2 - F2(0) 
= c(G2 — G2(0)) on rD, and hence on D. This proves the claim. Now it is easy to see 
that 

l i m ^ | ( / 2 O ifXa -f2(\a))(gl O (fXa ~ gl(Aa)) 

~ (g2 ° ^Xa ~g2(K))(fl O <fxa -fl(Xa))\dA 

= jD\{fr(z)-F2(0))(Gl(z)-Gl(0J) 

- (F, (Z) - F, (0))(G2(z) - G2(0))| dA = 0, 

proving (b). 
(b) => (a). By Theorem 7. • 

In particular we have the following result. 

COROLLARY 12. Letf and g be bounded analytic functions on D. Then the following 
statements are equivalent: 

(a) HgHj — H^Hg is compact; 

(b) lim)AH 

(c) lim)AH 

(d) lim|A|_ 

(e) lim!AH 

(/) lim.AH 

• J D | ( ^ A - / ( A ) ) ( S O ^ A - S ( A ) ^ 

Sn\(fo<px-KX)){go<Px-g(X))-{go<px-^^^ = 0; 

- John SD(X,r)\(f--fW)(g - gW) ~{g- gW)(f ~fW)\dA = 0; 
-SixxsM-j'?\dA = 0; 
(1 - |A | 2 ) 2 t fW(A) -/'(A)g'(A)} - 0; 

PROOF. Let / =f2=f and gj = g2 = g in Theorem 1J 
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7. Open questions. In this section we discuss some questions suggested by the 
results in the paper. 

1. Do Theorem 11 and Corollary 12 hold for Block functions instead ojH°°functions? 
The problem seems to be the condition on the radializations in Lemma 2. The above 
question has an affirmative answer if the requirement on the radializations can be dropped 
from Lemma 2, that is, if for integrable (sufficiently nice) functions u on D the condition 
u = u is equivalent to the harmonicity of u. Whether this is indeed the case is an open 
problem. 

2. Is there an analogue for the equivalence of (a) and (b) in Theorem 1 for Toeplitz 
operators on the Hardy space? Let C denote the algebra of complex-valued continuous 
functions on the circle dD. A subset of the maximal ideal space of L°°(dD) is called 
a support set for H°° + C if it is the closed support of the representing measure for a 
functional in the maximal ideal space of H°° + C. The combined results of [3] and [8] 
characterize the bounded measurable functions / and g on 3D for which the Toeplitz 
operators 7} and Tg have compact semi-commutator TfTg — 7}g; an answer is that for 
each support set S for H°° + C either/ or g is analytic on S. In [9] Dechao Zheng obtained 
the analogous result for semi-commutators of Toeplitz with bounded harmonic symbols 
on the Bergman space l}a\ he showed that for such/ and g the semi-commutator TfTg—Tfg 

is compact if and only if for each Gleason part ¥ except D either/ or g is analytic on 
(2. Note that the maximal ideal space of H°° + C can be identified with the corona, that 
is, 94 \ D. The Gleason parts other than D seem to play the same role in the Bergman 
space setting as the support sets for H°° + C in the Hardy space setting. These results 
and our Theorem 1 give support to the conjecture that for/ and g in L°°(3D) the Toeplitz 
operators 7} and Tg are essentially commuting operators on the Hardy space H2 if and 
only if for each support set S for H°° + C: (i) both/ and g are analytic on 5, or (ii) both/ 
and g are analytic on S, or (iii) there are constants a and b, not both 0, such that af + bg 
is constant on S. 

Recall that subset S of the maximal ideal space of L°°(3D) is called an anti-symmetric 
set for H°° + C if every function in H°° + C which is real-valued on S is necessarily 
constant on S. An anti-symmetric set for H°° + C is called a maximal anti-symmetric 
set if it is not properly contained in another anti-symmetric set for H°° + C. It is easily 
verified that each support set for H°° + C is a set of anti-symmetry for H°° + C, and thus is 
contained in a maximal set of anti-symmetry for H°° + C It is a result of Sheldon Axler 
([1], Corollary 7.3) that the Toeplitz operators 7} and Tg are essentially commuting if for 
each maximal anti-symmetric set S for H°° + C one of conditions (i), (ii), and (iii) holds. 
It is however unknown whether a maximal anti-symmetric set for H°° + C is in fact a 
support set for H°° + C. 
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