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SUMMABILITY OF MATRIX TRANSFORMS 
OF SUBSEQUENCES 

BY 

T H O M A S A. K E A G Y 

ABSTRACT. D. F. Dawson has considered several questions of 
the following nature. Suppose T is a regular matrix summability 
method. If A is a regular matrix and x is a sequence having a finite 
limit point, then there exists a subsequence y of x such that each 
finite limit point of x is a T-limit point of Ay. In the present paper, 
we show the regularity condition for A may be replaced by the 
requirement that A be a limit preserving bv to c map. This leads to 
summability characterizations for several classes of sequences. 

Following Dawson [4], we say the matrix A is semiregular if A is regular 
over the set of all convergent sequences of O's and l's. Thus A = (a^) is 
semiregular if and only if it satisfies the first two of the following three 
conditions for regularity: 

(1) lim Opq = 0 for all q, 
p 

(2) lim X a^ = 1, 
P q 

and 

(3) supXlOpqK00. 

In [8], this author proved that the matrix A is semiregular if and only if for 
each sequence x with finite limit point a there exists a subsequence y of x such 
that the A-limit of y is or. As an immediate consequence, we have the 
following results. 

THEOREM 1. Suppose T is a regular summability matrix. If A is a semiregular 
matrix and x is a sequence with finite limit point cr, then there exists a 
subsequence y of x such that Ay is T-summable to a. 

COROLLARY 2. The sequence x diverges to <» if there exist a regular matrix T 
and a semiregular matrix A such that T(Ay) diverges to o° for every subsequence 
y of x. 
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In [9], we showed that if the matrix A is semiregular and x is a sequence 
having a finite limit point, then there exists a subsequence y of x such that each 
limit point of x is an A-limit point of y. Dawson [4] has proved that if T and A 
are regular and x is a sequence with a finite limit point, then there exists a 
subsequence y of x such that each finite limit point of x is a T-limit point of 
Ay. An analog to Theorem 1 might be expected which would provide that if T 
is a regular matrix, A is a semiregular matrix, and x is a sequence with a finite 
limit point, then there exists a subsequence y of x such that each finite limit 
point of x is a T-limit point of Ay. Such an analog fails to be true. 

The following example provides a regular matrix T and a semiregular matrix 
A such that for each subsequence y of x = (0, 1, 0 , 1 , 0, 1 , . . . ), T(Ay) either 
fails to exist or Ay is T-summable to 0 or 1. Let tlq = l/2q for each q, tpp = 1 
for p > l , and tm=Q otherwise. Let OpP = 2p and avp+1 = l-2p for all p, and 
Opq = 0 otherwise. If y is a convergent subsequence of x, then y is eventually 
constant, hence so is T(Ay). But whenever yp = 1 and yp+1 = 0, then (Ay)p = 2P 

and *ip(Ay)p = 1. Therefore if y is not eventually constant, T(Ay) fails to exist. 
It is possible to use Theorem 1 of [9] and the associative property to obtain 

the following special case. 

THEOREM 3. Suppose T is a row finite regular summability matrix. If A is a 
row finite semiregular matrix and x is a sequence with a finite limit point, then 
there exists a subsequence y of x such that each limit point of x (finite or infinite) 
is a T- limit point of Ay. 

The above example illustrates the necessity of strengthening the requirement 
of semiregularity on A if row-finiteness is not assumed in Theorem 3. This may 
be accomplished by requiring A to be a limit preserving bv to c map. 

THEOREM 4. Suppose T is a regular summability matrix. If A is a limit 
preserving bv to c map and x is a sequence with a finite limit point, then there 
exists a subsequence y of x such that each finite limit point of x is a T-limit point 
of Ay. 

The sequence x is an element of bv if £ n \xn — xn+1\<°°. The matrix A is said 
to be a limit preserving bv to c map if limp(Ax)p = limn xn whenever x is in bv. 
Such matrices may be characterized by the three conditions [7] 

(A) lim am = 0 for all q, 
p 

(B) lim X a^ = 1, 
P q 

and 

I n I 
(C) SUP J] Opq < 0 ° -

p,n lq = l I 
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If T is regular and A is a limit preserving bv to c map, then TA is 
necessarily semiregular. Theorem 4 thus follows as an immediate consequence 
of Theorem 1 in [9] if associativity is assumed. The treatment presented here is 
without any benefit of associativity. 

The proof of the following form of Theorem 1 in [8] will be omitted. 

LEMMA 5. The matrix A is semiregular if and only if for each sequence x with 
finite limit point cr and for each e > 0 there exists a subsequence y of x such that 
the A-limit of y is a and 

sup 
p,n,m 

I apqyq-o- £ a j < e . 

Proof of Theorem 4. Using the separability of the complex plane we find a 
sequence u such that each finite limit point of x is either a term of u or a limit 
point of u. Let V = {ux\ ul9 u2; ul9 u2, u3\.. .}and K = suppk \Y£=k am\. It follows 
that suppkm |£™=k a p q | < 2 K By Lemma 5 there exists a subsequence yx = 
{y(l, n)}n=i of x such that limp(Ay1)p = Vt and 

SUP X <hx*y(hq)-Vi X «w 
P ' n ' m lq=n q=n 

hence 

1 m 

X a^yiXq) 

< 1 , 

=<= (2X1^1 + 1). 

<i 

Let p ( l ) > l such that ICïXAy^pd)- Vx\<\ and q ( l ) > l such that 

(2) TX ^^(Ayi^-vJ 
lq = l I 

and 

(3) [l+£(2K|Vf| + l)l £ \tJ<iA 
L i = l - l q = q ( l ) + l 

for all p < p ( l ) . Let k ( l ) > l such that 

I q(D k d ) 

lq = l 
(4) 

q(D k(D q(D 

X W),q X aqiy(i, 0 - X^p(D,q(Ayi' 
(1) 

It 
q = l 

<i 

(5) 

and 

(6) 

'2I S UP 
q=Sq(l),m 

X <*<* 
i = k ( l ) + l 

< 

q(D 

X S U P l*pql X 21 £* ^ " f i*pql I £,* ~qi 
q = i p s p ( l ) , m «i = k ( l )+ l 

<&. 
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Define the first fc(l) terms of the subsequence y = {y(n)}~=1 by y(i) = y(l , i) 
for l < i < f c ( l ) . Let r ( l ) > l such that y(fc(l)) is the r(l) term of x. Since A is 
semiregular, the submatrix A1 of A formed by deleting the first k(l) columns 
of A is also semiregular. By Lemma 5 there exists a subsequence z2 = 
{z(2, n)}~= k ( 1 ) + 1 of {xnKU(1)+1 such that limp(A1z2)p = V2 and 

(7) 

hence 

(8) 

sup 
p,k(l)<n,m 

X a p q z (2 ,q ) -V 2 Z ^ < 1 , 

sup 
p,m 

Z ^W^ 2 ' <l) 
lq = k ( l ) + l 

<(2K |V 2 | + 1). 

sup 
q<q(l ) ,m 

X aq iz(2,0 
i = k ( D + i 

By (5) and (6), z2 may also be selected such that 

(9) 

and 

(10) 

< 

q(D 

Z SUP I U Z a^(2, i) 
q = l p<p(l) ,m li = k ( l )+ l 

^ 3 2 -

Let y2
 = {y(2, n)}~=1 be the subsequence of x determined by y (2, n) — y(n) for 

l < n < f c ( l ) and y(2, n) = z(2, n) otherwise. Since each column of A is null, 
limp(Ay2)p = V2. 

Let p(2)>p( l ) such that |[T(Ay2)]p ( 2 )- V 2 | < | and q(2)>q( l ) such that 

(11) 

and 

(12) 

for all 

(13) 

(14) 

and 

(15) 

f 1 
2- W),q(Ay2)q-V2 

q = l 1 

<i 

[1(2X1^1 + 1)1 £ \t„\<^ 
L i = l -Jq=q(2)+1 

p<p(2). Let fc(2)>fc(l) such that 

q(2) k(2) q(2) 

Z W),q Z aqiy(2, 0 - £ tP(2),q(Ay2)q 
q = l i = l q = l 

|V3| sup 
q<q(2),m 

Z «qi 
i = k(2)+l 

<f6 

|<i 

qC 

|v3| I 
2) 

] sup |rF 
1 p=£p(2),m 

J 
m 

i 
i = k(2)+l 

%i ^ 1 2 * l-
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Let y(0 = y(2, i) for fe(l) < i < fc(2) and let r(2) > r(l) such that y(fc(2)) is the 
r(2) term of x. Let A 2 denote the submatrix of A formed by deleting the first 
fc(2) columns of A. By Lemma 5 there exists a subsequence z3 = 
{z(3, n)}~=fc(2)+1 of {xn}~=r(2)+1 such that limp(A2z3)p = V3 and 

(16) 

hence 

(17) 

sup 
p,k(2)<n,m 

£ 0^(3, q)-V3 £ ^ < 1 , 

sup 
p,m 

£ 0^(3, q) 
lq = k(2)+l 

<(2K|V 3 | + 1). 

sup 
q<q(2),m 

Z aqiz(3,0 
i=k(2)+l 

< 

By (14) and (15), z3 may also be selected such that 

(18) 

and 

(19) 
q(2) I m 

Z SUP I'pJ Z «qiZ(3,0 
q = l psp(2),m li = k(2)+l 

< î 

This selection process may be continued such that 

Z t ( ^ ( M - Vx < I tp(1),q(Ayi)q - Vx 
lq = l I lq = l 

|q_(l) 

+ 
HD A U ) \ qU) 

Z ^(i),q(Z <**y(hi))- Z t(D,q(Ayi)q 
1=1 \ = 1 / q = l I 

oo q(l) I k(j + l) I | 
+ ZZlW),ql Z «WO") + Z t(D,q(A>'), 

lq=q( l )+ l 

<*+è+À+ Z t(D,q(Ay), 
lq=q( l )+l 

by (2), (4), (10), and (19), where (10) and (19) constitute the cases j = 1 and 
/ = 2 respectively. But for all p < p ( l ) 

00 j °° q(i + D 

Z ^ ( A y ) J < S Z kpqll(Ay)J 
q = q ( l ) + l I i = l q = q ( i ) + l 

q(i + D 

I " l \tPq\\
lî(2K\Vi\ + l)+\ Z aqiy(j)\\ 

i = l q = q ( i ) + l Lj = l 'j = k(i + l ) + l '-J 

<-

where the second inequality follows from the pattern established by (1), (8), 
and (17), and the third inequality follows from the pattern established by (3) 
and (12) since ET=k(i+i)+i aqjV(j)l<l whenever q<q(i + l) by the pattern 
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established in (9) and (18). It follows that | [T(Ay)]p ( 1 )- Vx\<k and (T(Ay))p 

converges for all p < p ( l ) . Similar arguments show | [T(Ay)] p ( i ) -V i |<2 _ l for 
each i and [T(Ay)]p exists for all p. Thus the proof is complete. 

The form of Theorem 4 was chosen in order to simplify the details of the 
proof. Actually a slightly more general result may be obtained using the basic 
structure of the above proof and requiring A to be a semiregular matrix having 
the property that there exists an increasing sequence of positive integers 
{q(0K°=i such that sup; | I~ = q ( i ) a j is finite. 

THEOREM 6. The sequence x is bounded if there exist a regular matrix T and a 
semiregular matrix A such that T(Ay) is bounded for every subsequence y of x. 

Proof. If x is unbounded, then by an argument contained in the proof of 
Theorem 1 in [4] both T and A must be row-finite, hence T(Ay) = (TA)y. But 
this implies TA is a row-finite semiregular matrix, and the proof follows from 
Theorem 4 of [5]. 

COROLLARY 7. The sequence x converges if there exist a regular matrix T and 
a limit preserving bv to c map A such that T(Ay) converges for every subse­
quence y of x. 

Proof. The sequence x must be bounded by Theorem 6. Convergence then 
follows by Theorem 4. 
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