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SUMMABILITY OF MATRIX TRANSFORMS
OF SUBSEQUENCES

BY
THOMAS A. KEAGY

ABSTRACT. D. F. Dawson has considered several questions of
the following nature. Suppose T is a regular matrix summability
method. If A is a regular matrix and x is a sequence having a finite
limit point, then there exists a subsequence y of x such that each
finite limit point of x is a T-limit point of Ay. In the present paper,
we show the regularity condition for A may be replaced by the
requirement that A be a limit preserving bv to ¢ map. This leads to
summability characterizations for several classes of sequences.

Following Dawson [4], we say the matrix A is semiregular if A is regular
over the set of all convergent sequences of 0’s and 1’s. Thus A =(a,,) is
semiregular if and only if it satisfies the first two of the following three
conditions for regularity:

(1) lima,, =0 for all g,
|4

() lim) a, =1,
P q

and
(3) sup Z lapql<°°~
P q

In [8], this author proved that the matrix A is semiregular if and only if for
each sequence x with finite limit point o there exists a subsequence y of x such
that the A-limit of y is 0. As an immediate consequence, we have the
following results.

THEOREM 1. Suppose T is a regular summability matrix. If A is a semiregular
matrix and x is a sequence with finite limit point o, then there exists a
subsequence y of x such that Ay is T-summable to o.

CoroLLARY 2. The sequence x diverges to = if there exist a regular matrix T
and a semiregular matrix A such that T(Ay) diverges to  for every subsequence

y of x.
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In [9], we showed that if the matrix A is semiregular and x is a sequence
having a finite limit point, then there exists a subsequence y of x such that each
limit point of x is an A-limit point of y. Dawson [4] has proved that if T and A
are regular and x is a sequence with a finite limit point, then there exists a
subsequence y of x such that each finite limit point of x is a T-limit point of
Ay. An analog to Theorem 1 might be expected which would provide that if T
is a regular matrix, A is a semiregular matrix, and x is a sequence with a finite
limit point, then there exists a subsequence y of x such that each finite limit
point of x is a T-limit point of Ay. Such an analog fails to be true.

The following example provides a regular matrix T and a semiregular matrix
A such that for each subsequence y of x=(0,1,0,1,0,1,...), T(Ay) either
fails to exist or Ay is T-summable to 0 or 1. Let t;, =1/2% for each g, t,, =1
for p>1, and t,, =0 otherwise. Let a,, =2° and a,,,; =1—2" for all p, and
a,, =0 otherwise. If y is a convergent subsequence of x, then y is eventually
constant, hence so is T(Ay). But whenever y, =1 and y,,; =0, then (Ay), =2°
and t,,(Ay), = 1. Therefore if y is not eventually constant, T(Ay) fails to exist.

It is possible to use Theorem 1 of [9] and the associative property to obtain
the following special case.

THEOREM 3. Suppose T is a row finite regular summability matrix. If A is a
row finite semiregular matrix and x is a sequence with a finite limit point, then
there exists a subsequence y of x such that each limit point of x (finite or infinite)
is a T-limit point of Ay.

The above example illustrates the necessity of strengthening the requirement
of semiregularity on A if row-finiteness is not assumed in Theorem 3. This may
be accomplished by requiring A to be a limit preserving bv to ¢ map.

THEOREM 4. Suppose T is a regular summability matrix. If A is a limit
preserving bv to ¢ map and x is a sequence with a finite limit point, then there
exists a subsequence y of x such that each finite limit point of x is a T-limit point
of Ay.

The sequence x is an element of bv if Y, |x, — X,,..,| <. The matrix A is said
to be a limit preserving bv to ¢ map if lim,(Ax), =lim, x,, whenever x is in bv.
Such matrices may be characterized by the three conditions [7]

(A) lima,, =0 forallgq,
14

(B) lim Y, a,, =1,
P q

and

n

2 am\<°°-

q=1

(O) sup
p:n
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If T is regular and A is a limit preserving bv to ¢ map, then TA is
necessarily semiregular. Theorem 4 thus follows as an immediate consequence
of Theorem 1 in [9] if associativity is assumed. The treatment presented here is
without any benefit of associativity.

The proof of the following form of Theorem 1 in [8] will be omitted.

LemMA 5. The matrix A is semiregular if and only if for each sequence x with
finite limit point o and for each € >0 there exists a subsequence y of x such that
the A-limit of y is o and

sup Z UpqVq — O Z Ay, | <e.
‘ p:nm lg=n a=n

Proof of Theorem 4. Using the separability of the complex plane we find a
sequence u such that each finite limit point of x is either a term of u or a limit
point of u. Let V ={uy; uy, uy; Uy, Uy, Us; . . .} and K =sup, ;. Yy dpql- It follows
that sup, . |[Xa i dpql =2K. By Lemma 5 there exists a subsequence y,=
{y(1, n)};-; of x such that lim,(Ay,), = V; and

p.n.m

sup | Y a,y(1, @)=V, Y, apq|<1,
q=n

q=n
hence
(1) sup | Y. a,.y(1, Q)l$(2K|Vﬂ+1)-
pmo {2

Let p(1) =1 such that [[T(Ay;)],— V1| <z and q(1)=1 such that

a(l)
@ ) ta(Ay)e — Vi|<i
q=1
and
2 oo
Q [1+Zexvi+n] T lnd<a
i=1 q=q(1)+1

for all p=p(1). Let k(1)=1 such that

a) k(1) a(1) )
(4) Z tp(l),q Z aqiy(l’ l)_ Z tp(]),q(Ayl)q‘<§,
q=1 i=1 q=1
m
(5) |V, sup Z Agi <3,
q=q(),m li=k(1)+1
and
aq) m
(6) Vol 2. sup |t Y Ay | <35
q=1p=p()m i=k(D+1
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Define the first k(1) terms of the subsequence y ={y(n)};_, by y(i)=y(1, i)
for 1=i=k(1). Let r(1)=1 such that y(k(1)) is the r(1) term of x. Since A is
semiregular, the submatrix A; of A formed by deleting the first k(1) columns
of A is also semiregular. By Lemma 5 there exists a subsequence z,=
{z(2, ")} _kys1 Of {Xutn=ray+1 such that lim,(A,z,), = V, and

(7) sup | X 422, 9)-V, L apq\<1,
p.k()<nm lg=n q=n
hence
(8) sup | Y a,z(2,q) | <QK |V, +1).
P g =k(1)+1

By (5) and (6), z, may also be selected such that

m

©) w | S ez i)‘<%
ga=q(1),m lj=k(1)+1
and
a) m
(10) Y osup ol Y auz(2,i)|<s
g=1p=p(),m i=k(1)+1

Let y,={y(2, n)};;_, be the subsequence of x determined by y(2, n) = y(n) for
1=n=k(1) and y(2, n)=2z(2, n) otherwise. Since each column of A is null,
lim, (Ay,), = V,.

Let p(2)>p(1) such that [[T(Ay,)], — Vol <s and q(2)>q(1) such that

q2)
(11) Z th2.a(Ay2)g — Va <3
q=1
and
3 .
(12) [Lexvien] $ lhl<aks
i=1 q=q(2)+1

for all p=p(2). Let k(2)> k(1) such that

q2) k(2) a(2)
(13) Z bh2).q Z agy(2,i)— Z to@.alAY2)q| <76,
a=1 i=1 a=1
(14) Vil sup | X aq|<i
a=q(2),m li=k@2)+1
and
a@2) m
(15) | V3] Z sup |t Z agi | <135
q=1p=p(2),m i=k(2)+1
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Let y(i) = y(2, i) for k(1) <i=k(2) and let r(2) >r(1) such that y(k(2)) is the
r(2) term of x. Let A, denote the submatrix of A formed by deleting the first
k(2) columns of A. By Lemma 5 there exists a subsequence z;=
{z(3, )} —k@+1 of {x.}n-r2+1 such that lim,(A,z;), = V5 and

(16) sup |3 42,0V, Z am|<1
p.k)<nm lg=n

hence

(17) sup | Y a,z(3, q)|<(2K [ V5| +1).
M g =k(2)+1

By (14) and (15), z; may also be selected such that

m

(18) sup Y
a=q2),m li=k(2)+1
and
a2 . .
(19) Y, sup |t \ a,z(3,1) | <12
q=1p=p2).m i=k(2)+1
This selection process may be continued such that
q(l)
a(Ay),—Vi|= Z tw.a(Ay)e— Vi
q=
[&)) k(1) al)
+ ‘ tP(l)q( Z ly(15 i)) Z p(l)q(Ayl) \
q=1 a=1
© q(1) k(G+1)
+ ‘tp(l)q Z aqiy(l)l+ ‘ Z tp(l),q(Ay q
j=1q=1 i=k(@)+1 q=q(1)+1
<itstiet Z to1.a(AY)g
q=q(1)+1

by (2), (4), (10), and (19), where (10) and (19) constitute the cases j=1 and
j =2 respectively. But for all p=p(1)

o © q@i+1)
Z tpq(AY)q = Z Z ltpql l(AY)ql
a=q(1)+1 i=1qg=q(i)+1
o  q(i+1) i+1 o
=3 Y [T ekviens| T aw)]
i=1qg=q@)+1 j=1 j=k@{+1)+1
<35

where the second inequality follows from the pattern established by (1), (8),
and (17), and the third inequality follows from the pattern established by (3)
and (12) since |Yiaine1 0¥ <1 whenever q<q(i+1) by the pattern
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established in (9) and (18). It follows that [[T(Ay)],q,— Vi|<3 and (T(Ay)),
converges for all p=p(1). Similar arguments show [[T(Ay)],q,— Vi|<27* for
each i and [T(Ay)], exists for all p. Thus the proof is complete.

The form of Theorem 4 was chosen in order to simplify the details of the
proof. Actually a slightly more general result may be obtained using the basic
structure of the above proof and requiring A to be a semiregular matrix having
the property that there exists an increasing sequence of positive integers
{q(i)}i=, such that sup; |Yi-qa) pel is finite.

THEOREM 6. The sequence x is bounded if there exist a regular matrix T and a
semiregular matrix A such that T(Ay) is bounded for every subsequence y of x.

Proof. If x is unbounded, then by an argument contained in the proof of
Theorem 1 in [4] both T and A must be row-finite, hence T(Ay)=(TA)y. But
this implies TA is a row-finite semiregular matrix, and the proof follows from
Theorem 4 of [5].

CoroLLARY 7. The sequence x converges if there exist a regular matrix T and
a limit preserving bv to ¢ map A such that T(Ay) converges for every subse-
quence y of x.

Proof. The sequence x must be bounded by Theorem 6. Convergence then
follows by Theorem 4.
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