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Abstract

Objective: The progression of long-term diabetes complications has led to a decreased quality of
life. Our objective was to evaluate the adverse outcomes associated with diabetes based on a
patient’s clinical profile by utilizing a multistate modeling approach. Methods: This was a
retrospective study of diabetes patients seen in primary care practices from 2013 to 2017. We
implemented a five-state model to examine the progression of patients transitioning from one
complication to having multiple complications. Our model incorporated high dimensional
covariates from multisource data to investigate the possible effects of different types of factors
that are associated with the progression of diabetes. Results: The cohort consisted of 10,596
patients diagnosed with diabetes and no previous complications associated with the disease.
Most of the patients in our study were female, White, and had type 2 diabetes. During our study
period, 5928 did not develop complications, 3323 developedmicrovascular complications, 1313
developed macrovascular complications, and 1129 developed both micro- and macrovascular
complications. From our model, we determined that patients had a 0.1334 [0.1284, .1386] rate
of developing a microvascular complication compared to 0.0508 [0.0479, .0540] rate of
developing a macrovascular complication. The area deprivation index score we incorporated as
a proxy for socioeconomic information indicated that patients who reside in more
disadvantaged areas have a higher rate of developing a complication compared to those
who reside in least disadvantaged areas. Conclusions: Our work demonstrates how a multistate
modeling framework is a comprehensive approach to analyzing the progression of long-term
complications associated with diabetes.

Highlights

○ What is already known on this topic: The burden that diabetes mellitus presents because
of long-term complications not only affect the patients’ health but also their life
expectancy.

○ What this study adds: This study implements a multistate modeling approach to predict
micro- or macrovascular complications occurrence and death for an individual based on
their specific clinical characteristics at different time periods after diabetes diagnosis.

○ How this study might affect research, practice, or policy: A multistate modeling
approach to diabetes complications can help understand the progression of complications
specific to each patient, which will not only aid a physician’s ability to better tailor care but
also anticipate complications and plan interventions to reduce the patient’s risk of
an event.

Introduction

In 2020, the Centers for Disease Control and Prevention estimated that 34.1 million adults
aged 18 years or older had diabetes mellitus (DM) in the United States (US) population [1].
Complications associated with DM can be categorized into two broad categories,
microvascular and macrovascular [2]. Microvascular complications include nephropathy,
neuropathy, and retinopathy. Macrovascular complications include cardiovascular disease,
stroke, and peripheral vascular disease. Microvascular and macrovascular complications lead
to increasedmortality and an overall decreased quality of life in individuals with DM.With the
burden of DM and its complications, researchers have been investigating predictive analytic
methods such as machine learning to evaluate adverse outcomes likelihood according to
patients’ clinical profiles.
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The widespread adoption of electronic health record (EHR)
systems in clinical settings has increased the secondary use of EHR
data for predictive analytic models. EHRs are a reliable source of
longitudinal observations for monitoring the progression of
diseases in clinical practice. EHRs provide large quantities of
information regarding a patient’s medical history, including
symptoms, examination findings, test results, prescriptions, and
procedures. Predictive models play an increasingly important role
in the practice ofmedicine as clinical care becomesmore tailored to
individual characteristics and needs and precision medicine
becomes the norm [3].

Numerous models have already been developed to predict DM
complications. Most of the modeling techniques include logistic
regression, Cox Proportional Hazard regression, and machine
learning techniques such as neural networks and simulation
models [4–7]. While the standard Cox model and other machine
learning methods have been applied to predict DM complications,
these models have been limited in predicting only one event of
interest at a time and failed to give an understanding of what
happens after the event of interest occurs. Multistate models
extend standard time-to-event analysis, offering a more compre-
hensive process that can describe the progression of a patient
through various states [8,9]. The main advantage of implementing
a multistate model over traditional time-to-event models is the
ability to consider multiple events at the same time and analyze the
process of progressing from one event to another. The transition
probabilities derived from a multistate model provide the
probability of a patient being in a certain state at a specific point
in time. For example, Jia et al applied a multistate approach to
examine the transition of symptom severity in a cohort of cancer
patients in Ontario and demonstrated that symptoms deteriorated
over time due to a combination of factors [10].

There have been several studies that have used multistate
models to investigate the development of DM complications
[11–13]. In one study, researchers collected data over a 25-year
time period and applied a multistate model to investigate the
transition of type 2 diabetes patients through several complications
including retinopathy, coronary artery disease, and microalbu-
minuria [11]. Another study reported that hemoglobin A1c
(HbA1c), systolic blood pressure, and duration of diabetes
contributed to the development of microvascular complications
in patients with type 1 diabetes [12]. One other study focused on
the progression of DM foot disease and its associated risk factors
[13]. Although multistate modeling has been employed to predict
the progression of DM complications in several studies, only a
limited number of risk factors were included in their models. Other
limitations included focusing on either type 1 or type 2 diabetes
patients exclusively [12]. Finally, these studies restricted their
multistate model to only include one complication, such as
microvascular complications, or limited their model to a few of the
micro- and macrovascular complications [11,13].

The aim of our study was to use amultistate modeling approach
to determine the probability of micro- or macrovascular
complications occurrence and death in a population of both type
1 and type 2 diabetes patients. We categorized each complication
associated with DM as either microvascular or macrovascular to
incorporate all complications in our model. We also combined
data frommultiple sources to exploremore features that contribute
to the progression of DM complications. Our features are a
combination of demographic, clinical, and socioeconomic infor-
mation taken from EHRs and the Area Deprivation Index
(ADI) [14].

Research design & methods

This study was approved by the ChristianaCare Health Services
Inc. Institutional Review Board CCC #38117. ChristianaCare
Health Services Inc. is one of the largest health care providers in the
mid-Atlantic region, serving most of Delaware and parts of
Pennsylvania, Maryland, and New Jersey.

Study design

This was a retrospective longitudinal study using EHR of patients
from ChristianaCare primary care practices and endocrinologist
specialists during the period of January 1, 2013, through December
31, 2017, and followed through December 31, 2019. We defined an
Index Visit as the date of the first ambulatory visit during our study
period.

Study population

Patients who had been diagnosed with the International
Classification of Diseases Ninth Revision and Tenth Revision
(ICD9/10) codes for DM were included in the study. We excluded
patients less than 18 years of age. Because our goal was to predict
the onset of new complications, we excluded patients diagnosed
with ICD9/10 DM complications, ICD9/10 DM-related compli-
cations, and DM complications-related current procedural
terminology (CPT) codes prior to our study period. Patients with
no follow-up ambulatory visits after the index visit, and no HbA1c
at Index Visit and any follow-up visits were excluded. Patients with
both a micro- and macrovascular complication coded on the same
visit were excluded because we could not determine which
complication occurred first. Lastly, patients who had their first DM
diagnosis at Index Visit and were not prior ChristianaCare patients
were also excluded. We confirmed prior patients by checking if
they had prior visits in both ambulatory and hospital at least six
months prior to the Index Visit. If prior visits were found, we
concluded that they were ChristianaCare patients, and the Index
Visit was the first diagnosis of DM.

Variables

Our predictor variables include five different categories
(Supplement Table 1) from multisource datasets. Demographics
include age, sex, race, ethnicity, insurance, diabetes type, smoking
status, and duration of diabetes. Vitals include body mass index
(BMI), blood pressure systolic, blood pressure diastolic, and heart
rate. We had a total of 21 clinical lab variables and 25 Elixhauser
comorbidity measures [15]. We also added the ADI as a proxy for
socioeconomic status [16]. ADI ranks census block groups for each
state from 1 (least disadvantaged neighborhood) to 10 (most
disadvantaged neighborhood) [14]. In order to assign a census
block group number to a patient, we used the most current address
in the EHR and geocoded their location to a specific census block
group. The 12-digit census block group code was linked to the
latest ADI version. We clustered the decile rankings into five
categories of two for simplification.

Outcomes

Our events of interest are the two types of complications (micro-
and macrovascular) associated with DM and death. Complications
were defined using ICD9/10 diagnosis codes associated with DM
specific complications, ICD9/10 diagnosis codes related to DM
complications and CPT codes related to DM complications [17].
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The ICD9/10 and CPT codes used to define the complications are
provided in Supplement Table 2. Because coding for nephropathy
is not very sensitive, we also included the biological definition of
chronic kidney disease (CKD) to identify nephropathy [18]. CKD
was ascertained if patients had 2 glomerular filtration rate
estimates < 60 mL/min/m2 at intervals of 90 days or more or 2
abnormal albuminuria/proteinuria at intervals of 90 days or
more [19].

Data preprocessing and challenges

Although EHRs are rich in data, most of these data are not
collected in a systematic manner and are organized in multi-
dimensional tables resulting in a large number of missing values. In
our baseline data (Index visit), we had missing values for smoking
status (0.2%), vitals (1.0-10.1%), clinical labs (14.8%-52.8%), and
ADI (7.4%). To avoid excluding patients with missing values, we
used two different multiple imputation techniques. First we
applied the multiple imputation using changed equations (MICE)
to our baseline data. MICE has the ability to capture the
uncertainty around the imputed values by replacing each missing
observation with a set of plausible values yieldingmultiple imputed
datasets. We assumed that the data were missing at random. We
used a linear regression model for continuous variables, a logistic
regression model for binary variables and a polytomous logistic
regression model for categorical variables. The algorithm works by
iteratively imputing the missing values based on the fitted
conditional models until a stopping criterion is satisfied. With
these techniques, missing data for a subject is imputed by a value
that is predicted using the subject’s other, known characteristics.
We imputed 10 data sets and selected the set that deviated the least
from the mean of original data variables [20,21].

Second we used the last observation carry forward (LOCF)
technique for our follow-up data, a method applicable to
longitudinal or repeated time-series data [22]. Using LOCF, a
missing observation is replaced by the most recent observed value
for a variable for each patient.

Statistical analysis

A Markov multistate model was used to examine the process of a
disease [9,23,24]. Themodel contains several transitions and states.
States represent the status of a patient at a given time and
transitions between states represent a change in a patient status.
Patients can transition from a finite number of states during any
given time during the observation period. Under the Markov
assumption, given an observed state, the future state depends on
the present state, but not on the earlier states [25]. In a multistate
model, transition intensities represent the instantaneous risk of
moving from one state to another. The transition intensity is
computed jointly for all possible transitions using a maximum
likelihood estimation approach and results in a transition intensity
matrix. To understand the effect of covariates on transitions,
covariates were fitted using a proportional hazards model to the
transition intensity matrix [26]. Additionally multistate models
can allow different sets of covariates to be used in modeling
different transitions to increase flexibility and reduce the number
of parameters in the model. In our model, we employed a variable
selection technique to select which variables were included at each
transition. A hazard ratio (HR) for each covariate was calculated to
analyze the covariate’s effect on each transition. From the
transition intensity matrix, it is possible to compute the transition

probability matrix within a given period. The transition probability
matrix was calculated for one, three, and five years.

A multistate model was built to examine the development of
long-term complications after DM diagnosis. We assumed
intermittent observation, where the exact date of the transition
is unknown but occurred between two observation periods. The
only exact known date is the death date. We used the Social
Security Death Index database to obtain the exact death dates. We
categorized a complication as either a micro- or macrovascular to
minimize the complexity of modeling each complication indi-
vidually. During our study period, a patient occupied one of five
distinct states: DM State if a patient did not develop any
complications; Microvascular State if a patient developed
nephropathy, neuropathy, or retinopathy; Macrovascular State if
a patient developed cardiovascular, foot (non-ulcer) and other
complications; Both State if a patient developed a macrovascular
complication following a previous microvascular complication
diagnosis and vice versa; Death State if a patient died during the
follow-up period. Patients could only progressively move forward
through the states and could transition to the Death State from any
of the other states. We did not allow backward transitions (Micro/
Macro State to DM State) since a complete reversal of long-term
complications is not always possible even with proper manage-
ment and care. We did not allow the transition from DM State
directly to Both State. Since we were following the progression of a
patient moving from one DM complication to the other, one at a
time, to calculate the transition rate, patients were excluded if we
could not determine which type of complication occurred first. In a
multistate model, censoring is often considered at the state level,
but not at the time of the event. In this case, censoring means that
we do not know (observe) the exact state of a patient (since the last
state the patient transitioned to) at the end of the study period or
loss to follow-up. That is, the exact state is unknown but known to
be in a certain set at the end of the study or loss to follow-up. We
incorporated censoring (at the state level) in ourmodel building for
patients without known (observed) exact disease state at the end of
our study period or loss to follow-up.

Variable selection and model building

We selected demographic, clinical variables, and comorbidities
that were available through the EHR as well as socioeconomic data
from the ADI. We had a total of 59 variables in our dataset
(Supplement Table 1). Due to the high dimensionality of our data,
we needed to reduce the number of variables that might be highly
correlated to avoid overfitting our model with redundant data. We
ran several iterations of multivariate models using variable
screening with our variables. Furthermore, we ran a version of
multivariate multistate models without death transitions to
determine if the effects of the variables for other state transitions
remained the same. The Akaike information criterion (AIC) of
each model was computed. AIC provides a good estimate for the
overall model performance [27]. We selected our final multistate
model based on the lowest AIC. Additionally, we performed a
likelihood ratio test between the nested multistate models [28]. We
validated our final model by comparing the diagnostic plots of
observed versus expected prevalence estimates at a series of time
points [23,25,29].

Finally, to verify that excluding the patients for whom both
micro- and macrovascular complications were coded at the same
visit did not result in biased results we did a sensitivity analysis and
re-ran all the models by either assigning all these patients to the
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microvascular state first or assigning them to the macrovascular
state first.

The data were analyzed using the multi-state modeling
packaged from R statistical software version 4.0.2 [25].

Results

Study population

Our study population included 10,596 unique patients. Figure 1
illustrates the flowchart of patient selection for our study. Of the
10,596 patients, 56.2% were female, 64.3% were White, 28.4% were
Black, 65.8% had commercial insurance, 28.6% were on Medicare,
1.9% were on Medicaid or dual insurance, and 0.8% were
categorized as self-pay. Mean age (standard deviation) was 54.7
(14.1) years. A large majority of patients had type 2 diabetes
(93.1%) and 1.8% have had diabetes for less than 5 years, 92.4% for
5 to 10 years, and 5.9% for more than 10 years. Many patients were
former/current smokers (42.8%). The median (interquartile range)
follow-up was 4.72 (3.11-6.55) years. The range of follow-up for
our study population was 1.17 years to 6.99 years.

Variable selection

We started with a null model that included all 59 variables for each
transition for our first iteration multistate model. We then
performed variable screening to drop covariates that were not
significant. We stopped the iterative process when the AIC
difference between two nested models was small and not
decreasing. Our initial null model had an AIC of 42,017.42 and
our final multistate model had an AIC of 38,061.59. The AIC
results indicated that a simpler model containing fewer variables
was more favorable than a model that included all the variables.
And lastly, our diagnostic plots show the prevalence of the
observed vs expected states (Figure 2). The diagnostic plots from
each iteration of the multivariate multistate model were very
similar, which reinforces that a simpler model can be favorable to
avoid overfitting and achieve better interpretability.

The variables chosen for our final model are listed for each
transition in Table 1. The transition from the DM State to the
Microvascular State included 32 unique covariates – 6

demographics, 3 vitals, 12 clinical labs, 10 comorbidities, and
ADI. DM State to Macrovascular State had 21 covariates – 4
demographics,
2 vitals, 6 clinical labs, and 9 comorbidities. DM State to Death State
had no significant variables during our iterative process therefore
there were no variables for our final model. Microvascular State to
Both State had 20 covariates – 4 demographics, 1 vital, 5 clinical labs,
and 10 comorbidities. Microvascular State to Death State had no
significant variables. Macrovascular State to Both State had 16
covariates – 4 demographics, 1 vital, 5 clinical labs, and 6
comorbidities. Macrovascular State to Death State included only
one clinical lab. The transition from Both to Death State had 5
significant variables, which included 1 demographic and 4 clinical
lab variables. The models for the transitions that had no significant
variables did not converge because of the low number of
observations.

Table 1 shows the HR of each covariate for all transitions. For
example, HRs for age, Medicaid/Dual insurance, smoking status,
systolic blood pressure, and HbA1c are significant across all
transitions to Microvascular, Macrovascular, and Both States.
Women are less likely to developmicrovascular andmacrovascular
complications thanmen (HR = 0.910 [0.838, 0.987]), as well as less
likely to develop an additional macrovascular complication if they
already had a microvascular complication (HR = 0.672 [0.568–
0.796]). Patients of “Other Races” vs White are more likely to
develop a microvascular complication with an existing macro-
vascular complication (HR = 1.512 [1.000, 2.314]). ADI is
significant for patients who develop microvascular complications.
Individuals who reside in the most disadvantaged neighborhoods
(9–10) have an HR of 1.365 [1.217, 1.532] compared to those who
reside in the least disadvantaged neighborhoods (1–2).

Multistate model

The number of patients moving from one state to the other is
described in Figure 3. A total of 5928 patients did not develop any
complications by the end of our study period, 32 died with no
reported complications, 3323 developed microvascular complica-
tions, and 1313 developed macrovascular complications. Of the
3323 who developed microvascular complications, 671 further
developed macrovascular complications and 36 died. Of the 1313

Figure 1. Flowchart of patient selection. A total of 10,596 patients were selected for our study population. DM = diabetes mellitus.
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who developed macrovascular complications, 458 also developed
microvascular complications and 13 died. There were 1129 who
developed both a microvascular and macrovascular complication
and 45 from that group died.

From our 5-state model, we estimated the transition intensity
matrix, which provides the instantaneous rate of moving from one
state to another state. Figure 3 shows that a patient has a faster rate
of developing a microvascular complication compared to a
macrovascular complication, 0.1334 [0.1284, .1386] versus
0.0508 [0.0479, .0540]. However, a patient has a higher
instantaneous rate of developing a second complication if they
already had a macrovascular complication compared to a
microvascular complication, 0.0784 [0.0679, .0905] versus
0.0395 [0.0355, .0439].

From our model we also calculated the one-, three-, and five-
year transition probabilities, providing the risk over time of getting
to a particular state (Table 2). As time increases, the probability of
staying in a DM State with no complications decreased from 83.2%
[82.7%, 83.6%], to 57.5% [56.5%, 58.5%], and 39.8% [38.7%,
41.0%] at one-, three-, and five-year respectively. The risk of
developing microvascular complications increased over time, with
probabilities of 11.9% [11.5%, 12.4%], 28.8% [27.8%, 29.6%], and
38.8% [37.7%, 39.9%]. The risk over time to transition from no
complications to a macrovascular complication increases from
4.4% [4.2%, 4.7%], to 10.3% [9.7%, 10.9%] and 13.3% [12.4%,
14.0%]. There is a smaller risk of developing a macrovascular
complication compared to a microvascular complication because
of a lower instantaneous rate as described in Figure 3. Among
patients who transition to the Both State, patients with an existing
macrovascular complication will have double the probability of
getting a microvascular complication (7.5% [6.5%, 8.6%])
compared to those with an existing microvascular complication
(3.8% [3.5%, 4.2%]) at one-year and this trend continues at three-
and five-year.

The sensitivity analysis did not show any differences in the
results whether all the 53 patients who transitioned directly from
diabetes to Both State at the same visit were assigned to the
Diabetes to Micro first (all micro) or to the Diabetes to Macro first
(all macro) as shown in Supplement Tables 3 and 4. The fact that
the results of the 3 models were very similar corroborated our
decision to exclude the 53 patients who transitioned to both from
the diabetes state as mentioned in our study population paragraph
and in Figure 1.

Discussion

The multistate model we developed shows the rate and risk of a
patient transitioning from having no complication to having
multiple complications. The results show that patients had a higher
rate of developing microvascular complications compared to
macrovascular complications. Incorporating variables from multi-
source datasets allowed us to explore the effects of covariates on
each transition. For example, women seem to be less likely to
develop macrovascular complications, which is unexpected
considering the results of multiple studies showing a higher risk
for cardiovascular complications in diabetic women compared to
diabetic men [30–32]. However, many of these studies report
separately the relative risk of cardiovascular complications in
diabetic versus nondiabetic men and women. Women may have a
higher relative risk than men because the cardiovascular burden in
nondiabetic women is lower than the cardiovascular burden in
nondiabetic men. In our study, we compared directly diabetic
women to diabetic men and excluded from our population
individuals with known cardiovascular disease at baseline. On the
other hand, all the complications in our database are defined by
diagnosis codes entered during or after a clinical encounter. It is
possible that cardiovascular complications diagnoses were missed
in women because of atypical symptoms frequently occurring in

Figure 2. Model diagnostic plot of final model, observed vs expected (estimated) patients for each state over time. Tables of observed number of patients for each state.
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Table 1. Final multistate model; significant covariates for each transition and their hazard ratios [95% CI]

Covariates
Diabetes

→Microvascular
Diabetes

→Macrovascular
Microvascular

→Both
Macrovascular

→Both
Macrovascular

→Death Both →Death

Demographics Age 1.023 [1.019,1.027] 1.049 [1.043,1.056] 1.047 [1.038,1.056] 1.030 [1.017,1.042] 1.046 [1.023,1.068]

Female vs Male 0.910 [0.838,0.987] 0.817 [0.723,0.923] 0.672 [0.568,0.796]

Black vs White

Other Race vs White 1.512 [1.000,2.314]

Non-Hispanic vs Hispanic

Medicare vs Commercial 1.549 [1.416,1.694] 1.315 [1.143,1.512]

Medicaid/Dual vs Commercial 1.485 [1.136,1.943] 2.874 [1.989,4.152] 2.043 [1.510,2.764] 1.966 [1.363,2.836]

Self Pay vs Commercial

Former/Current vs Never Smoker 1.183 [1.101,1.270] 1.408 [1.259,1.574] 1.315 [1.125,1.537] 1.327 [1.092,1.613]

Type 2 vs Type 1 0.616 [0.523,0.726]

DOD <5 vs 10þ years DOD 0.735 [0.586,0.922]

<10 vs 10þ years DOD 0.699 [0.538,0.908]

Vitals BMI < 18.5 vs BMI < 25

BMI < 30.0 vs BMI < 25

BMI > 30.0 vs BMI < 25

Blood Pressure Systolic 1.010 [1.007,1.013] 1.008 [1.004,1.012] 1.009 [1.004,1.014] 1.012 [1.006,1.018]

Blood Pressure Diastolic 0.989 [0.985,0.994] 0.990 [0.982,0.997]

Heart Rate 1.007 [1.004,1.009]

Clinical Labs Alkaline Phosphatase 1.002 [1.001,1.003] 1.005 [1.002,1.007]

Alanine Aminotransferase

Albumin 0.724 [0.643,0.814] 0.819 [0.687,0.977] 0.664 [0.563,0.784] 0.474 [0.323,0.696]

Anion Gap 1.010 [1.000,1.024]

Aspartate Aminotransferase 1.002 [1.000,1.003] 1.005 [1.002,1.008]

Bilirubin 1.106 [1.025, 1.194] 1.425 [1.172,1.732]

Glucose 1.001 [1.000,1.001]

Hemoglobin 0.937 [0.911,0.964] 0.909 [0.863,0.957] 0.868 [0.818,0.922]

Hemoglobin A1c 1.100 [1.074,1.126] 1.051 [1.019,1.084] 1.151 [1.105,1.199] 1.161 [1.103,1.222]

Urea Nitrogen 1.057 [1.050,1.064] 1.021 [1.009,1.032] 1.049 [1.034,1.065]

Low Calcium vs Normal Calcium
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Table 1. (Continued )

High Calcium vs Normal Calcium 1.230 [1.077,1.405]

Carbon Dioxide

Cholesterol

High Density Lipoprotein 0.994 [0.990,0.998]

Platelet

Low Potassium vs Normal
Potassium

High Potassium vs Normal
Potassium

Protein 1.198 [1.100,1.304] 0.745 [0.622,0.892]

Low Sodium vs Normal Sodium 1.409 [1.174,1.692] 1.408 [1.036,1.913] 1.541 [1.136,2.091]

High Sodium vs Normal Sodium 1.380 [1.144,1.664] 1.441 [1.086,1.912]

Thyroid Stimulating Hormone 1.015 [1.000,1.037] 1.072 [1.020,1.137]

Triglycerides

White Blood Cell 1.272 [1.131,1.430] 1.061 [1.000,1.130]

Elixhauser
Comorbidity

AIDS/HIV

Alcohol Abuse

Anemia Deficiency 1.174 [1.015,1.359] 1.364 [1.074,1.732]

Cardiac Arrhythmias 1.342 [1.157,1.556]

Chronic Pulmonary Disease 1.221 [1.121,1.329] 1.338 [1.177,1.522] 1.273 [1.075,1.506]

Coagulopathy 0.811 [0.668,0.984] 1.388 [1.043,1.848]

Congestive Heart Failure 2.053 [1.559,2.704] 1.954 [1.354,2.819] 1.733 [1.112,1.695]

Depression 1.357 [1.195,1.541] 1.270 [1.069,1.508] 1.373 [1.112,1.695]

Drug Abuse

Fluid and Electrolyte Disorders 1.230 [1.117,1.354]

Hypertension 1.489 [1.117,1.354] 1.205 [1.039,1.398] 1.606 [1.119,2.306]

Hypothyroidism 1.104 [1.014,1.202]

Liver Disease 1.277 [1.148,1.420] 1.250 [1.064,1.468] 1.267 [1.043,1.540]

Lymphoma

(Continued)
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Table 1. (Continued )

Covariates
Diabetes

→Microvascular
Diabetes

→Macrovascular
Microvascular

→Both
Macrovascular

→Both
Macrovascular

→Death Both →Death

Obesity

Other Neurological Disorders 1.273 [1.085,1.493] 1.377 [1.053,1.801] 1.544 [1.091,2.184]

Paralysis 1.692 [1.103,2.596]

Peripheral Vascular Disorders 1.561 [1.229,1.984] 1.752 [1.412,2.175]

Psychoses

Pulmonary Circulation Disorders 1.412 [1.128,1.768]

Renal Failure 3.703 [2.986,4.592] 1.556 [1.188,2.038]

Rheumatoid Arthritis 1.469 [1.126,1.917]

Tumor/Metastatic Cancer 1.318 [1.029,1.689]

Valvular Disease 1.488 [1.212,1.825] 1.366 [1.081,1.726]

Weight Loss

ADI 3–4 vs 1–2 1.211 [1.085,1.350]

5–6 vs 1–2 1.174 [1.052,1.310]

7–8 vs 1–2 1.229 [1.100,1.373]

9–10 vs 1–2 1.365 [1.217,1.532]

CI= confidence interval; DOD= duration of diabetes; ADI= area deprivation index.
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diabetic women [30]. We also found that women were least likely
to develop microvascular complications, which is consistent with
studies showing men with a higher risk of developing microalbu-
minuria and diabetic retinopathy [33–35].

Our model shows that an increase in HbA1c is significant for
the development of both micro- and macrovascular complications,
which emphasizes the importance of controlling HbA1c. The
effects of HbA1c and systolic blood pressure levels are consistent
with results found in other studies that appliedmultistate modeling
to microvascular complications [11–13]. Not surprisingly, smok-
ing is a risk factor for developing a new complication at any step of
the model. ADI, which is not included in EHRs, is a significant
factor for patients who develop microvascular complications, with
patients who reside in the most disadvantaged neighborhoods
having a higher likelihood of developing a complication compared
to those who reside in the least disadvantaged neighborhood. Low
socioeconomic status has been shown to be associated with
diabetic complications in analyses using logistic or Cox propor-
tional hazard regressions and the prevalence of obesity and
diabetes has been shown to be associated with neighborhood
deprivation but indicators of socioeconomic status or ADI levels
have not been included in previous diabetes-related multistate
models [36–39].

Our study considered all complications associated with DM by
including diagnosis codes specifically for DM and those related to
DM. Most applications of multistate modeling limit their
transitions to only include a subset of complications associated
with DM with a relatively small number of covariates.

Although our model shows predictive strength it also has
several limitations. The first is that we used diagnosis codes to
identify complications, which may not reflect the exact timing of
occurrence of a complication and may also miss some

complications. However, by broadening our outcomes to not only
ICD9/10 DM specific codes but also to ICD 9/10 and CPT codes
related to DM, we were able to capture more patients who
experienced complications who normally would have been missed
as transitioning to a Micro- or Macrovascular State. Second, our
model was not validated with an external dataset to determine
performance. Nevertheless, we examined model selection criteria
such as AIC at each iteration of our model building. Furthermore,
our diagnostic plots show validity in our analysis. Since we did not
have medication in our data, we based DM control on HbA1c.
Also, by categorizing our complications as either micro- or
macrovascular, we are assuming that the disease process is similar
for each complication within the microvascular or macrovascular
categories. This might be reflected by the high number of variables
selected for the transition from DM State to Microvascular State.
Lastly, since the sample size for transitions to death was small, this
might not precisely infer the results of significant variables in the
death transitions. However, we ran separate iterations of the
multistate model without the death transitions included and it did
not affect our estimations for other transitions.

A multistate modeling approach to DM complications can help
understand the progression of DM complications which will not
only aid a physician’s ability to provide better care but also
anticipate complications and plan interventions to reduce the
patient’s risk of an event. The burden that DM presents in the long
term not only affects the patients’ health but also their life
expectancy. With our model, a physician could, for example, vary
HbA1C levels and show a patient what is the risk of developing
microvascular complications at one-, five-, and ten-years accord-
ing to their personal characteristics.

Future work will focus on validating the multistate model with
an external dataset of DM patients to test the strength of the

Figure 3. Five-state model for examining the progression of diabetes-related complications using electronic health records among diabetes patients. N, number of censored
patients at the end of follow-up or loss to follow-up; n, number of observed transitions; TI [], transition intensity [95% CI]. Transition from diabetes state to Both State is not an
allowable transition. Both State refers to patients who have a micro- and macrovascular complication. Death is the final absorbing state.
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Table 2. Estimated 1-year, 3-year, and 5-year state-to-state transition probabilities among diabetes patients

Year and State

Maximum Likelihood Estimate (95% CI)

Diabetes Microvascular Macrovascular Both Death

1 year

Diabetes 0.832 (0.827,0.836) 0.119 (0.115,0.124) 0.044 (0.042,0.047) 0.004 (0.003,0.005) 0.000 (0.000,0.001)

Microvascular – 0.960 (0.955,0.964) – 0.038 (0.035,0.042) 0.002 (0.001,0.004)

Macrovascular – – 0.923 (0.910,0.933) 0.075 (0.065,0.086) 0.003 (0.001,0.008)

Both – – – 0.987 (0.978,0.992) 0.013 (0.008,0.022)

Death – – – – 1.0000

3 years

Diabetes 0.575 (0.565,0.585) 0.288 (0.278,0.296) 0.103 (0.097,0.109) 0.032 (0.030,0.035) 0.002 (0.001,0.003)

Microvascular – 0.885 (0.872,0.896) – 0.109 (0.099,0.121) 0.006 (0.004,0.012)

Macrovascular – – 0.785 (0.754,0.810) 0.205 (0.179,0.233) 0.10 (0.006,0.024)

Both – – – 0.961 (0.938,0.976) 0.039 (0.024,0.062)

Death – – – – 1.0000

5 years

Diabetes 0.398 (0.387,0.410) 0.388 (0.377,0.399) 0.133 (0.124,0.140) 0.077 (0.071,0.083) 0.005 (0.004,0.008)

Microvascular – 0.815 (0.796,0.830) – 0.172 (0.157,0.190) 0.012 (0.008,0.021)

Macrovascular – – 0.668 (0.623,0.701) 0.311 (0.277,0.348) 0.021 (0.013,0.043)

Both – – – 0.935 (0.896,0.959) 0.065 (0.041,0.104)

Death – – – – 1.0000

An example of how to interpret the table: In 1 year, a patient will stay in a DM State (no complications) with a probability of 83.2%, transition from DM State to Microvascular State with a probability of 11.9%, transition from DM to Macrovascular State with a
probability of 4.4% and have a 0.4% of transitioning from a DM State to a Death State. For patients with an existing microvascular complication, they have a 96.0% probability of staying in the Microvascular State, 3.8% probability of developing a
macrovascular complication and transitioning to the Both State, and 0.2% of transition from the Microvascular State to Death State. For those that have an existing macrovascular complication, they have a 92.3% probability of staying in that state,
a 7.5% of developing a microvascular complication and transitioning to the Both State, and a 0.3% of transitioning from the Macrovascular State to Death State. Those that are in the Both State (having a micro- andmacrovascular complication) have a
98.7% probability of staying in that state and a 1.3% probability of transitioning to the Death State.
CI= confidence interval, DM = diabetes mellitus.
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model’s predictive capabilities. Once validated, the algorithm could
be integrated into EHR to allow physicians to predict long-term
risk according to a patient’s characteristics.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2024.583.
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