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Assuming an inviscid incompressible liquid (with irrotational flows) partly filling a
square base tank, which performs a small-amplitude sway/surge/pitch/roll periodic
motion whose frequency is close to the lowest natural sloshing frequency, a
nine-dimensional Narimanov–Moiseev-type (modal) system of ordinary differential
equations with respect to the hydrodynamic generalised coordinates was derived in
the Part 1 (Faltinsen et al., J. Fluid Mech., vol. 487, 2003, pp. 1–42). Constructing
and analysing asymptotic periodic solutions of the system made it possible to classify
steady-state resonant sloshing and its stability for the harmonic reciprocating (longi-
tudinal, diagonal and oblique) forcing. The results were supported by experimental
observations and measurements. The present paper finalises the case studies by
considering the three-dimensional non-parametric (combined sway, pitch, surge, roll
and yaw, but no heave) cyclic tank motions. It becomes possible after establishing an
asymptotic equivalence of the associated periodic solutions of the modal system to
those for a suitable horizontal translatory elliptic forcing so that, as a consequence,
resonant steady-state waves and their stability can be considered versus angular
position, semi-axis ratio |δ1| and direction (counter- or clockwise) of the equivalent
orbits. The circular orbit causes stable swirling waves (co-directed with the orbit) but
may also excite stable nearly standing waves. The orbit direction does not affect the
response curves for wall-symmetric (canonic) and diagonal orbit positions. This is not
true for the oblique-type elliptic forcing. When the semi-axis ratio |δ1| changes from 0
to 1, the response curves exhibit astonishing metamorphoses significantly influencing
the frequency ranges of stable nearly standing/swirling waves and ‘irregular’ sloshing.
For the experimental input data by Ikeda et al. (J. Fluid Mech., vol. 700, 2012,
pp. 304–328), the counter-directed swirling disappears as 0.5 . |δ1| but the frequency
range of irregular waves vanishes for 0.75 . |δ1|.

Key words: wave–structure interactions

† Email address for correspondence: odd.faltinsen@ntnu.no

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5609-1074
https://orcid.org/0000-0002-6750-4727
mailto:odd.faltinsen@ntnu.no
https://doi.org/10.1017/jfm.2020.253


894 A10-2 O. M. Faltinsen, O. E. Lagodzinskyi and A. N. Timokha

1. Introduction
Suggesting an inviscid liquid with irrotational flows, a finite liquid depth, a

forcing frequency σ close to the lowest natural sloshing frequency σ1, a forcing
amplitude asymptotically smaller than the tank width/breadth (the five non-dimensional
sway/surge/roll/pitch/yaw amplitudes are O(ε) � 1) and assuming that secondary
resonance phenomena can be neglected, Faltinsen, Rognebakke & Timokha (2003,
Part 1) derived a Narimanov–Moiseev-type nonlinear modal system (of ordinary
differential equations), which effectively approximates resonant sloshing in a square
base tank. The system couples the (hydrodynamic) generalised coordinates governing
the free-surface elevation with nine degrees of freedom. Two generalised coordinates
have the lowest asymptotic order O(ε1/3), they are responsible for the primary excited
natural sloshing modes. Three generalised coordinates have the second asymptotic
order, O(ε2/3), but the other four have the third asymptotic order O(ε). This number
of hydrodynamic generalised coordinates and their asymptotic order on the O(ε)-scale
are a consequence of classical mathematical results by Moiseev (1958) and Narimanov
(1957). Part 1 explains why the remaining (infinite number) degrees of freedom of
the free surface are of the higher asymptotic order and can be neglected within
the framework of the Narimanov–Moiseev theory. Under the assumptions stated
above, the derived nonlinear modal system should theoretically be applicable to
arbitrary (almost) periodic sway/surge/pitch/roll/yaw tank motions. However, being
driven by available model tests and because of analytical problems (partly solved in
the present paper), the forthcoming parts are exclusively focusing on the harmonic
(longitudinal, oblique and diagonal) resonant tank reciprocation. The theoretical results
on steady-state waves and their stability were supported by existing (including the
authors’) experimental observations and measurements.

Raynovskyy & Timokha (2018a) employed an analogous Narimanov–Moiseev-type
asymptotic approximation of the steady-state resonant sloshing for a circular base
tank forced by sway, roll, surge, pitch and yaw. They showed that each resonant
steady-state wave is then asymptotically equivalent to a steady-state wave excited
by a suitable orbital elliptic horizontal translatory tank motion. The original and
asymptotically equivalent solutions of the Narimanov–Moiseev-type modal equations
differ only by the highest-order asymptotic components, which do not affect the waves
stability. As a matter of the fact, studying the resonant steady-state sloshing due to
periodic sway, surge, pitch, roll and yaw can be reduced to analysing the steady-state
wave modes and their stability for tanks performing either reciprocating (a particular
case; surveys are given by Royon-Lebeaud, Hopfinger & Cartellier (2007), Faltinsen,
Lukovsky & Timokha (2016)) or orbital (relevant to bioreactors; see reviews by
Weheliye, Yianneskis & Ducci (2013), Reclari et al. (2014), Bouvard, Herreman &
Moisy (2017), Raynovskyy & Timokha (2018b) and Timokha & Raynovskyy (2018))
tank motions.

Sloshing in a square base basin exposed to combined periodic sway, surge,
roll, pitch and yaw is frequently associated with marine applications, storage and
operational containers of, e.g. nuclear plants. Even though there exist numerous
publications devoted to applied mathematical and engineering aspects of the problem
(Ardakani & Bridges 2011; Ardakani 2019; Lyu et al. 2019; Zhang et al. 2019),
studies on the resonant sloshing due to three-dimensional excitations are rare
(Hiramitsu & Funakoshi 2015; Zhang, Ning & Teng 2018). There is a lack of
fundamental knowledge on what types of resonant (steady-state) waves are realisable
for this kind of three-dimensional forcing and in which frequency ranges. The
Narimanov–Moiseev-type modal system from Part 1 allows us to fill this gap,
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provided, as the present paper shows, the aforementioned asymptotic equivalence of
the original steady-state resonant waves and those caused by orbital tank excitations.
The steady-state wave modes and their stability ranges become then functions of
two real parameters determining the angular position and the semi-axis ratio of
the elliptic orbit and its direction (clockwise or counterclockwise). As discussed in
chap. 9 of Faltinsen & Timokha (2009), applicability of the Narimanov–Moiseev-type
modal system is disputable for tanks performing a heave motion and, therefore, this
vertical degree of freedom is excluded from consideration. The state-of-the-art of
parametrically forced sloshing was recently outlined by Ibrahim (2015).

In § 2, we write down and discuss the Narimanov–Moiseev-type nonlinear modal
system and discuss why it does not contain inhomogeneous terms associated with
yaw (Faltinsen & Timokha 2009, equation (5.132)). Furthermore, because Faltinsen
& Timokha (2017, Part 4) discovered that damping, even being relatively small,
may be important for getting a good qualitative and quantitative agreement with
laboratory experiments, the modal system is equipped with linear damping terms
whose coefficients are in part associated with the laminar boundary layer (Faltinsen
& Timokha 2009, equation (6.139)).

In § 3, we follow the asymptotic scheme from Part 4 to derive an asymptotic
periodic (steady-state) solution of the nonlinear modal system. The derivation yields
a solvability (secularity) condition appearing as a system of nonlinear algebraic
equations with respect to the four lowest-order wave amplitude parameters a, ā, b̄,
b = O(ε1/3) and the non-dimensional frequency parameter Λ = 1 − σ 2

1 /σ
2
= O(ε2/3)

where, as stated above, the scale O(ε) corresponds to the non-dimensional forcing
amplitude. The secular system contains the four forcing amplitude parameters
εx, ε̄x, ε̄y, εy on the right-hand side. They are associated with the lowest Fourier
harmonics in the tank forcing. Keeping only these harmonics (= amplitude parameters
εx, ε̄x, ε̄y, εy) is equivalent to studying the steady-state sloshing due to a horizontal
translatory elliptic (orbital) tank motion. Because the first- and second-order
components of the constructed asymptotic periodic solution and its stability are
functions of a, ā, b̄, b, Λ, and, therefore, are functions of εx, ε̄x, ε̄y, εy (= functions of
the aforementioned lowest Fourier harmonics), the original stable/unstable theoretical
steady-state waves due to the complex periodic sway, surge, roll, pitch and yaw
become asymptotically (to within the higher-order contribution) equivalent to the
steady-state sloshing due to the aforementioned horizontal elliptic tank motions.
Based on this fact, the steady-state wave modes can be classified versus 0 6 |δ1|6 1
(the semi-axis ratio of the elliptic orbit), γ (the angle between the major orbit axis
and Ox) and the orbit sign (clockwise or counterclockwise).

The secular system with respect to a, ā, b̄, b can be re-written in terms of the two
wave-amplitude parameters A and B, which imply the lowest-order contribution of
the two perpendicular two-dimensional Stokes modes (along Ox and Oy), and the
associated phase lags ψ and ϕ. To exclude ψ and ϕ and, thereby, to simplify
the analysis in order to get a numerical solution, the latter system is reduced
to an alternative form where the unknowns A2, B2 and β = cos(ϕ − ψ) = cos α
are computed versus the frequency parameter Λ. Solving the alternative secular
system outputs the triads (σ/σ1, A, B), which determine the wave-amplitude response
curves. By specifying the stability and computing sin α along these curves makes it
possible to identify stable/unstable wave modes (in the lowest-order approximation),
which, as we show, are restricted to the counterclockwise (O(ε1/3) . sin α > 0) and
clockwise (O(ε1/3) . sin α < 0) swirling (angularly propagating wave), the nearly
(O(ε1/3)= |sinα|) and purely (sin α= 0) standing waves as well as irregular (chaotic,
modulated, etc.) sloshing (all periodic solutions are not stable).
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The limiting case |δ1| = 0 (reciprocating tank oscillations) was studied in Part 4.
Another limiting case |δ1| = 1 (circular tank orbit) is considered in § 4. This excitation
type causes stable swirling whose angular propagation coincides with the orbital
direction (clockwise or counterclockwise). When σ/σ1 < 1, the stable swirling
co-exists (in a local frequency domain) with two stable nearly standing waves.

Passage from the longitudinal reciprocation to the circular orbital forcing (|δ1|

continuously changes from 0 to 1) is studied in § 5 for the wall-symmetric (canonic)
position of the elliptic orbit (γ = 0). When |δ1| becomes non-zero, the originally
connected wave-amplitude branching (δ1 = 0) splits into a non-connected continuous
curve existing in the entire resonant zone and a loop-type branch. The split reflects a
breakage of the physically identical (and Ox-symmetric) swirling and nearly standing
waves, which exist for the longitudinal forcing. As a consequence, the co- and
counter-directed swirling waves have (for such a non-zero |δ1|) different amplitudes
in the Ox and Oy directions and these two different wave modes become associated
with points on different (non-connected) branches. Furthermore, when the semi-axis
ratio |δ1| exceeds a critical value (estimated about ≈0.5 in numerical examples related
to the physical input by Ikeda et al. (2012)), the counter-directed swirling disappears.
The same happened for the circular base container (Raynovskyy & Timokha 2018a;
Timokha & Raynovskyy 2018). Another interesting trend is that a further increase
of |δ1| makes the co-directed swirling stable in the whole resonant zone and, as a
consequence, irregular waves are not theoretically expected. Stable nearly standing
waves are possible for all 0 6 |δ1| 6 1 and they normally co-exist with other stable
steady-state wave modes.

The wave-amplitude response curves and stability ranges of the associated steady-
state wave modes for the diagonal-type elliptic forcing (γ = π/4) are studied in § 6
with a focus on their topological ‘metamorphoses’ versus the semi-axis ratio 0 6 |δ1|

6 1. The branching formally depends on the orbit direction, but, because the secular
system is invariant with respect to substitution A→ B, B→ A, δ1→−δ1, as long as
we know the wave-amplitude response curves for a counterclockwise tank orbit, one
can immediately get the branching for the clockwise one by the replacement A→ B,
B→ A. The wave-amplitude response curves for γ = π/4 topologically differ from
those for the wall-symmetric orbital forcing in § 5. However, the stable steady-state
wave modes (standing, nearly standing and swirling) and their stability ranges run
through qualitatively similar modifications with increasing |δ1|. In both case, one
can observe a conversion of stable (planar/diagonal) standing waves to swirling
(co-directed with the elliptic orbit) far from the primary resonance zone, diminishing
and, thereafter, removing the stability range of irregular waves, disappearance of
the counter-directed swirling as well as permanently existing zones of stable nearly
standing waves.

The oblique-type (neither wall symmetric nor diagonal) elliptic tank forcing is
considered in § 7. The associated wave-amplitude response curves depend then on
the orbit direction (clockwise or counterclockwise); they look rather sophisticated and
yield astonishing bifurcations as |δ1| varies from 0 to 1. The branching significantly
differs from those in §§ 5 and 6. However, when the semi-axis ratio |δ1| = O(1)
exceeds a critical value (again, this value is estimated to be approximately 0.5 for
the physical input by Ikeda et al. (2012)), both disposition and frequency ranges of
the stable nearly standing/swirling modes as well as of the irregular sloshing become
similar to the previously studied cases. A further increase of the semi-axis ratio
(0.75 . |δ1| in our computations with the input data by Ikeda et al. (2012)) makes
the wave-amplitude response curves topologically similar to those established for the
circular forcing.
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FIGURE 1. A rigid square base container moves cyclically with a small amplitude in surge,
sway, roll, pitch and yaw so that its translatory velocity is vO(t) = (vO1(t), vO2(t), 0) =
(η̇1(t), η̇2(t), 0) and the instant angular velocity is ω(t) = (ω1(t), ω2(t), ω3(t)) = (η̇4(t),
η̇5(t), η̇6(t)). The Oxyz coordinate system is rigidly fixed with the container. The mean
(hydrostatic) free surface Σ0 belongs to the Oxy plane and the origin is in the geometric
centre of Σ0. In the non-dimensional statement, the tank breadth and width are equal to
the unit but the non-dimensional mean liquid depth equals to h.

Each case in §§ 4–7, especially, in § 4, which is associated with orbitally shaken
containers, deserves an additional thorough theoretical study, perhaps, an independent
publication. In order to restrict the paper volume, we report only a generic description
of what kind of the steady-state waves are possible by using the reliable approximate
mathematical model, which was supported by model tests for other classes of the
resonant forcing. The present paper should also guide future experimental studies with
a focus on co-existing stable resonant waves established for all forcing types.

2. The Narimanov–Moiseev-type modal equations
A cyclically moving rigid square base container is partially filled with a finite

liquid depth by a perfect incompressible (irrotational flows) liquid. Figure 1
introduces necessary notation including the prescribed time-periodic translatory
vO(t) = (η̇1(t), η̇2(t), 0) and instant angular ω(t) = (η̇4(t), η̇5(t), η̇6(t)) velocities
of the container, which satisfy the periodicity condition vO(t + T) = vO(t) and
ω(t + T) = ω(t), where T = 2π/σ is the forcing period. The developed nonlinear
sloshing theory below requires that the heave container component is zero (η3(t)≡ 0)
to avoid parametric resonances in the hydrodynamic system (see a recent review on
the parametric waves by Ibrahim (2015)).

Oscillatory liquid motions (sloshing) are considered in the non-inertial (tank-fixed)
coordinate system Oxyz whose Oxy-plane coincides with the mean (hydrostatic) free
surface Σ0 and Oz runs through the centre of Σ0. Mathematically, the sloshing
problem consists of finding the two unknowns: the free surface Σ(t) (described
by the single-value representation z = f (x, y, t)) and the absolute velocity potential
Φ(x, y, z, t). The corresponding free-surface problem and its variational analogy
are presented in Part 1 (see more mathematical and physical details in chap. 2 of
Faltinsen & Timokha (2009)).

The present paper concentrates on the steady-state waves, which are associated with
the (T = 2π/σ)-periodic solutions, f (x, y, t + T)= f (x, y, t) and ∇Φ(x, y, z, t + T)=
∇Φ(x, y, z, t), of the sloshing problem and their stability. The periodic solutions (for
longitudinal, diagonal and oblique tank reciprocations) were constructed in Parts 1
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and 4 by employing an asymptotic (modal) theory by Narimanov (1957) and Moiseev
(1958). The theory suggests the small (relative to the tank breadth L) non-dimensional
tank forcing,

ηi(t)∼O(ε)� 1, i= 1, 2, 4, 5, 6, (2.1)

where ηi(t) are the above-introduced five degrees of freedom of the moving tank, and
the L-scaled modal representation of the free surface

f (x, y, t) = a1(t)f
(1)
1 (x)+ b1(t)f

(2)
1 (y)︸ ︷︷ ︸

O(ε1/3)

+ a2(t)f
(1)
2 (x)+ b2(t)f

(2)
2 (y)+ c1(t)f

(1)
1 (x)f (2)1 (y)︸ ︷︷ ︸

O(ε2/3)

+ a3(t)f
(1)
3 (x)+ b3(t)f

(2)
3 (y)+ c21(t)f

(1)
2 (x)f (2)1 (y)+ c12(t)f

(1)
1 (x)f (2)2 (y)︸ ︷︷ ︸

O(ε)

+ [lin.]+ o(ε), (2.2)

where [ f (1)i (x) f (2)j (y)] are the natural sloshing modes expressed in terms of the two-
dimensional Stokes waves

f (1)i (x)= cos(πi(x+ 1/2)) and f (2)i (y)= cos(πi(y+ 1/2)), i > 0, (2.3a,b)

where the summand [lin.]. O(ε) implies contribution of the higher natural sloshing
modes, which are governed by the linear sloshing theory (see § 5.4.3 of Faltinsen &
Timokha (2009)), but a1(t),b1(t),a2(t),b2(t), c1(t),a3(t),b3(t), c21(t), c12(t) are the non-
dimensional free-surface (hydrodynamic) generalised coordinates, which are involved
in the nonlinear interaction within the framework of the Narimanov–Moiseev theory.
The asymptotic ordering of the generalised coordinates a1(t), b1(t), a2(t), b2(t), c1(t),
a3(t), b3(t), c21(t), c12(t) and structure of the ‘ansatz’ (2.2) follow from mathematical
results by Moiseev (1958) and Narimanov (1957) who, in particular, proved that the
primarily excited cross-modes f (1)1 (x) and f (2)1 (y) (a1(t) and b1(t), respectively) have
the lowest asymptotic order O(ε1/3) when O(ε) is the forcing amplitude scale.

To apply the Narimanov–Moiseev theory, one should demand the following three
necessary conditions. First, the theory suggests the finite liquid depth,

0.4 . h (2.4)

(h is the non-dimensional, L-scaled, liquid depth). Second, the forcing frequency σ is
close to the lowest natural sloshing frequency σ1 = σ0,1 = σ1,0 to satisfy the so-called
Moiseev detuning

σ 2/σ 2
1 − 1=O(ε2/3)⇔Λ= σ̄ 2

1 − 1= σ 2
1 /σ

2
− 1=O(ε2/3). (2.5)

Third, the theory assumes no secondary resonances (see the definition of the secondary
resonance and when it is possible for rectangular containers in chapters 8 and 9 of
Faltinsen & Timokha (2009)).

Part 1 showed that neglecting the o(ε)-quantities in the governing equation
and boundary conditions (generally speaking, Part 1 utilises the Bateman–Luke
variational formulation of the original free-surface problem) derives the following
Narimanov–Moiseev-type modal system of ordinary differential equations with respect
to the nonlinearly interacting hydrodynamic generalised coordinates:

ä1 + 2ξ1,0σ1,0ȧ1 + σ
2
1,0a1 + d1(ä1a2 + ȧ1ȧ2)+ d2(ä1a2

1 + ȧ2
1a1)+ d3ä2a1 + d6ä1b2

1

+ d7(b̈1c1 + ḃ1ċ1)+ d8b̈1a1b1 + d9c̈1b1 + d10ḃ2
1a1 + d11ȧ1ḃ1b1

=−P1,0(η̈1 − S1,0η̈5 − gη5), (2.6a)
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b̈1 + 2ξ0,1σ0,1ȧ1 + σ
2
0,1b1 + d1(b̈1b2 + ḃ1ḃ2)+ d2(b̈1b2

1 + ḃ2
1b1)+ d3b̈2b1 + d6b̈1a2

1

+ d7(ä1c1 + ȧ1ċ1)+ d8ä1a1b1 + d9c̈1a1 + d10ȧ2
1b1 + d11ȧ1ḃ1a1

=−P0,1(η̈2 + S0,1η̈4 + gη4); (2.6b)

ä2 + 2ξ2,0σ2,0ȧ2 + σ
2
2,0a2 + d4ä1a1 + d5ȧ2

1 = 0, (2.7a)

b̈2 + 2ξ0,2σ2,0ḃ2 + σ
2
0,2b2 + d4b̈1b1 + d5ḃ2

1 = 0, (2.7b)

c̈1 + 2ξ1,1σ2,0ċ1 + d̂1(ä1b1 + b̈1a1)+ d̂3ȧ1ḃ1 + σ
2
1,1c1 = 0; (2.7c)

ä3 + 2ξ3,0σ3,0ȧ3 + σ
2
3,0a3 + ä1(q1a2 + q2a2

1)+ q3ä2a1 + q4ȧ2
1a1 + q5ȧ1ȧ2

=−P3,0(η̈1 − S3,0η̈5 − gη5), (2.8a)

c̈21 + 2ξ2,1σ2,1ċ21 + σ
2
2,1c21 + ä1(q6c1 + q7a1b1)+ b̈1(q8a2 + q9a2

1)+ q10ä2b1

+ q11c̈1a1 + q12ȧ2
1b1 + q13ȧ1ḃ1a1 + q14ȧ1ċ1 + q15ȧ2ḃ1 = 0, (2.8b)

c̈12 + 2ξ1,2σ1,2ċ12 + σ
2
1,2c12 + b̈1(q6c1 + q7a1b1)+ ä1(q8b2 + q9b2

1)+ q10b̈2a1

+ q11c̈1b1 + q12ḃ2
1a1 + q13ȧ1ḃ1b1 + q14ḃ1ċ1 + q15ȧ1ḃ2 = 0, (2.8c)

b̈3 + 2ξ0,3σ0,3ḃ3 + σ
2
0,3b3 + b̈1(q1b2 + q2b2

1)+ q3b̈2b1 + q4ḃ2
1b1 + q5ḃ1ḃ2

=−P0,3(η̈2 + S0,3η̈4 + gη4), (2.8d)

where

σj,i = σi,j =

√
gπ
√

i2 + j2 tanh(π
√

i2 + j2h) (2.9)

are the natural (circular) sloshing frequencies (g is the L-scaled gravity acceleration),

Pi,0 = P0,i =
2
πi

tanh(πih)[(−1)i − 1], Si,0 = S0,i =
2
πi

tanh(πih/2), (2.10a,b)

and the hydrodynamic coefficients at the nonlinear terms are functions of h.
To facilitate interested applied mathematicians and engineers, the supplementary
materials A, available at https://doi.org/10.1017/jfm.2020.253, report computational
formulas for the hydrodynamic coefficients and tables them for some particular
values of h. An interesting mathematical fact is that η6(t) (yaw) is not presented
in the Narimanov–Moiseev-type equations (2.6)–(2.8). This means that the yaw-type
resonant forcing of the lowest natural sloshing frequency σ1 = σ0,1 = σ1,0 exclusively
affects the linear sloshing component in representation (2.2), i.e. only sway, pitch, roll
and surge matter when σ is close to σ1. As was discussed in Part 1, the third-order
generalised coordinates are ‘driven’, i.e. equations (2.6)–(2.7) do not depend on
a3, b3, c12 and c21 but (2.8) contain only linear terms by these generalised coordinates.
These generalised coordinates and (2.8) are a necessary mathematical component of
the Narimanov–Moiseev theory, which requires to account for all the O(ε)-quantities
in derivations. Part 4 also showed that contribution by a3, b3, c12 and c21 is necessary
to get a good agreement with experimental measurements.

Because damping was important in Part 4 to fit experimental data by Ikeda et al.
(2012), the modal system is equipped with the underlined linear damping terms. The
damping ratios ξi,j express a summarised (‘integral’) effect of different physical factors,
which include the laminar boundary layer on the wetted tank surface (Faltinsen &
Timokha 2009, equations (6.139)). Part 4 also discusses when the linear damping
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terms can be utilised by the Narimanov–Moiseev-type modal equations, whose
derivation suggests an ideal liquid with irrotational flows. A requirement is that the
viscous vortical flows are localised near the wetted bottom/walls and/or the free
surface. This includes the aforementioned boundary layer and, possibly, the effect
of breaking waves. However, the damping ratios ξi,j should remain asymptotically
small values. Part 4 concludes that, mathematically, ξ1,0 = ξ0,1 = O(ε2/3) to match
the Narimanov–Moiseev asymptotic relations. The same order for the ‘higher’
damping rates means that the linear terms in (2.7) and (2.8) are O(ε4/3) and
O(ε5/3), respectively, and, therefore, these terms can, as in Part 4, be neglected
in the forthcoming derivations of the periodic a2, b2, c1 and a3, b3, c12, c21.

Using the Narimanov–Moiseev-type modal system (2.6)–(2.8) facilitates the
so-called classification of the steady-state resonant wave regimes (modes). The
classification suggests: (i) derivation of the asymptotic (T = 2π/σ)-periodic solutions
and examining their stability, (ii) specifying a link between these solutions and
the corresponding steady-state wave modes and, finally, (iii) investigation of
the wave-amplitude response curves identifying, in a parallel way, which stable
steady-state wave mode(s) correspond to each point on the curves and how the
wave modes change versus the forcing frequency σ/σ1 and other typical input
parameters. In the studied case, these parameters are the semi-axis ratio 0 6 |δ1|6 1,
angular position and direction of the horizontal translatory elliptic tank motion. The
theoretical classification for the semi-axis ratio δ1= 0 was successfully done in Part 4.
These results were supported by experiments by Ikeda et al. (2012).

3. Steady-state resonant waves
3.1. Asymptotic periodic solution

The asymptotic derivation scheme from Parts 1 and 4 can be modified to get a general
asymptotic T-periodic solution of (2.6)–(2.8) for three-dimensional non-parametric
tank excitations. The scheme should, as usual, start with the lowest-order component

a1(t)= a cos σ t+ ā sin σ t+O(ε); b1(t)= b̄ cos σ t+ b sin σ t+O(ε), (3.1a,b)

which, according to the Narimanov–Moiseev theory, describes the asymptotically
dominant contribution of the primary excited Stokes modes, f (1)1 (x) and f (2)1 (y), in the
modal representation (2.2).

The first Fourier harmonics in a1(t), b1(t) are the only lowest-order asymptotic
components of the steady-state solution within the framework of the Narimanov–
Moiseev asymptotic theory. Inserting (3.1) into (2.7) derives the O(ε2/3)-components
of a2(t), b2(t) and c1(t), which are quadratic functions of a, ā, b̄, b (these expressions
are identical to those in Part 4). Furthermore, substituting (3.1) and a2(t), b2(t), c1(t)
into (2.6) and (2.8) makes it possible to find the periodic solution of the entire
modal system (2.6)–(2.8) up to the O(ε) terms. Interested readers are referred to
the supplementary materials B for more analytical details. The main result is the
solvability (secularity) condition with regard to a, ā, b, b̄,

1 : a[Λ+m1(a2
+ ā2)+m2b̄2

+m3b2
] + ā[(m2 −m3)b̄b+ ξ ] = εx,

2 : ā[Λ+m1(a2
+ ā2)+m2b2

+m3b̄2
] + a[(m2 −m3)b̄b− ξ ] = ε̄x,

3 : b[Λ+m1(b2
+ b̄2)+m2ā2

+m3a2
] + b̄[(m2 −m3)āa− ξ ] = εy,

4 : b̄[Λ+m1(b2
+ b̄2)+m2a2

+m3ā2
] + b[(m2 −m3)āa+ ξ ] = ε̄y,

 (3.2)
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which contains for the three-dimensional forcing the four non-dimensional forcing
amplitudes εx, ε̄x, εy, ε̄y = O(ε) associated with the lowest Fourier harmonics on the
right-hand side of (2.6a) and (2.6b), i.e.

εx =
1
σ 2

σ

π

∫ 2π/σ

0
cos σ tKx(t) dt; ε̄x =

1
σ 2

σ

π

∫ 2π/σ

0
sin σ tKx(t) dt,

ε̄y =
1
σ 2

σ

π

∫ 2π/σ

0
cos σ tKy(t) dt; εy =

1
σ 2

σ

π

∫ 2π/σ

0
sin σ tKy(t) dt,

 (3.3)

where Kx(t) = −P1,0(η̈1 − S1,0η̈5 − gη5), Ky(t) = −P0,1(η̈2 + S0,1η̈4 + gη4) and ξ =

2ξ0,1 = 2ξ1,0. Because we focus on resonant excitations of the lowest natural sloshing
frequency, at least one of εx, ε̄x, ε̄y and εy should not be zero; specifically, all four non-
dimensional forcing amplitudes could be non-zero in the most general case. The non-
dimensional coefficients m1, m2 and m3 are functions of the non-dimensional liquid
depth h. Computational formulas for m1, m2 and m3 are given in the supplementary
materials B. Their values satisfy

m2 <m1 < 0, 0<m3, m1 +m3 > 0 as h> 0.3368 . . . , (3.4)

where h∗ = 0.3368 . . . is the critical depth (Hermann & Timokha 2008). Part 4
derived a similar secular system for the oblique forcing, in which ε̄x = εy = 0. As
we will show, the more complicated right-hand side with εy 6= 0 significantly changes
the analytical properties of (3.2) and its solutions. This complicated right-hand side
makes inapplicable analytical and numerical results from Part 4, which had to be
modified to study the three-dimensional forcing.

The secular system (3.2) determines the lowest-order non-dimensional amplitude
parameters a, ā, b, b̄ as functions of the non-dimensional frequency parameter Λ and,
therefore, it computes the first-order component of steady-state waves expressed
in terms of the hydrodynamic generalised coordinates (3.1). Furthermore, the
second-order wave component is associated with the generalised coordinates a2, b2

and c1, which are governed by the homogeneous modal equations (2.7). As shown
in Part 4, exact analytical expressions for a2, b2 and c1 are uniquely quadratic
functions of a, ā, b, b̄. The third-order generalised coordinates a3(t), b3(t), c12(t)
and c21(t) do not appear in the subsystem (2.6)–(2.7); they follow from (2.8). This
explains why the O(ε)-order asymptotic component (in contrast to the O(ε2/3)-order
contribution) of the constructed asymptotic periodic solution does not affect
the lowest-order non-dimensional amplitude parameters a, ā, b, b̄. Finally, the
supplementary materials B reproduce another analytical result from Part 4, which
shows, in particular, that Lyapunov’s stability of the constructed asymptotic periodic
solution exclusively depends on a, ā, b, b̄ and Λ. In summary, solving the secular
system (3.2) for the fixed forcing amplitude parameters εx, ε̄x, ε̄y, εy gives the
lowest-order wave-amplitude parameters a, ā, b, b̄ versus the forcing frequency
parameter Λ, determines the first- and second-order components of the corresponding
steady-state waves and the waves stability. The higher-order Fourier harmonics in ηi(t),
i = 1, 2, 4, 5, 6 only contribute to the highest-order components of the steady-state
wave flows.
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3.2. Asymptotically equivalent orbital tank motion
Concentrating only on the first- and second-order approximations and Lyapunov’s
stability of the corresponding steady-state wave regimes reduces the external excitation
effect to the four forcing amplitude parameters εx, ε̄x, ε̄y and εy appearing on the
right-hand side of (3.2). Taking them instead of the original periodic sway, surge, roll,
pitch and yaw introduces the prescribed out-of-phase sway-and-surge tank motion

η∗1(t)= ex cos σ t+ ēx sin σ t, η∗2(t)= ēy cos σ t+ ey sin σ t, η∗4(t)= η
∗

5(t)≡ 0,
εx = P1ex, ε̄x = P1ēx, ε̄y = P1ēy, εy = P1ey; P1 = P1,0 = P0,1 < 0.

}
(3.5)

When using the Narimanov–Moiseev asymptotic theory, the resonant translatory
forcing (3.5) yields the same secular system (3.2), derives the same first- and
second-order components of the asymptotic periodic solution and keeps, specifically,
the same stability properties. Under these circumstances, the combined out-of-phase
sway-and-surge excitation (3.5) could be considered as an asymptotically equivalent
tank forcing to the given periodic sway, surge, roll, pitch and yaw. The equivalence
provides an efficient parameter study of the steady-state waves for a given combined
periodic sway, surge, roll, pitch and yaw. The three-dimensional tank ‘trajectories’
are then characterised by an infinite set of input parameters, but the equivalent orbit
(3.5) operates with the four real numbers ex, ēx, ēy, ey, only three of which, as we
will show, are independent.

Keeping the lowest Fourier harmonics in (3.5) of the generic periodic sway, surge,
roll, pitch and yaw is a serious advantage of the Narimanov–Moiseev asymptotic
theory if the task consists of classifying the stable/unstable resonant waves due the
resonant forcing of the lowest natural sloshing frequency. For example, the horizontal
tank motion along the Bernoulli lemniscate of the non-dimensional width la by
η1(t) = la cos σ t/(1 + sin2 σ t) = 2la(

√
2 − 1) cos σ t + · · ·, η2(t) = la sin σ t cos σ t/

(1 + sin2 σ t) = 2la(3 − 2
√

2) sin 2σ t + · · · is, according to this analytical result,
equivalent to the longitudinal excitation by η1(t) = 2la(

√
2 − 1) cos t, which was

considered in Part 1. For an oblique position of the Bernoulli lemniscate, one should
apply results from Part 4. Difference between the steady-state sloshing due to original
(lemniscate) and longitudinal trajectories is the O(ε)-order wave component, which,
in addition, does not affect the hydrodynamic stability.

Another important consequence of the asymptotic equivalence is that it mathe-
matically argues why the suspended container (Cooker 1994), which yields the purely
harmonic forcing (3.5) for small-magnitude pendulum motions, could be employed
(see, e.g., Turner, Bridges & Ardakani (2015a,b)) for modelling the non-parametric
resonant vessel behaviour in a periodic sea, which can deal with rather complicated
periodic sway, surge, roll, pitch and yaw.

We must stress that the proven equivalence requires the resonant forcing, for
which the sloshing amplitude is of a lower asymptotic order than the forcing.
Mathematically, it is not possible in the linear (non-resonant) approximation. However,
the Narimanov–Moiseev theory is only a very particular case when the equivalent
orbits exist. More complex resonances require the adaptive modal theory for which
the orbital equivalence is, intuitively, allowed but requires a dedicated study.

When exey − ēxēy = 0, equation (3.5) implies a harmonic (longitudinal, oblique or
diagonal) horizontal tank reciprocation. This particular case was studied in Part 4. If
exey − ēxēy 6= 0, the tank moves translatory along a centred elliptic orbit, which is
governed by

(e2
y + ē2

y)x
2
+ (e2

x + ē2
x)y

2
− 2(exēy + ēxey)xy= (exey − ēxēy)

2 (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.253


Three-dimensional sloshing in a square. Part 5 894 A10-11
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FIGURE 2. The centred elliptic tank orbit is defined by its semi-axes |e′x| and |e′y| (without
loss of generality, 06 |e′y|6 |e

′

x| 6= 0), angle γ between the major axis and Ox as well as
by the angular direction (clockwise or counterclockwise) as schematically illustrated in (a).
Panel (b) depicts the circular orbit (e′x = e′y). Panels (c) and (d) show the two limiting
cases, for which the ellipse axes are parallel to the symmetry planes associated with either
vertical walls or diagonals, respectively. The two-sided arrows indicate the reciprocating
harmonic tank excitations whose effect on the steady-state sloshing was studied in Part 4.

(readers can easily prove that by computing the fundamental invariants).
Any centred elliptic trajectory is fully determined by (i) its semi-axis lengths |e′x|

and |e′y| (without loss of generality, 0 6 |e′y| 6 |e
′

x| 6= 0), (ii) the angle γ between
the major axis and Ox and, finally, (iii) the trajectory direction (clockwise or
counterclockwise). The trajectory is schematically depicted in figure 2(a). Assuming
|e′x|, |e

′

y| and γ are known (these can be computed from (3.6)) leads to the generic
parametric representation

η∗1(t)= [e
′

x cos γ ] cos σ t− [e′y sin γ ] sin σ t, η∗2(t)= [e
′

x sin γ ] cos σ t+ [e′y cos γ ] sin σ t,
(3.7a,b)

which should, to within the phase lag by t, be equivalent to (3.5). Here, e′x 6= 0 and e′y
are not necessarily positive numbers to define the tank trajectory direction as follows

e′xe
′

y > 0 – counterclockwise, e′xe
′

y < 0 – clockwise, e′xe
′

y = 0 – reciprocation.
(3.8a−c)

Because the phase lag t := t+ θ ′/σ keeps invariant the centred elliptic orbit (including
its direction), one can simplify (3.5) by making ēx= 0. The same it true for (3.7). In
the latter case, the needed phase lag θ ′ comes from

cos θ ′= (e′x cosγ )/
√

e′2x cos2 γ + e′2y sin2 γ , sin θ ′= (e′y sinγ )/
√

e′2x cos2 γ + e′2y sin2 γ .

(3.9a,b)
It transforms (3.7) to the form

η∗1(t)= |e
′

x|

√
cos2 γ + δ2

1 sin2 γ︸ ︷︷ ︸
εx/P1

cos σ t,

η∗2(t)= |e
′

x|
cos γ sin γ (1− δ2

1)√
cos2 γ + δ2

1 sin2 γ︸ ︷︷ ︸
ε̄y/P1

cos σ t+
|e′x|δ1√

cos2 γ + δ2
1 sin2 γ︸ ︷︷ ︸

εy/P1

sin σ t,


(3.10)

where
−1 6 δ1 = e′y/e

′

x 6 1. (3.11)
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The modulus |δ1| is the semi-axis ratio of the elliptic orbit in figure 2(a). The criterion
(3.8) reads then as

δ1 > 0 – counterclockwise, δ1< 0 – clockwise, δ1= 0 – reciprocation. (3.12a−c)

3.3. Integral wave amplitudes and phase lags

Adopting (3.10) and recombining equations in (3.2) by the rules ā 1 −a 2 , b̄ 3 −b 4 ,
a 1 + ā 2 and b 3 + b̄ 4 replace the secular system (3.2) by

1 : A[Λ+m1A2
+ (m3 − F)B2

] = εx cosψ,
3 : A[DB2

+ ξ ] = εx sinψ,
2 : B[Λ+m1B2

+ (m3 − F)A2
] = εy sin ϕ + ε̄y cos ϕ =Υy sin(ϕ + θ ′′),

4 : B[DA2
− ξ ] = εy cos ϕ − ε̄y sin ϕ =Υy cos(ϕ + θ ′′),

 (3.13)

where
A=
√

a2 + ā2, B=
√

b̄2 + b2; a= A cosψ,
ā= A sinψ, b̄= B cos ϕ, b= B sin ϕ

}
(3.14)

are the lowest-order integral wave amplitudes (A, B) along Ox and Oy and the
corresponding phase lags (ψ, ϕ), respectively, but

Υy =

√
εy + ε̄2

y , cos θ ′′ = εy/Υy, sin θ ′′ = ε̄y/Υy, (3.15a−c)

and

F= F(α)= (m3 −m2) cos2 α =
m3 −m2

1+C2
,

D=D(α)= (m3 −m2) sin α cos α =
(m3 −m2)C

1+C2
, α = ϕ −ψ, C= tan α.

 (3.16)

The secular systems (3.2) and (3.13) are mathematically equivalent, i.e. having known
Λ, A, B, ψ, ϕ from (3.13) computes Λ, a, ā, b, b̄ and vice versa. Unfortunately,
both (3.2) and (3.13) are difficult to use in numerical studies and even implement
the solution method from Part 4, which was specially constructed and only applicable
for the reciprocating forcing with εy = 0. The forthcoming two sections present an
alternative (modified) numerical-analytical approach.

3.3.1. Alternative forms of (3.13)
An alternative secular system can be obtained after excluding the phase lags ψ

and ϕ. The first (rather obvious) step of the derivation consists of taking 1 2
+ 3 2

and 2 2
+ 4 2, which leads to

EQ1= A2
[(Λ+m1A2

+ (m3 − F(α))B2)2 + (D(α)B2
+ ξ)2] − ε2

x = 0,
EQ2= B2

[(Λ+m1B2
+ (m3 − F(α))A2)2 + (D(α)A2

− ξ)2] −Υ 2
y = 0.

}
(3.17)

Further, we substitute ϕ =ψ + α into 2 and 4 and insert expressions for (εx cosψ)
and (εx sin ψ) from 1 and 3 . The result is the linear algebraic homogeneous
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equations with respect to the non-zero amplitude parameters [ΥyA/εx] and [B],

[B][Λ+m1B2
+ (m3 − F)A2

] −

[
ΥyA
εx

]
×[cos(α + θ ′′)(DB2

+ ξ)+ sin(α + θ ′′)(Λ+m1A2
+ (m3 − F)B2)] = 0,

[B][DA2
− ξ ] −

[
ΥyA
εx

]
×[cos(α + θ ′′)(Λ+m1A2

+ (m3 − F)B2)− sin(α + θ ′′)(DB2
+ ξ)] = 0


(3.18)

whose solvability (zero-determinant condition) yields the third equation

EQ3 = ξ(A2
− B2)[(m1 −m3)εy sin α + (m1 −m2)ε̄y cos α]

+ εy cos α[ξ 2
+ (Λ+m1(A2

+ B2))(Λ+m2(A2
+ B2))

+ (m1 −m2)
2A2B2

− sin2 α(m2 −m3)
2A2B2

]

− ε̄y sin α[ξ 2
+ (Λ+m1(A2

+ B2))(Λ+m3(A2
+ B2))+ (m1 −m3)

2A2B2

− cos2 α(m2 −m3)
2A2B2

] = 0. (3.19)

Even though this derivation step is based on analytical ideas from Part 4, the resulting
(3.21) and (3.21c) differ from their analogy in Part 4 (equations (5.4) and (5.6)). This
is especially clearly seen for (3.19), which depends now on three forcing amplitude
parameters and has much more complicated analytical structure. This means that the
three-dimensional forcing makes inapplicable numerical schemes from Part 4.

The system (3.17), (3.19) (of three equations) couples the four unknowns Λ, A2,B2

and α. Obviously, if the tetrad (Λ, A, B, −π 6 α = ϕ − ψ 6 π) satisfies (3.13),
it automatically satisfies (3.17) and (3.19). However, because (in contrast to (3.13))
EQ1, EQ2, EQ3 are the π-periodic functions by α, the system (3.17), equation (3.19)
cannot identify the original phase lag difference α but outputs α = α0 + πk, k ∈ Z,
where, without loss of generality, −π/2 6 α0 6 π/2. The problem on restoring the
original α from α0 can be solved after noting that F(α) and D(α) on the left-hand
side of (3.13) are also the π-periodic functions of α. This means that substituting
α = α0 + πk, k ∈ Z into F(α) and D(α) of (3.13) correctly computes their left-hand
sides, and, because we assume εxΥ 6= 0, one can restore the phase lags ϕ and ψ from
(3.13) as well as the original phase lag difference −π 6 α = ϕ − ψ 6 π. Bearing in
mind the latter analytical manipulation, one can conclude that the alternative secular
system (3.17), (3.19) is mathematically equivalent to (3.13).

In order to find A, B and α, Part 4 (the reciprocating forcing, equations (5.4)
and (5.6)) developed a specific numerical scheme, which is based on excluding the
trigonometric terms with α and replacing them by C in (3.16). As we stated above,
the three-dimensional forcing makes these secular equations and their solutions
much more complicated. Numerical tests established situations when several different
solutions exist with small but not zero C and, simultaneously, for the same input
parameters, the system has solutions with finite and very large C. An accurate
detection of these different C becomes a numerically consuming task. Thus, analytical
ideas from Part 4 are not applicable. Computations have to adopt another parameter
instead of the trigonometrical terms with α. Hereafter, we introduce

0 6 β = cos α0 6 1, sin α0 =±
√

1− β2, −π/2 6 α0 6π/2, (3.20a−c)
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which excludes trigonometric quantities from (3.17), (3.19) and transforms the secular
equations to the form

EQ1±(Λ, A2, B2, β) = A2
[(Λ+m1A2

+ (m3[1− β2
] +m2β

2)B2)2

+ (±(m3 −m2)β
√

1− β2A2
+ ξ)2] − ε2

x = 0, (3.21a)

EQ2±(Λ, A2, B2, β) = B2
[(Λ+m1B2

+ (m3[1− β2
] +m2β

2)A2)2

+ (∓(m3 −m2)β
√

1− β2A2
+ ξ)2] −Υ 2

y = 0, (3.21b)

EQ3±(Λ, A2, B2, β)= ξ(A2
− B2)

×

[
±(m1 −m3)δ1

√
1− β2 +

1
2(m1 −m2) sin 2γ (1− δ2

1)β
]

+ δ1β[ξ
2
+ (Λ+m1(A2

+ B2))(Λ+m2(A2
+ B2))+ (m1 −m2)

2A2B2

− (1− β2)(m2 −m3)
2A2B2

]

∓
1
2 sin 2γ (1− δ2

1)
√

1− β2[ξ 2
+ (Λ+m1(A2

+ B2))(Λ+m3(A2
+ B2))

+ (m1 −m3)
2A2B2

− β2(m2 −m3)
2A2B2

] = 0. (3.21c)

3.3.2. Numerical solutions of (3.21)
The secular system (3.21) will be used for analytical and numerical studies. These

suggest considering the following two cases. The first case EQ1+=EQ2+=EQ3+= 0
implies

D=D(β)= (m3 −m2)β
√

1− β2 > 0, F= F(β)= (m3 −m2)β
2 > 0, (3.22a,b)

and, therefore, the unknowns A, β and B belong to the three-dimensional curvilinear
trapezoidal

0< A<
|εx|

ξ
, 0<β 6 1, 0< B2 6 min

[
1

D(β)

(
|εx|

A
− ξ

)
,

Υy

(D(β)A2 − ξ)2

]
,

(3.23a−c)
where, as we see, the lower and upper bounds of A and β are fixed (do not depend
on B) but the upper bound for B depends on A and β.

Now, we can analytically solve EQ1± = 0 with respect to Λ for (A2, β; B2)

belonging to (3.23),

Λ=Λ+
±
(A2, β; B2)=−m1A2

− (m3 − F(β))B2
±

√
ε2

x

A2
− (D(β)B2 + ξ)2. (3.24)

Substituting (3.24) into (3.21b) and (3.21c) yields the system

EQ2+(Λ+±(A
2, β;B2),A2,B2, β)= 0, EQ3+(Λ+±(A

2, β;B2),A2,B2, β)= 0, (3.25a,b)

with respect to the three unknowns A2, β and B2, which belong to (3.23). The system
(3.25) can be solved to find A2 and B2 as functions of β.

When considering the second case, EQ1− = EQ2− = EQ3− = 0,

D=D(β)=−(m3 −m2)β
√

1− β2 < 0, F= F(β)= (m3 −m2)β
2 > 0, (3.26a,b)
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the unknowns belong to the curvilinear three-dimensional trapezoidal

0< B<
Υy

ξ
, 0 6 β 6 1, 0< A2 6 min

[
−

1
D(β)

(
Υy

B
− ξ

)
,

ε2
x

(D(β)B2 + ξ)2

]
,

(3.27a−c)
(3.21b) outputs

Λ=Λ−
±
(B2, β; A2)=−m1B2

− (m3 − F(β))A2
±

√
Υ 2

y

B2
− (D(β)A2 − ξ)2 (3.28)

so that the problem reduces to the system

EQ1−(Λ−±(A
2, β;B2),A2,B2, β)= 0, EQ3−(Λ−±(A

2, β;B2),A2,B2, β)= 0, (3.29a,b)

with respect to the three unknowns A2, β and B2 from (3.27). The system also
determines A2 and B2 as functions of β.

One must note that the proposed numerical scheme provides, in fact, exhaustive
search for all admissible solutions, which, as we showed, belong to the curvilinear
trapezoidals (3.23) and (3.27). Thinking in terms of the wave-amplitude response
curves, this means that it effectively detects and does not miss out both continuous
branches existing in the entire resonant zone and locally distributed loop-type
branches, which, as our computations will show, may emerge from a single point for
certain sets of the input parameters.

Part 4 demonstrated applicability of the Narimanov–Moiseev-type modal system for
the non-dimensional input parameters

h= 0.6⇒ (m1 =−2.208338,m2 =−3.4721902875,m3 = 3.7126173325),
|e′x| = 0.00727⇒ (O(ε)= |P1| |e′x| = 0.00884), ξ = 0.0256,

}
(3.30)

which are associated with experimental model tests by Ikeda et al. (2012) who studied
the steady-state resonant sloshing for the reciprocating (longitudinal, diagonal and
oblique) harmonic tank motions. The input parameters are rather typical when the
Narimanov–Moiseev theory is applicable. This includes the mean liquid depths 0.5. h
(m1,m2 and m3 weakly change for those depths, see the supplementary materials B),
relatively small forcing amplitudes (based on the authors experience) and the damping
coefficient ξ , at least, for the laboratory tanks whose horizontal dimensions are less
than one meter. For larger tanks, the viscous boundary layer effect on the wetted
tank surface decreases but the ‘integral’ damping coefficient ξ (we assumed that
the damping rates integrally account for all dissipative factors in the hydrodynamic
system) become then significantly contributed by the local free-surface phenomena,
which are discussed, e.g., in Part 1. Numerical examples in the forthcoming sections
will, therefore, adopt (3.30).

3.4. Steady-state wave modes
Solving (3.25) and (3.29) and utilising (3.24) and (3.28), respectively, outputs
(Λ, A2, B2, β). Later on, by using (3.22) and (3.26) to compute D and F, we restore
the phase lags ψ and ϕ from (3.13) and compute α= ϕ−ψ . Finally, equation (3.14)
returns the wave-amplitude parameters a, ā, b̄, b, which determine the steady-state
wave

z= S(x, y; a, b̄) cos σ t+ S(x, y; ā, b) sin σ t+ o(ε1/3) (3.31)

and its stability, where S(x, y; ·1, ·2)=·1 f (1)1 (x)+·2 f (2)1 (y) is the combined Stokes mode.
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Using (3.31) makes it possible to define the types of the corresponding steady-state
waves. The first type implies the standing wave mode (particular cases are planar,
diagonal and square-like; see details and discussions in Part 1 in the supplementary
materials B). It occurs when surface patterns by S(x, y; a, b̄) and S(x, y; ā, b) in (3.31)
are geometrically similar, i.e.

∃C1,C2 (C2
1 +C2

2 6= 0) such that C1S(x, y; a, b̄)+C2S(x, y; ā, b)= 0, (3.32)

and, therefore, the lowest-order component in (3.31) admits the following form

z= S(x, y; γ1, γ2) cos(σ t+ t0)+ o(ε1/3), γ1, γ2 =O(ε1/3). (3.33)

When (3.32) is not satisfied, the single-value representation z= S(x, y; a, b̄) cos σ t+
S(x, y; ā, b) sin σ t determines the swirling wave mode, i.e. an azimuthally propagating
wave running in either clockwise or counterclockwise direction around Oz. Swirling
(rotary wave) for the square base tank slightly differs from what is swirling for the
circular base tank, when the lowest-order approximation alike (3.31) may be re-written
in a mathematical form, which clearly identifies an azimuthal wave propagation. Part 1
defines the swirling wave mode for the square base tank as where ‘an almost flat
crest travels around each of the four sides with an almost flat trough on the opposite
side’; it also clarifies this definition by photos from the dedicated authors model tests,
which are reproduced in the supplementary materials B. A mathematical treatment of
the swirling wave mode can be done by considering the nodal line in the lowest-order
approximation, i.e. the time-dependent curve on Σ0 implicitly defined by the equation
S(x, y; a, b̄) cos σ t+ S(x, y; ā, b) sin σ t= 0. The motionless nodal line corresponds to a
standing wave. When (3.32) is not fulfilled, the nodal line changes in time. Moreover,
an elementary analysis shows that the nodal line steadily rotates (with deformations)
around the Oz axis and the rotation direction depends on the sign of

Ξ = ab− āb̄= AB sin α, (3.34)

so that, because A, B > 0, one can discriminate counterclockwise/clockwise swirling
and standing waves as follows

sin α > 0 – counterclockwise, sin α < 0 – clockwise, sin α = 0 – standing.
(3.35a−c)

To explain experimental observations by Ikeda et al. (2012) and account for the
asymptotic character of (3.31), Part 4 had to introduce the so-called nearly standing
wave mode. Mathematically, it occurs when S(x, y; a, b̄) and S(x, y; ā, b) determine
similar surface patters on the adopted asymptotic scale O(ε1/3), i.e.

∃ C1,C2 : C2
1 +C2

2 =O(1) such that C1S(x, y; a, b̄)+C2S(x, y; ā, b)=O(ε2/3) (3.36)

and, as a consequence, the lowest-order component in (3.31) rewrites in the form

z= S(x, y; γ1, γ2) cos(σ t+ t0)+ S(x, y; γ ′1, γ
′

2) cos(σ t+ t′0)+ o(ε1/3), (3.37)

where

γ1, γ2 =O(ε1/3), γ ′1, γ
′

2 =O(ε2/3), and, generally, t0 6= t′0. (3.38a,b)

Accounting for the latter wave type, the resonant steady-state waves fall apart into
the purely and nearly standing wave modes, the swirling (rotary) wave mode, which
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FIGURE 3. Symbolic classification of the steady-state wave modes by using (3.39). The
criterion (3.40) makes it possible to distinguish co- and counter-directed (with respect to
the orbital tank motions) swirling waves. The introduced symbols are further used as
markers on the wave-amplitude response curves. Visualisation of the steady-state wave
modes is given in Part 1 and the book by Faltinsen & Timokha (2009). We incorporate
some of them into the supplementary materials.

occurs either clockwise or counterclockwise as well as irregular waves (all steady-
state wave regimes are unstable and chaotic, modulated, etc. waves are realised). The
irregular waves were detected in experiments from Part 1; they are also numerically
confirmed by using the Narimanov–Moiseev and adaptive modal theories in Part 2
(Faltinsen, Rognebakke & Timokha 2005) for the longitudinal and diagonal forcing
cases. The following criterion helps to identify them

O(ε1/3). sin α > 0⇔ counterclockwise swirling
O(ε1/3)= sin α⇔ 1− β =O(ε2/3)⇔ nearly-standing

sin α = 0⇔ β = 1⇔ standing,
O(ε1/3). sin α < 0⇔ clockwise swirling,

 (3.39)

all steady-state waves are unstable ⇔ irregular (chaotic/modulated) sloshing.
The steady-state wave modes are symbolically classified in figure 3 where, due to

(3.12) and (3.39), we can introduce swirling, which is co- or counter-directed with the
elliptic orbit. The appropriate criterion reads as

δ1 sin α > 0 – co-directed, δ1 sin α < 0 – counter-directed. (3.40a,b)

The forthcoming steady-state analysis operates with the wave-amplitude response
curves in the (σ/σ1, A, B)-space. Different line types mark stable and unstable
solutions but the criteria (3.39) and (3.40) are employed to specify/analyse the
swirling wave direction. Figure 3 supplements the wave type classification.
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4. Circular orbit
The circular tank forcing (figure 2b schematically depicts that) implies

δ1 =±1 (counter-or clockwise trajectory)⇒
ε̄y = 0, εx = P1|e′x|, εy = δ1P1|e′x|, Υ 2

y = ε
2
x = (P1e′x)

2

}
(4.1)

in (3.10) and (3.21a), (3.21b), where |e′x| is the orbit radius, and the third secular
equation (3.21c) takes the form

EQ3±(Λ, A2, B2, β) = ±(m1 −m3)
√

1− β2ξ(A2
− B2)

+β[ξ 2
+ (Λ+m1(A2

+ B2))(Λ+m2(A2
+ B2))

+ (m1 −m2)
2A2B2

− (1− β2)(m2 −m3)
2A2B2

]. (4.2)

One can see that (4.1) makes the secular system (3.21a), (3.21b), (4.2) independent
of the sign of δ1. This means that its solutions (the tetrads (Λ, A2, B2, β)) and,
therefore, the wave-amplitude response curves in the (σ/σ1, A, B) space do not
depend on the circular direction (counter- or clockwise). However, using (3.13),
(4.1) to restore the phase lags ϕ and ψ shows that the phase lag difference α is
affected by the sign. This means that one can adopt, without loss of generality,
δ1 = 1 in calculations but we should use the criterion (3.40) to distinguish co- and
counter-directed stable swirling waves.

Adopting (4.1) in the secular system (3.21a), (3.21b), (4.2) derives the following
particular analytical solution

1>Λ=−(m1 +m3)A2
±

√
ε2

x

A2
− ξ 2, 0< A 6

|εx|

ξ
, β = 0︸ ︷︷ ︸

α=±π/2+πk

, A= B; (4.3a−d)

inserting this solution into (3.13) (to get ϕ and ψ) deduces sin α = δ1. According to
(3.39) and (3.40), (4.3) implies the swirling wave mode, whose angular propagation
coincides with the circular orbit.

Numerical analysis of the secular system (3.21a), (3.21b), (4.2) within (4.1) and
β 6= 0 detects the steady-state sloshing with A 6= B and β 6= 0. This is opposite to
the circular base tank considered by Raynovskyy & Timokha (2018a) when m2 =m3
in the corresponding secular equations. Mathematically, one can show that this
solution is impossible in the considered case, too, if the identity m2 =m3 holds true.
However, table 3 in the supplementary materials shows that this never happens for
the square cross-section and finite liquid depths. The exhaustive search detected the
aforementioned solution, using a very thick mesh with a refinement procedure, in a
narrow interval of β, where 0.995< β 6 1. In this interval, 1− β 6 0.995 . O(ε2/3)
on the adopted asymptotic scale (3.30) and, therefore, the found solutions imply
either standing (when β = 1) or nearly standing wave modes. Specifically, Hiramitsu
& Funakoshi (2015) did not find out those solutions in their numerical studies
devoted to the circular tank forcing; they only numerically identified our analytical
solution (4.3). Because of a very narrow range where these solutions exist, this could
be a computational problem.

Figure 4 demonstrates the wave-amplitude response curves for the circular forcing
with the input data (3.30). Panel (a) shows a three-dimensional view but panels (b)
and (c) are projections of the three-dimensional branching on the (σ/σ1, A) and
(σ/σ1, B) planes, respectively. Each point of the response curves corresponds to
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FIGURE 4. The steady-state wave-amplitude response curves associated with the circular
orbital tank motion schematically depicted in figure 2(b). The solid lines mark stable
solutions but the dashed (deep-blue) lines are used to indicate the instability. Panel (a)
shows the response curves in the (σ/σ1, A, B) space but (b) and (c) demonstrate their
projections on the (σ/σ1, A) and (σ/σ1, B) planes, respectively. The branch PlS0WPr
implies swirling whose angular wave propagation coincides with direction of the circular
orbit. The loop-type response curves (symmetric with respect to the A= B plane) imply
the nearly standing (square-like) wave mode but points E, Ē and P0, P̄0 correspond to the
(purely standing) square-like waves. Symbols from figure 3 and criteria (3.39), (3.40) are
used to specify stable standing, nearly standing and swirling waves. The input data (3.30)
are adopted in the computations.

one (unique) steady-state wave whose lowest-order amplitude components in the Ox
and Oy directions are equal to A and B, respectively. The solid lines denote stable
steady-state solutions but the dashed lines are used to mark the instability. The stable
steady-state wave modes are marked by symbols from figure 3.

The swirling wave mode (analytical solution (4.3)) is represented by points on the
continuous curve PlS0WPr. The curve belongs to the plane A= B in the (σ/σ1, A, B)
space. It demonstrates the well-known damped hard-spring-type behaviour, that is,
when the damping coefficient ξ decreases, point S0 goes to infinity. As it typically
happens for the hard-spring type branching, stable solutions (here, stable swirling
waves) correspond to points on PlS0 and WPr. This means that two different stable
swirling waves are theoretically possible in the frequency range determined by W
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(the left bound) and S0 (the right bound). According to (3.40), swirling on the branch
PlS0WPr is co-directed with the circular tank orbit.

Standing (points P0, P̃0 and E, Ẽ where β = 1) and nearly standing waves are
represented in figure 4 by the two loop-type branches EU′P0D′0E (B < A) and
ẼŨ′P̃0D̃′0Ẽ (A < B). These branches are symmetric relative to the plane A = B in
the (σ/σ1, A, B) space so that substitution A→ B, B→ A transforms EU′P0D′0E to
ẼŨ′P̃0D̃′0Ẽ and visa-versa. This symmetry reflects invariance of the steady-state wave
modes relative to the π/2-rotation of the Oxy coordinate system around Oz. There
exist either four or eight (panels (b) and (c) make it more precise) solutions of the
secular system, which imply the nearly standing (nearly square-like) wave mode in
a certain frequency range with σ/σ1 < 1. However, only two (on D′0U and D̃′0Ũ) of
these four/eight solutions are stable. Positions of P0 (P̃0) and D′0 (D̃

′

0) depend on the
damping coefficient ξ . They go to infinity as ξ→ 0.

In summary, the circular orbital forcing always excites the stable resonant
steady-state swirling whose angular propagation (around Oz) coincides with the
forcing direction (clockwise or counterclockwise). For σ/σ1 > 1, two different
swirling waves may coexist in a certain frequency range whose upper bound strictly
depends on damping. For σ/σ1 < 1, the swirling wave co-exists (in a local frequency
range) with two stable nearly standing square-like waves. The square-like waves
are characterised by a relatively large amplitude relative to the wave amplitude of
the co-existing stable swirling. Part 1 (figure 10) discovered a similar situation for
the longitudinal forcing when the square-like waves of larger amplitude co-existed
with stable planar wave of lower amplitude. Attempts to find out these square-like
waves in experimental model tests (with almost zero initial scenarios) have failed
except for h = 0.34. The latter became possible since smaller liquid depths lead
to a narrow frequency range where only square-like waves are stable (planar wave
is unstable). Unfortunately, such a frequency range is not possible for the circular
forcing, even for smaller depths. Stable swirling always co-exists with the square-like
waves for any resonant frequencies with σ/σ1 < 1. As a consequence, the only way
to experimentally detect the nearly standing square-like waves for circular excitations
is to adopt exotic non-zero initial scenario. This is rather difficult to organise. From
this point of view, the stable nearly standing waves on EU′ and ẼŨ′ may be treated
as almost unphysical; probability of their experimental occurrence looks very low.

5. Wall-symmetric elliptic orbits

Dealing with the so-called canonic position of the elliptic orbits in figure 2(c)
mathematically implies

− 1< δ1 < 1; γ = 0⇒ ε̄y = 0, εx = P1|e′x|, εy = δ1εx, Υ 2
y = ε

2
y (5.1a−e)

in (3.10) and (3.21a), (3.21b), where |e′x| is the major semi-axis length; (3.21c) ⇒

EQ3±(Λ, A2, B2, β) = ±
√

1− β2ξ(m1 −m3)(A2
− B2)

+β[ξ 2
+ (Λ+m1(A2

+ B2))(Λ+m2(A2
+ B2))

+ (m1 −m2)
2A2B2

− (1− β2)(m2 −m3)
2A2B2

] = 0. (5.2)

For (5.1), the secular system (3.21a), (3.21b), (5.2) becomes depending on the
modulus |δ1| (the semi-axis ratio) but independent of the sign of δ1. This means that
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the tetrads (Λ, A2, B2, β) and the corresponding response curves in the (σ/σ1, A, B)
space do not depend on the forcing direction (counterclockwise or clockwise) but,
since the actual phase lags ϕ, ψ and their difference α are affected by the sign,
results on the swirling wave mode should be interpreted by using the criterion (3.40),
i.e. one must discriminate counter-directed and co-directed swirling waves. Symbols
from figure 3 will be adopted to mark that feature on the response curves.

A transformation (‘metamorphosis’) of the response curves versus the semi-axis
ratio 0 6 |δ1| < 1 is shown in figures 5 and 6. The calculations used the input
data (3.30). The solid lines imply stable steady-state solutions but the dashed
(deep-blue) lines mark instability. All notation is taken (with minor additions) from
Part 4. Symbols from figure 3 specify the stable steady-state sloshing modes.

The starting point in figure 5 is the wave-amplitude response curves for the
longitudinal harmonic tank excitations (δ1 = 0). Part 4 derived analytical solution for
that case, which is reported in the supplementary materials C. According to this result,
the longitudinal forcing causes planar standing (β = 1, B = 0), swirling and nearly
standing (nearly square-like) waves; a non-empty frequency range of irregular waves
exists. The wave-amplitude branching (relevant to experiments by Ikeda et al. (2012))
is reproduced in figure 5(a). It is numerically (but not visually) identical to that
by Faltinsen & Timokha (2017, figure 4a). Figure 5(a) contains a three-dimensional
view in the (σ/σ1, A, B) space and two projections on (σ/σ1, A) and (σ/σ1, B),
respectively. The response curves consist of the branch PlTEP0WPr (it belongs to
the (σ/σ1, A) plane) and the arc-type branch ED0UVS0E. They are linked with each
other at bifurcation points E and W. The branch PlTEP0WPr is responsible for planar
waves; it exhibits the damped soft-spring type behaviour.

Stable solutions on the arc-type branch ED0UVS0W imply either swirling (VS0) or
nearly standing (D0U) steady-state waves. An important note is that each point on
this branch corresponds to the two Ox-symmetric waves (in contrast to PlTEP0WPr).
For VS0, this symmetry means that there exist two physically identical rotary waves
propagating in opposite (clock- or counterclockwise) directions. The two stable
Ox-symmetric nearly standing (square-like) waves for each point on D0U (calculations
give 1 6= 1− β 6 0.95 . O(ε2/3) with (3.30)) could be interpreted as two asymptotic
solutions (3.37) with γ1, ±γ2 (and, generally, different t0). The planar (standing)
waves are unstable between abscissas of T and W where stable swirling (associated
with VS0) and irregular waves are expected. The planar wave mode coexists with
swirling in the frequency range defined by W and S0 but the nearly square-like
waves are realisable between abscissas of D0 and T (theory and experiments in Part 1
showed that U moves into the zone between T and W for h. 0.4). When the damping
coefficient ξ tends to zero, points D0 and S0 go to infinity. This may theoretically
enlarge the aforementioned zones of stability for the nearly standing and swirling
wave modes.

Figure 5(b) illustrates a metamorphosis of the response curves from column (a)
when the semi-axis ratio |δ1| is relatively small but not zero. We were not able to
find analytical (even particular) solutions for that case. The numerical scheme from § 3
was implemented to solve the secular system (3.21a), (3.21b), (5.2) equipped with
(5.1). Computations suggested that β 6= 0 as 0< |δ1|< 1 (substituting β = 0 into (5.2)
⇒A=B ⇒|δ1| = 1 from (3.21a), (3.21b) with (5.1)) but β = 1 (standing waves) was
allowed. The response curves in figure 5(b) are drawn for the input data (3.30). They
show that considering |δ1| = 0.05 splits the connected curve from the column (a) into
the two non-connected branches, PlTD0UVS0WPr continuously going from Pl to Pr
and the loop-type branch EP0S′0V ′U′D′0E. A difference between (a) and (b) is that each
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FIGURE 5. The steady-state wave-amplitude response curves in the (σ/σ1,A,B) space for
the input parameters (3.30). The solid lines specify stable solutions but the dashed (deep-
blue) lines mark their instability. The column (a) is devoted to the longitudinal harmonic
forcing (δ1 = 0, the results are taken from figure 4a by Faltinsen & Timokha (2017)).
The branch PlTEP0WPr corresponds to the planar wave mode (stable on PlT and WPr).
Each point on the arc-type branch ED0UVS0W implies two steady-state waves including
the stable nearly standing waves (D0U) and swirling (VS0), which differ from each other
only by the angular propagation direction. There are no stable solutions in the frequency
range between T and V where an irregular sloshing is expected. The column (b) shows
the response curves for |δ1| = 0.05 (relatively small semi-axis ratio). The response curves
from (a) split for the case (b) into the two non-connected branches PlTD0UVS0Pr and
(loop type) EP0S′0V ′D′0E. The standing wave mode disappears except at points E and P0
(unstable). Stable nearly planar waves (because of the relatively small |δ1|) are associated
with points on PlT and WPr. The stable swirling from (a) splits into counter- (V ′S′0) and
co- (VS0) directed swirling modes in (b). Stable nearly square-like waves (different, in
contrast to the case (a)) are associated with points on D0U and D′0U′. The frequency range
of irregular waves is still determined by T and V .
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FIGURE 6. The steady-state wave-amplitude response curves in the (σ/σ1, A, B) space
for the input parameters (3.30) and different values of the semi-axis ratio |δ1| =O(1) on
the adopted asymptotic scale. Input parameters, basic notation, mathematical and physical
interpretations of the branching and associated steady-state wave modes are explained
in figure 5(b). Panels (a–c) show that the counter-directed (to the tank orbit) swirling
(associated with V ′S′0) disappears with increasing |δ1| but the nearly standing waves (U′D′0)
exist for all tested |δ1|. When the tank orbit becomes nearly circular (d), there appears
(from a ‘single point’) an extra loop-type branch responsible for the nearly standing
waves. Specifically, points E and E′ imply the stable standing (square-like) wave mode.
Computations used |δ1| = 0.30 (a), 0.50 (b), 0.70 (c) and 0.95 (d).

point on PlTD0UVS0WPr and EP0S′0V ′U′D′0E in (b) corresponds to a unique periodic
solution and, therefore, implies only one steady-state wave. Indeed, each point on
the arc-type branch ED0UVS0E in column (a) implies a pair of the Ox-symmetric
steady-state waves but the non-zero |δ1| (passage to a wall-symmetric elliptic tank
orbit) breaks this symmetry. As a consequence, the column (b) deals with two different
stable nearly standing (1− β 6 0.95= O(ε2/3) in calculations with (3.30)) waves on
D0U and D′0U′ and, of course, two stable swirling waves on VS0 and V ′S′0, respectively.
These swirling waves have not only different angular propagation directions but also
different wave amplitudes. Similar splitting into co- and counter-directed swirling was
detected in computations by Hiramitsu & Funakoshi (2015) for a square base tank as
well as described by Raynovskyy & Timokha (2018a) and Timokha & Raynovskyy
(2018) for the circular base container. However, sloshing in the circular base basin
does not allow for the stable nearly standing wave mode. Points on PlT and WRr
were associated with stable planar standing waves in column (a) but they become
responsible for the nearly standing (nearly planar) waves in column (b). Positions of
T and W are weakly affected by the non-zero |δ1| = 0.05 and, therefore, the frequency
range of irregular waves remains practically the same. The limit ξ → 0 will shift
points P0, D0(D′0) and S0(S′0) far away from the primary resonant zone.

Increasing the semi-axis ratio to |δ1| = O(1) (on the chosen asymptotic scale)
converts the nearly standing waves on PlT and WRr to the co-directed swirling.
Figure 6 contains four panels, which demonstrate this and other metamorphoses of the
wave-amplitude response curves. Only three-dimensional views are shown. The values

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.253


894 A10-24 O. M. Faltinsen, O. E. Lagodzinskyi and A. N. Timokha

|δ1| = 0.3, 0.5, 0.7 and 0.95 are used as representing most impressive peculiarities
of the response curves. Notation, mathematical and physical interpretations of the
‘stable’ branches and the corresponding steady-state wave modes are adopted from
figure 5(b). Two response curves in (a–c) look topologically identical to those in the
column (b) of figure 5, i.e. there are the continuous branch PlTD0UVS0WPr going
through the entire resonant zone and the loop-type branch D′0EP0U′D′0. Differences
between these panels become clear when monitoring types and stability ranges of
the steady-state waves. As we stated above, nearly standing (planar) waves on PlT
and WRr become impossible when |δ1| = O(1). Periodic solutions on PlT and WPr
as well as D0U (nearly standing waves) covert then to the stable swirling, which is
co-directed with the elliptic tank orbit.

The counter-directed swirling disappears when the semi-axis ratio |δ1| exceeds 0.5
for the input data (the same critical value was estimated in numerical experiments by
Raynovskyy & Timokha (2018a) for the circular-base basin). A particular consequence
of this fact is that the frequency range of irregular waves (TV) narrows with increasing
|δ1|; the range becomes empty in panel (d) drawn with |δ1| = 0.95 (the tank orbit is
close to the circle). The branching is then topologically identical to that in figure 4. Its
principal ‘novelty’ with regard to (a–c) is the loop-type branch D̃′0ẼP̃0Ũ responsible
for the nearly standing wave mode (stable for points on D̃′0Ũ′). This branch emerges
‘from a single point’ at |δ1| = 0.8 (for the input data (3.30)). Hiramitsu & Funakoshi
(2015) report a few calculations for the wall-symmetric elliptic orbits and demonstrate
how an energetic parameter

√
E changes versus the frequency parameter. Qualitatively,

these calculations lead to similar branching (for
√

E) but differ from our results with
|δ1| approaching the unit. This difference was discussed for the circular orbit as,
possibly, insufficient accuracy in calculations by Hiramitsu & Funakoshi (2015) since
the nearly standing wave solution occurs in a very narrow range by β.

In summary, passage from the harmonic longitudinal reciprocation to elliptic tank
(canonic) orbits in the Oxy plane (figure 2b), first, breaks away the Ox symmetry
of nearly standing and swirling wave modes so that, in particular, swirling waves
have different amplitudes depending on their angular propagation direction. Second, a
further increase of the semi-axis ratio |δ1| eliminates, starting with a critical value of
|δ1| (estimated at ≈0.5 for the tested input data), swirling whose angular propagation
is opposite to the tank orbit (similar to the circular base basin studied by Raynovskyy
& Timokha (2018a)). Third, the co-directed swirling waves become stable in the
entire resonant zone and, as a consequence, irregular waves are not predicted when
the tank trajectory approaches a circle. The latter limit topologically changes the
wave-amplitude branching by yielding an extra loop-type branch emerging from a
‘single point’ in the (σ/σ1,A,B) space. Finally, the stable nearly standing (square-like)
waves are possible for all values 06 |δ1|6 1 and this wave mode co-exists with others.
This means that experimental detections of the nearly standing waves need specific
initial scenarios, which allow to discriminate it from other co-existing stable wave
mode.

6. Diagonal-type elliptic orbits
The square base tank translatory moves along an elliptic orbit whose major axis

belongs to the tank diagonal as shown in figure 2(d). Taking γ =π/4 reduces (3.21)
to the form

EQ1±(A2, B2, β) = A2
[(Λ+m1A2

+ (m3 − (m3 −m2)β
2)B2)2

+ (β
√

1− β2B2
± ξ)2] = ε2

x =
1
2 P2

1e′x
2
(1+ δ2

1), (6.1a)
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EQ2±(A2, B2, β) = B2
[(Λ+m1B2

+ (m3 − (m3 −m2)β
2)A2)2

+ (β
√

1− β2A2
∓ ξ)2] =Υ 2

y = ε
2
x =

1
2 P2

1e′x
2
(1+ δ2

1), (6.1b)

EQ3±(A2, B2, β)= ξ(A2
− B2)

×[±2δ1(m1 −m3)
√

1− β2 + (m1 −m2)(1− δ2
1)β]

+ 2βδ1[ξ
2
+ (Λ+m1(A2

+ B2))(Λ+m2(A2
+ B2))+ (m1 −m2)

2A2B2

− (m2 −m3)
2(1− β2)A2B2

] ∓

√
1− β2(1− δ2

1)[ξ
2
− β2(m2 −m3)

2A2B2

+ (Λ+m1(A2
+ B2))(Λ+m3(A2

+ B2))+ (m1 −m3)
2A2B2

] = 0. (6.1c)

In contrast to the cases in §§ 4 and 5, the secular system depends on the sign of δ1,
or, in other words, the orbit direction (clockwise or counterclockwise) affects the wave-
amplitude response curves. On the other hand, the secular system (6.1) possesses the
following special kind of symmetry: if (A2, B2, β; δ1,±) is a solution of the secular
system, then (B2, A2, β; −δ1,∓) is also its solution. This means that, as long as we
know the response curves for, e.g. the diagonal-type counterclockwise elliptic forcing,
substitution A→B, B→A outputs the response curves for the diagonal-type clockwise
elliptic forcing. Due to this symmetry (relative to the diagonal plane), the forthcoming
analysis may, without loss of generality, focus on the counterclockwise (0 < δ1 6 1)
tank orbits. There are two limiting cases of the diagonal-type elliptic forcing, which
are associated with δ1=0 (the diagonal harmonic tank excitation was studied in Part 4)
and δ1 = 1 (the circular forcing was analysed in § 4).

A purpose of Part 4 has been to resolve contradictions between experimental
measurements by Ikeda et al. (2012) and theoretical results from Part 1. The
undamped analysis in Part 1 established two physically identical (to within the angular
propagation direction) swirling waves, which have, because of the four symmetry
planes (x= 0, y= 0, y= x and y=−x), equal amplitudes on the perpendicular walls,
i.e. A = B in terms of the lowest-order approximation. However, experiments by
Ikeda et al. (2012) did not confirm the latter equality. According to the experimental
measurements, B > A for the counterclockwise swirling but A < B when the rotary
wave propagates clockwise. Part 4 explains and quantifies these inequalities by
introducing a non-zero damping into the Narimanov–Moiseev modal theory.

Results from Part 4 (figure 8b) on the steady-state wave-amplitude response curves
in the (σ/σ1, A, B) space with projections on the (σ/σ1, A) and (σ/σ1, B) planes are
reproduced (almost identically) in figure 7(a). The same input data (3.30) and notation
are adopted. The wave-amplitude branching consists of the connected curve with two
bifurcation points U1 and W where the branch PlD0U1WPr laying in the A= B plane
is linked with the two branches U1D1V1S′0R1W and U1P0V2R2W. Points on the branch
PlD0U1WPr imply diagonal (standing) waves (stable and unstable). The branch was
drawn by using the analytical solution

1>Λ=−(m1 +m2)A2
±

√
ε2

x

A2
− ξ 2, 0< A 6

|εx|

ξ
, β = 1, A= B. (6.2a−d)

The branches U1D1V1S′0R1W and U1P0V2R2W are computed with the secular
system (6.1). Stable periodic solutions on these branches imply counterclockwise
and clockwise swirling, respectively. Irregular waves are expected in the frequency
range between U1 and V1.
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FIGURE 7. The steady-state wave-amplitude response curves for the diagonal reciprocating
(γ =π/4, δ1= 0, (a), reproduction from Part 4) and diagonal-type elliptic (γ =π/4, δ1=

0.05, (b)) forcing. The physical input parameters are defined in (3.30). In the column (a),
PlD0U1WPr implies the standing diagonal wave mode (stable and unstable) with A=B but
U1D1V1S′0R1W and U1P0V2R2W correspond to the counterclockwise and clockwise swirling
waves, which, due to the non-zero damping, are characterised by different wave amplitudes
at the perpendicular tank walls (the latter phenomenon was observed by Ikeda et al.
(2012) and theoretically described in Part 4). Irregular sloshing is expected for the forcing
frequencies between U1 and V1,2. In the column (b), the non-zero but relatively small
semi-axis ratio δ1 = 0.05 causes a splitting of the continuous branching and yields the
branch P1D0E′′E′D1U1V1S′0R1Pr (stable counterclockwise swirling on V1S′0, nearly standing
waves on PlT , D0U1 and R1Pr, and standing (square-like) waves at E′ and E′′) as well as
the loop-type branch WS′′0V2P0W (stable clockwise swirling on V2S′′0). The irregular waves
are then expected between U1 and V1.
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Figure 7(b) demonstrates what happens with the wave-amplitude branching in
the column (a) when δ1 is not zero but remains relatively small (δ1 = 0.05 in
these computations). The column (b) shows a splitting of the originally continuous
branching in the column (a). The first branch PlD0E′′E′D1U1V1S′0R1Pr is a continuous
curve going through the entire resonant zone but the second one, P0WS′′0V2P0, has a
loop-type shape. Intervals PlT , D0U1 and WPr in the column (a) are responsible for
the diagonal (standing) waves. They convert to the nearly standing (nearly diagonal)
waves in the column (b) (except at points E′ and E′′ implying the (purely) square-like
sloshing). Interval V1S′0 on PlD0E′′E′D1U1V1S′0R1Pr is responsible for the stable
steady-state solutions, which describe the counterclockwise swirling; V2S′′0 on the
loop-type curve WS′′0V2P0W implies the stable clockwise swirling. The frequency
range of irregular waves (determined by U1 and V1) saves approximately fixed
location and width in (a) and (b).

When the semi-axis ratio δ1 increases to become of the order O(1) on the adopted
asymptotic scale (3.30), the response curves are a subject of metamorphoses, which
are illustrated in figures 8 and 9. In figure 8, computations were done with δ1=0.3 (a)
and 0.5 (b). Both three-dimensional views and projections on the planes (σ/σ1, A)
and (σ/σ1, B) are depicted. The figure establishes the following global trends:
disappearance of the loop-type branch P0V2S′′0 so that stable clockwise swirling
becomes impossible (0.38 . δ1 for the given input data), increase of the frequency
range of irregular waves (the lower bound is associated with T), appearance of the
stable nearly standing wave mode (on the small ‘island’ U′1U1) and, finally, conversion
of the nearly standing wave mode to counterclockwise swirling on P1T and R1Pr.
The wave-amplitude branching in figure 8(b) is typical for the semi-axis ratios
0.38 . δ1 . 0.75 (at least, for the input parameters (3.30)). The branching consists of
the single response curve PlTD0E′′U′′1 U′1U1E′D1V1S′0R1Pr. Stable and unstable zones
periodically alternate each other along this curve. Hiramitsu & Funakoshi (2015)
publishes two computational examples in the (forcing frequency, non-dimensional
energy)-plane for the diagonal-type forcing corresponding to δ1 = 0 and 0.364. The
results are qualitatively consistent with our analysis.

Figure 9 demonstrates geometric and topologic metamorphoses of the response
curves for the semi-axis ratios 0.75 . δ1 < 1. An emphasis is placed on how
the curve PlTD0E′′U′′1 U′1U1E′D1V1S′0R1Pr breaks away at δ1 = 0.785 to yield one
continuous curve in the entire resonant zone plus a loop-type branch. Details of
this transformation are explained in panels (a–c). Panel (a) shows how the stability
‘island’ U′1U1 (responsible for nearly standing waves) disappears but the stable
counterclockwise swirling mode becomes possible for points on the interval V ′1V ′′1 .
The branching still consists of a single continuous curve. A further increase of δ1
to 0.785 causes intersection of V ′1V ′′1 and TD0, which yields bifurcation point V0
(panel b). Parameter β is far from the unit about V ′1 but β ≈ 0.93 at V ′′1 so that
the stable steady-state sloshing changes its type along the small interval V ′′1 V0V1 –
from the nearly standing (square-like) wave mode at V ′′1 to the counterclockwise
swirling at V ′1. Panel (c) demonstrates a splitting of the connected response curves
into the branch PlV ′0V ′1V1S′0R1Pr (counterclockwise swirling) and the loop-type branch
D1E′′U1E′D0V ′′0 V ′′1 D1 (nearly standing waves). For those values of δ1, irregular waves
are only possible in a narrow frequency range between V ′1 and V1. This wave type
fully disappears for δ1 = 0.95 in panel (d). The latter panel also contains the extra
loop-type branch D̃0Ẽ′Ũ1Ẽ′′D̃0, which emerges from a single point at δ1 = 0.88.

In summary, passage from reciprocating to elliptic diagonal-type excitations causes
qualitatively similar metamorphoses of the wave-amplitude response curves and
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FIGURE 8. The steady-state wave-amplitude response curves for the diagonal-type
(γ = π/4) elliptic counterclockwise orbital forcing with the semi-axis ratios δ1 = 0.3 (a)
and δ1 = 0.5 (b). Physical input parameters, notation and symbols are taken from
figure 7(b). Points E′ and E′′ correspond to the square-like (standing) waves but points
on D0U′′1 and (relatively small) interval U′1U1 imply the stable nearly standing wave mode.
Solutions on PlT and R1Pr convert to the stable counterclockwise swirling, which is also
represented by points on V1S′0. Irregular waves are possible between U1 and V1 as well
as T and U′1. The clockwise swirling is possible for δ1= 0.3 but the semi-axis ratio = 0.5
makes this wave mode impossible.

associated steady-state wave regimes to those described in § 5 for the wall-symmetric
position of the elliptic orbit. This includes conversion of stable (diagonal) standing
waves to the swirling wave mode (co-directed with the orbit direction), a narrowing
and vanishing frequency range for irregular waves, disappearance of the counter-
directed swirling as well as a constantly existing zone of the stable nearly standing
wave mode. On the other hand, original (δ1= 0) and intermediate (0< δ1 < 1) shapes
of the response curves during their metamorphoses with increasing the semi-axis ratio
differs from those in § 5.
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FIGURE 9. The metamorphosis of the steady-state wave-amplitude response curves for
the diagonal-type (γ = π/4) counterclockwise elliptic forcing with δ1 equal to: (a) 0.75,
(b) 0.785, (c) 0.786 and (d) 0.95. The physical input parameters are defined in (3.30).
Notation and symbols are taken from figure 8. Comparing the panel (a) with figure 8(b)
indicates the vanishing stability ‘island’ U′1U1 (nearly standing waves) and appearance
of the ‘island’ V ′1V ′′1 (stable counterclockwise swirling). Zone of irregular waves does
not increase. Panels (b) and (c) show an emerge of one from two loop-type branches,
which are expected in the limit δ1→ 1. For δ1 = 0.785 in (b), the ‘island’ V ′1V ′′1 touches
TD0 to constitute bifurcation point V0. A further increase of δ1 (panel (c), δ1 = 0.786 in
computations) divides the branching at this bifurcation point and leads to the continuous
response curve PlTV ′0V ′0V1S′0R1Pr (counterclockwise swirling) and the loop-type branch
D1E′′U1E′D0V ′′0 D1 (the nearly standing sloshing except at E′′ where a (purely) standing
wave is expected). Panel (d) shows that the branching becomes close to that in figure 4
as δ1 tends to the unit (the circular tank orbit).

7. Oblique-type elliptic tank orbits
After examining longitudinal (γ = 0, § 5) and diagonal (γ = π/4, § 6) positions of

elliptic orbits and clarifying what are typical transformations of the wave-amplitude
response curves versus the semi-axis ratio 0 6 |δ1|6 1, one can finally focus on the
most general angular position of the elliptic orbit in figure 2(a), which will be called
the oblique-type elliptic forcing. This case turned out to be much more complicated,
requiring us to consider, independently, co- and counter-directed elliptic orbits and,
moreover, we have to present results for two trial ‘oblique’ angles γ =π/6 and π/12.
The results are reported in figures 10–16.

Let us first focus on mathematical and physical aspects and admissible solutions
of the considered secular equations (3.21). By choosing an appropriate position of
the Oxy frame and, thereby, using symmetry relative to the diagonal planes, the
angle γ in figure 2(a) may be assumed belonging to the interval −π/4 6 γ 6−π/4.
Furthermore, Υ 2

y and, therefore, EQ1± and EQ2± in (3.21a) and (3.21b), respectively,
are independent of the signs of γ and δ1. However, analysing EQ3± in (3.21c) shows
that the wave-amplitude response curves and associated steady-state wave modes
are different for (γ δ1) > 0 (the case implies either counterclockwise trajectory for
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positive γ or clockwise trajectory with negative γ ) and (γ δ1) < 0 (either clockwise
trajectory for positive γ or counter-clockwise trajectory with negative γ ). This
property is a consequence of the symmetry relative to the vertical coordinate planes
Oxz and Oyz, which keeps invariant the sign of (γ δ1) (just consider the Ox symmetric
ellipses in figure 2a for different orbital directions!). There are no other symmetries
of the square, thus, in order to describe all possible steady-state wave motions for the
oblique-type elliptic forcing, one must independently analyse (γ δ1) > 0 and (γ δ1) < 0.
In the present section, we adopt positive 0< γ < π/4 but consider counterclockwise
(0< δ1 < 1) and clockwise (−1< δ1 < 0) orbital tank motions.

The authors were not able to construct any particular analytical solutions of
the secular system (3.21) for the oblique-type tank forcing and, therefore, the
forthcoming analysis will be done by utilising the computational scheme in § 3.
Numerical examples will adopt the trial angle γ = π/6 and π/12 and the input
data (3.30). A requirement to consider the two different trial angles and build-up
many illustrative graphs in figures 10–16 is caused, as our numerical experiments
showed, by significantly different metamorphoses (with changing 0 < |δ1| < 1) of
the response curves for 0 < γ . π/8 and π/8 . γ < π/4. Restricting to one trial
0< γ <π/4 would make the steady-state analysis incomplete.

7.1. Counterclockwise elliptic forcing
Figure 10(a) reproduces results from Part 4 on the wave-amplitude response curves
for the oblique harmonic (reciprocating) tank forcing with γ = π/6. The figure
keeps unchanged basic notations for branches and bifurcation points by Faltinsen &
Timokha (2017, figure 6b). The solid lines imply stable solutions (wave regimes) but
the dashed (deep-blue) lines mark unstable ones. For that case, applicability of the
Narimanov–Moiseev-type modal theory and the corresponding asymptotic steady-state
analysis were supported by observations and measurements in Ikeda et al. (2012).
The experiments also confirmed different maximum wave elevations at perpendicular
walls (inequality A 6= B) for counterclockwise and clockwise swirling with the same
forcing frequency σ/σ1.

The wave-amplitude branching in the column (a) contains the continuous response
curve PlTD0UVS0WW0Pr running through the entire resonant zone and the loop-type
curve P0S′0V ′P0 existing only in the primary resonant zone. The counterclockwise
stable swirling (points on VS0 and WW0) is associated with the aforementioned
continuous response curve but the clockwise stable swirling (V ′S′0) – with the
loop-type branch P0S′0V ′P0. All other stable steady-state waves are of the nearly
standing type (points on PlT , W0Pr and D0U). An irregular sloshing is expected in the
frequency range between abscissas of U and V . The response curves do not contain
points responsible for the (purely) standing wave mode (β= 1 or sinα= 0) even away
from the primary resonant zone on PlT and W0Pr where the linear sloshing theory
could be applicable. Part 4 theoretically clarified this and other specific peculiarities
by a non-zero damping in the hydrodynamic system. Indeed, when ξ = 0, points on
PlT and W0Pr imply the square-like standing wave mode.

Attention should be paid to the stability interval WW0Pr. When approaching Pr (a
point away from the primary resonance zone), β becomes very close but not equal
to unity (β ≈ 0.9999 for the input data (3.30)), namely, as we mentioned above,
the nearly standing sloshing occurs. However, when going from Pr to W, β rapidly
decreases to achieve O(ε1/3). 1− β in the vicinity of W0 and, later on, 1− β =O(1),
sin α > 0 in a local neighbourhood of W. This means that the nearly standing waves
for points on PrW0 change to a counterclockwise stable swirling on W0W.
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FIGURE 10. The steady-state wave-amplitude response curves for the oblique-type elliptic
forcing with γ = π/6 and counterclockwise tank orbits with the semi-axis ratio δ1 = 0
(column a corresponds to the limiting case – the oblique harmonic reciprocation) and
0.45 (column b). The input data from (3.30). Notations are taken from Part 4, the
solid lines imply the stable wave regimes but the dashed (deep-blue) lines mark the
waves instability. The column (a) is a reproduction (with minor changes) of figure 6(b)
from Part 4; it shows that the oblique reciprocation with positive 0 < γ < π/4 yields
the continuous branch PlTD0UVS0WW0Pr implying the counterclockwise stable swirling
(on VS0 and WW0) in the primary resonant zone and the nearly standing waves away
from the resonance zone (on PlT , W0Pr and D0U). The stable clockwise stable swirling
corresponds to points on V ′S′0 belonging to the loop-type branch P0S′0V ′P0. Irregular
waves are expected in the frequency range UV . Passage to positive 0.45 = δ1 = O(1) in
the column (b) saves PlTD0UVS0WW0Pr but the clockwise stable swirling on P0S′0V ′P0
disappears. The column (b) shows that, when δ1 = O(1) on the chosen asymptotic scale,
the pieces PlT and W0Pr become responsible for the stable counterclockwise swirling.

Passage from zero to positive but relatively small value of δ1 keeps a topologically
identical branching. As in figure 10(a), the branching consists of the continuous
response curve PlTD0UVS0WW0Pr and the loop-type branch P0S′0V ′P0. However, the
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loop-type branch reduces with increasing δ1 and, finally, disappears for the semi-axis
ratio exceeding a critical value (≈ 0.5 for the input data (3.30)). When approaching
this critical value from above, the loop-type branch P0S′0V ′P0 gets rid of points
responsible for the stable clockwise swirling. In the present computations, this
happens approximately at δ1 = 0.4. Figure 10(b) demonstrates the wave-amplitude
response curves for the oblique-type elliptic counterclockwise forcing with δ1 = 0.45.
They confirm the aforementioned feature. Comparison of the columns (a) and (b)
in figure 10 shows that points on PlT and W(W0)Pr become corresponding to the
stable counterclockwise swirling (here, co-directed with the orbit) as it was observed
before for other positions of the elliptic orbit when δ1 = O(1). Irregular waves
are still predicted in the frequency range defined by T and V . Furthermore, the
column (b) demonstrates a decrease of D0U (nearly standing waves), an increase of
VS0 (counterclockwise swirling) and a drift of W to the right.

Figure 11(a) shows that the loop-type branch indeed disappears for δ1 = 0.5 (as in
figure 8b for the diagonal-type forcing) and the branch PlTD0UVS0WPr keeps invariant
its structure and consequence of the stable/unstable intervals. The clockwise (counter-
directed to the tank orbit) stable swirling is impossible but the counterclockwise (co-
directed with the orbital forcing) swirling occurs in the frequency ranges, which are
similar to those in figure 10(b).

Figure 11(b–f ) demonstrate metamorphoses of the wave-amplitude response curves
when 0.75 6 δ1 6 0.95 (the cases are similar to those in figure 9 but for different γ ).
The branching should reach the geometric shape in figure 4 as δ1 approaches the
unit. Comparing panels (a) and (b) (δ1 = 0.5 and 0.75, respectively) shows generally
negligible geometric changes of the continuous curve PlD0ẼUẼ′VS0WPr; the only
difference is two points Ẽ and Ẽ′, which imply the square-like (purely standing)
wave mode. An astonishing thing is appearance of the small loop-type branch D′0,
which is born from a ‘single point’ at, approximately, δ1 = 0.746.

The limiting case with δ1 = 1 also requires the second loop-type branch. Three
panels (c–e) illustrate how this branch (D0ẼUṼ ′′V ′′0 D0) ‘buds’ from the continuous
response curve PlD0ẼUẼ′VS0WPr. Computations in the panels are done with
δ1 = 0.796, 0.7972 and 0.798, respectively. Evolution of the branching is analogous
to what we observed in figure 9(a–c). It has the same three compulsory stages.
These are, first, a new (and relatively small) ‘island’ V ′′(V0)V ′, which emerges on
PlD0ẼUẼ′VS0WPr (panel c) so that β rapidly changes along it, causing the nearly
standing wave mode in a neighbourhood of the endpoint V ′′ and the counterclockwise
swirling in a neighbourhood of the endpoint V ′. Second, the piece V ′′(V0)V ′ touches
TD0 to constitute the bifurcation point V0 (panel (d), δ1 = 0.7972). Finally, the
loop-type branch D0ẼUṼ ′′V ′′0 D0 breaks away with a further increase of δ1 as it
is shown in panel (e). For 0.8 . δ1 6 1, the stable counterclockwise (co-directed
with the forcing trajectory) swirling exists in the entire resonant zone. Two stable
nearly standing waves co-exist with the stable swirling in a certain frequency domain.
Irregular sloshing (all steady-state regimes are unstable) is not predicted.

Figure 12 demonstrates changes of the response curves when γ differs from the
trial value π/6 (γ = π/12 in these calculations). Qualitatively, the wave-amplitude
branching is similar to those in figures 10 and 11. The principal difference is the
loop-type branch P0S′0V ′U′D′0P0 (P0D′0U′P0). For γ = π/6, this branch vanished at
δ1= 0.45 but, later on, it emerged from a single point at δ1= 0.746. Figure 12 shows
that this branch exists (does not vanish for certain values of δ1) for all 0 < δ1 < 1
as γ = π/12. Physically, this fact implies two stable nearly standing waves (D0U
and D′0U′) in figure 12 for arbitrary semi-axis ratios.
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FIGURE 11. Typical steady-state wave-amplitude response curves for the oblique-type
elliptic forcing for γ = π/6 and counterclockwise orbits with the semi-axis ratios δ1 >
0.5. The computations adopt (3.30) and δ1 = 0.5 (a), 0.75 (b), 0.796 (c), 0.7972 (d),
0.798 (e) and 0.95 ( f ). Notation is taken from figure 10. Comparison of the panel (a)
and the three-dimensional view in figure 10(b) shows that the loop-type branch P0S′0
disappears for δ1 = 0.5. In the range 0.47 . δ1 . 0.75, only stable counterclockwise
swirling, nearly square-like waves and irregular sloshing are predicted. Panels (b–f ) show
what happens for 0.75 . δ1 < 1 (the semi-axis ratio approaches the unit). A loop-type
branch with B< A emerges from a ‘single point’ and becomes visible in (b). The branch
grows with increasing δ1 to yield a frequency range for the stable nearly standing waves.
Another loop-type branch (A< B) is a consequence of touching V ′V ′′ (stable swirling at
V ′ and nearly standing wave at V ′′) and TD0 (unstable sloshing). This kind of intersection
and related bifurcation were described in figure 9 for the diagonal-type elliptic forcing.
Irregular waves are not predicted in the cases (e) and ( f ), i.e. for the semi-axis ratios
0.8 . δ1 6 1.

Hiramitsu & Funakoshi (2015) presented one numerical branching in the frequency–
energy plane for the counterclockwise orbit with γ =π/8 and δ1= 0.364. The results
are qualitatively consistent with our calculations. They detect one continuous branch
going through the entire resonant zone and a loop-type branch with an interval
responsible for the counter-directed swirling mode.

7.2. Clockwise elliptic forcing
Figures 10(a) and 12(a) (see also Part 4) show that the oblique harmonic tank
reciprocation with 0<γ <π/4 yields the two non-connected branches: the continuous
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FIGURE 12. The same as in figures 10 and 11 but for γ = π/12. The semi-axis ratio
δ1= 0.0 in (a) (harmonic oblique reciprocation), δ1= 0.6 (b), δ1= 0.743 (c), δ1= 0.744 (d),
δ1 = 0.745 (e) and δ1 = 0.9 ( f ). The physical input data are taken from (3.30). The
panels qualitatively repeat the wave-amplitude metamorphoses of the response curves in
figures 10 and 11. An exception is the branch D′0U′P0D′0, which does not emerge from a
single point as happened for γ =π/6. The latter fact implies two (not one) stable nearly
standing wave modes (points on D0U and D′0U′) existing for all 0 6 δ1 6 1.

curve PlD0UVS0WW0Pr and the loop-type branch P0V ′S′0V ′(U′D′0)P0. The first branch
contains points responsible for the stable counterclockwise swirling (VS0) and the
second one has the interval V ′S′0, which corresponds to the stable clockwise swirling
mode. In other words, the oblique harmonic forcing cannot lead to physically identical
but oppositely propagating swirling waves as happened for the longitudinal excitation.
To reach the limiting wave-amplitude branching in figure 4 as |δ1|→ 1, the response
curves should go through very specific metamorphoses, which are accompanied, in
particular, by a removal of the stable counterclockwise from the PlD0UVS0WW0Pr
branch. How this may happen is demonstrated in the two illustrative examples for
γ =π/6 and π/12 with −1< δ1 < 0.

Let us consider the oblique harmonic tank reciprocation with the angle γ =π/6 and
the corresponding wave-amplitude response curves in figure 10(a). After that, let us
slightly perturb δ1< 0, which physically means clockwise elliptic tank motions with a
small semi-axis ratio. Figure 13(a) presents the first interesting result for δ1=−0.015.
The response curves for this semi-axis ratio look indeed rather interesting. One can
see that the two originally (when δ1 = 0) non-connected branches PlD0UVS0WW0Pr
and P0S′0UD0 touch each other and yield the intersection (bifurcation) point W0.
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FIGURE 13. The steady-state wave-amplitude response curves caused by the oblique-type
clockwise elliptic forcing with γ =π/6. Here, δ1 =−0.015 (a) and δ1 =−0.025 (b). The
input data are taken from (3.30) but notation was introduced in figure 10(a) (oblique
harmonic reciprocation, δ1 = 0). The two columns demonstrate qualitative changes in
the wave-amplitude branching when the tank orbit has a relatively small semi-axis ratio.
The reciprocating tank forcing causes two non-connected branches in figure 10(a). The
column (a) shows that these response curves join at bifurcation point W0, which implies
the standing (square-like) wave mode. This happens about δ1=−0.015. Another standing
wave is associated with point E, which coincides with the turning point T . When the
semi-axis ratio continues increasing, this branching breaks away at W0 (the bifurcation
point ‘jumps’ to P0S0). The column (b) (δ1 = −0.025) demonstrates that the branching
consists then of the single continuous curve PlTED0UVS0W0P0V ′S′0W ′0Pr. Disposition of
frequency ranges for stable swirling, nearly standing and irregular waves is practically
identical to that in figure 10(a) except for a narrow zone W0W ′, which defines the stable
clockwise (co-directed with the forcing direction) swirling.
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Specifically, the bifurcation point W0 implies the standing (square-like) wave (β = 1,
see figure 3). There also exists the second standing wave, which is associated with E,
which coincides with the turning point T . Because the semi-axis ratio |δ1| = 0.015
is O(ε) on the asymptotic scale (3.30), the frequency ranges of stable steady-state
waves remain almost identical to those in figure 10(a) where δ1 = 0. An exception is
the piece (interval) W0W ′, which emerges from the bifurcation point W0. Points on
W0W ′ imply the stable nearly standing waves.

Figure 13(b) illustrates modifications of the wave-amplitude response curves
due to a further increase of the semi-axis ratio (computations were done with
δ1 = −0.025). After disconnecting at W0, the wave-amplitude branching becomes
the single continuous curve PlTED0UVS0W0P0V ′S′0W ′0Pr where E and W0 remain
responsible for the unstable (purely) standing waves. Specifically, the point E moves
then along this curve from ‘periphery’ to the primary resonance zone but W0 ‘jumps’
onto the interval P0S0. The semi-axis ratio |δ1| = 0.025 remains O(ε) and, therefore,
the steady-state wave amplitudes and the frequency ranges of the stable steady-state
wave modes (see projections on (σ/σ1, A) and (σ/σ1, B)) negligibly change in the
column (b). However, there are qualitative differences in the vicinity of the former
bifurcation point W0. In panel (a), W0W corresponds to stable counterclockwise
swirling and W0W ′ implies stable nearly standing waves. Because W0 jumps onto
P0S0 in panel (b), the interval W0W vanishes but, because β rapidly decreases
along W0W ′, the stable clockwise (co-directed with the tank orbit) swirling wave is
predicted in a local neighbourhood of W ′.

A further metamorphosis of the wave-amplitude response curves for the oblique-type
clockwise elliptic forcing with increasing |δ1| =O(1) on the asymptotic scale (3.30) is
demonstrated in figures 14 and 15. Figures 13(b, δ1=−0.025) and 14(a, δ1=−0.275)
display the topologically equivalent branching, which consists of a single continuous
curve running from Pl to Pr though the primary resonant zone. However, figure 14(a)
exhibits the following differences: (i) points E and W0 continuously drift into the
primary resonance zone along the response curve, (ii) points on PlT and PrW ′ become
responsible for stable clockwise swirling (co-directed with the elliptic tank orbits),
(iii) the interval VS0, on which stable counterclockwise swirling occurs, diminishes
but V ′S′0 (clockwise, co-directed swirling) enlarges, (iv) a new interval U′U′′ appears,
along which β rapidly changes to cause the nearly standing wave mode at U′ and
counterclockwise swirling in the vicinity of U′′.

An increase of the semi-axis ratio |δ1| in figure 14(b–d) ‘extrudes’ the stable
counterclockwise (counter-directed) swirling mode from the resonant zone. The
associated topological metamorphoses look rather attractive. First, the branch piece
U′U′′ touches P0S0 and constitutes bifurcation point V ′ as shown in panel (b)
(δ1 = −0.28). Second, a further increase of the semi-axis ratio causes a break away
of the loop V ′S0VV ′ (panel c) accompanied by a rapid reduction of VS0 (stable
counterclockwise swirling) with increasing |δ1|. The loop-type branch vanishes at
δ1≈−0.3 (for the given input data). Panel (d, δ1=−0.5) demonstrates the branching,
which is similar to that in figure 11(a). An exception is existence of the (purely)
standing waves associated with E and W0. Similar disposition and sizes of the
effective (for stable steady-state waves) frequency ranges and irregular waves are
expected for both directions (clockwise and counterclockwise) of the oblique-type
elliptic tank orbits when the semi-axis ratio is close to ≈0.5.

Figure 15 examines the wave-amplitude response curves and associated steady-state
waves when the clockwise oblique-type elliptic forcing trajectory tends to the
circular shape. The calculations were done with δ1 = −0.702 (a), δ1 = −0.7029 (b),
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FIGURE 14. The steady-state wave-amplitude response curves caused by the oblique-type
clockwise elliptic forcing for γ = π/6 with δ1 = −0.275 (a), δ1 = −0.280 (b), δ1 =

−0.290 (c) and δ1 = −0.5 (d). The input data are defined in (3.30). Basic notation is
taken from figure 13. The figure demonstrates a diminishing of the counterclockwise
(counter-directed to the elliptic forcing) swirling through forming the bifurcation point V ′
in (b), a further break away of the loop-type branch VS0 (b,c) and, finally, disappearance
of the latter branch (d).
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FIGURE 15. The same as in figure 14 but for δ1 = −0.702 (a), δ1 = −0.7029 (b),
δ1 =−0.704 (c) and δ1 =−0.95 (d). The panels demonstrate formation of the loop-type
branches (attributes of the circular orbital forcing) with increasing the semi-axis ratio |δ1|.

δ1 =−0.704 (c) and δ1 =−0.95 (d) and γ =π/6. Formation of the loop-type branch
D0EUW0D0 (B>A) is similar to that in figure 11(c–e). In both cases, the co-directed
stable swirling mode exists in the entire resonance zone (irregular waves become
impossible) starting with the semi-axis ratio |δ1| = 0.75.
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FIGURE 16. The same as in figures 13–15 but for the clockwise tank trajectory with
γ = π/12. The semi-axis ratio δ1 is equal to −0.0138 (a), −0.4 (b), −0.465 (c),
−0.4658 (d),−0.469 (e) and −0.95 ( f ).

Figure 16 shows the wave-amplitude response curves for the oblique-type clockwise
elliptic forcing when γ = π/12. The starting situation is depicted in figure 12(a),
which corresponds to the harmonic oblique reciprocation (δ1 = 0). Figure 16(a)
demonstrates how the two non-connected branches in figure 12(a) join each other
and constitute bifurcation point W0 (as in figure 13b). Figure 16(b,c) demonstrate
formation of a single response curve whose stable and unstable intervals alternate with
each other. As in the previous examples, the counterclockwise swirling disappears for
the semi-axis ratio ≈0.5. Indeed, the corresponding interval S0V is relatively small in
cases (c–e) and it fully vanishes as 0.5. |δ1|. Figure 16(d,e) shows, first, intersection
of the response curve at point B with the forthcoming break of at the bifurcation
point, which leads to the loop-type branch W0UED0W0. Another loop-type branch
W̃0ŨẼD̃0W̃0 emerges from a single point when |δ1| tends to the unit.

In summary, the oblique-type elliptic forcing causes a large variety of the
wave-amplitude response curves whose topology and geometry strongly depend on the
semi-axis ratio and, In particular, on the tank orbit direction. Metamorphoses of the
wave-amplitude response curves are very attractive when (γ δ1) < 0 (either clockwise
trajectory for positive γ or counter-clockwise trajectory with negative γ ). In particular,
when 0< |δ1|. 0.5 (the upper bound depends on the physical input). When |δ1| ≈ 0.5,
the counter-directed (to the tank orbit) swirling, normally, disappears. Furthermore,
disposition and frequency ranges of the stable nearly standing and co-directed
swirling waves as well as irregular waves remain similar for the semi-axis ratios
0.5. |δ1|. 0.75. A further increase of the semi-axis ratio (0.75. |δ1|) transforms the
wave-amplitude response curves to those for the circular orbital forcing.
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8. Conclusions

Bearing in mind a systematic study of the resonant nonlinear sloshing in a square
base container, steady-state and transient waves, the authors derived in Part 1 a
(modal) system of nonlinear ordinary differential equations within the framework of
the Narimanov–Moiseev asymptotic theory. The theory is valid for non-parametric tank
forcing under special conditions to the forcing amplitude and frequency. The derived
Narimanov–Moiseev-type modal system suggested a resonant excitation of the two
lowest (degenerating) natural sloshing modes, a finite liquid depth and periodic tank
motions by sway, surge, roll, pitch and, generally, yaw. The system was extensively
exploited in the forthcoming parts to study the steady-state resonant wave regimes for
the longitudinal (along parallel walls), diagonal and oblique reciprocations of the tank.
Focusing exclusively on the reciprocating excitations was partly driven by existing
(including the authors’) experimental observations and measurements (all these have
supported the theoretical results) but also it was caused by a series of mathematical
problems in getting an analytical solution of the so-called secular system. Experiments
by Ikeda et al. (2012) and the forthcoming theoretical investigations by Faltinsen &
Timokha (2017, Part 4) showed that damping, even being relatively small, is important
to explain some resonant wave paradoxes. Incorporating the linear damping terms
in the Narimanov–Moiseev-type modal system made it impossible to get a general
analytical solution of the secular system for the reciprocating forcing, more precisely,
the authors were able to find analytical solutions only in very particular cases.
They had to develop a numerical method in their studies. After introducing several
modifications, the numerical method is used in the present paper to classify the
steady-state sloshing due to the three-dimensional non-parametric cyclic tank motion
(combined periodic sway, surge, roll, pitch and yaw). As matter of the fact, the
present Part 5 realises the main goal of the case studies, fully revealing the potential
of the Narimanov–Moiseev-type modal theory from Part 1.

The classification of the steady-state wave regimes became possible because, as
we prove in the present paper, there exists an asymptotic equivalence between the
steady-state resonant waves due to sway, surge, roll, pitch and yaw and those excited
by a suitable horizontal (translatory) elliptic orbital tank motion. The asymptotically
equivalent waves are characterised by the same first- and second-order asymptotic
components (within the framework of the Narimanov–Moiseev asymptotic theory) and
possess the same stability properties. This means that, instead of making an exhausting
search of all possible periodic non-parametric excitation scenarios, one can investigate
the steady-state wave regimes and their stability versus the three input parameters:
0 6 γ 6 π/4 (characterises angular position of the elliptic orbit), 0 6 |δ1| 6 1 (the
semi-axis ratio of the orbit) and the orbit direction (clockwise or counterclockwise).
In view of this fact, the previous paper parts concentrated on the limiting case δ1= 0.
The present paper independently examines another limiting case |δ1| = 1 (the circular
tank forcing) and, furthermore, concentrates on the particular cases with canonic (wall-
symmetric, γ = 0, 0 < |δ1| < 1) and diagonal (γ = π/4, 0 < |δ1| < 1) positions of
the elliptic orbits. Finally, the oblique-type elliptic forcing is numerically analysed for
γ =π/12 and π/6 with −1<δ1< 1 where positive δ1 denotes counterclockwise orbits
but negative δ1 – clockwise ones. Because analytical solutions were found only in
very particular cases, the steady-state wave-amplitude analysis is done, numerically,
with the input parameters (3.30), for which Part 4 showed a good agreement between
the Narimanov–Moiseev-type theoretical predictions and experiments by Ikeda et al.
(2012).
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Within the framework of the lowest-order approximation, the resonant steady-state
waves fall apart into the purely and nearly standing wave modes and the swirling
wave mode, which may occur either clockwise or counterclockwise, as well as an
irregular (chaotic, modulated, etc.) sloshing. Introducing A and B, which measure the
lowest-order wave-amplitude components in the Ox and Oy directions, respectively,
and the corresponding phase lags, ψ and ϕ, makes it possible to systematically analyse
the wave-amplitude response curves in the (σ/σ1,A,B) space specifying, in a parallel
way, stable and unstable wave modes for each point on these curves. The latter uses
a criterion based on the sin(ϕ − ψ)-values (proven in the present paper) and the
Lyapunov-type stability analysis from Part 4.

The circular orbital tank forcing (|δ1| = 1) excites the stable resonant steady-state
swirling whose angular propagation (around Oz) coincides with the forcing direction
(clockwise or counterclockwise). This wave mode exists for all resonant forcing
frequencies. Irregular waves are not predicted. The swirling wave amplitude is
governed by the damped hard-spring-type response curves and, therefore, two different
swirling waves may coexist in a certain frequency range where the forcing frequency
is slightly larger than the lowest natural sloshing frequency. A novelty with regard to
the same damped hard-spring type response curves for the orbitally excited swirling
in an upright circular tank (Raynovskyy & Timokha 2018b) consists of two stable
nearly standing waves occurring in a relatively narrow frequency range for the forcing
frequency, which is slightly lower than the lowest natural sloshing frequency. The
nearly standing waves co-exist with swirling. They are characterised by a relatively
large amplitude, that is, their occurrence requires special initial scenarios, which, in
our opinion, are difficult to organise in model tests.

Passage from the harmonic longitudinal reciprocation to elliptic tank orbits (γ = 0,
0 6 |δ1| 6 1) breaks away the Ox symmetry of nearly standing and swirling
waves so that, e.g., co- and counter-directed swirling modes have different wave
amplitudes. There is a critical value of |δ1| (≈ 0.5 for the tested input data) when
the counter-directed swirling disappears (the same happened for upright circular base
containers in Raynovskyy & Timokha (2018a)). A further increase of the semi-axis
ratio makes the co-directed swirling stable in the entire resonant zone and, as a
consequence, irregular sloshing may not occur when the tank orbit tends to a circle.
The stable nearly standing wave mode is realisable for all |δ1|; it always co-exists
with other stable steady-state waves. As we noted above, this co-existence makes
difficult to detect this wave mode in experimental studies.

When the diagonal harmonic excitation acquires its non-small elliptic component
(γ =π/4, |δ1|=O(1)), the wave-amplitude response curves and associated steady-state
wave regimes become similar to those discovered for the wall-symmetric position of
the elliptic orbit. This includes transformation of stable (diagonal) standing waves
to the swirling wave mode (co-directed with orbits), narrowing and vanishing of the
frequency range for irregular waves, disappearance of the counter-directed swirling as
well as a constantly existing zone of the stable nearly standing wave mode.

The oblique-type elliptic forcing (0 < γ < π/4, −1 < δ1 < 1, the δ1 sign defines
the orbit direction) leads to a variety of astonishing response curves and bifurcations,
which strongly depend on δ1. However, when the semi-axis ratio is O(1) (on the
adopted asymptotic scale), the counter-directed swirling disappears starting with a
critical value (0.5 . |δ1| in our calculations). The same happened for γ = 0 and
γ = π/4. Disposition and frequency ranges of stable nearly standing and co-directed
swirling wave modes as well as irregular waves are also similar.

The present paper exhausts potential of the Narimanov–Moiseev-type modal
equations in the steady-state sloshing analysis for a (nearly) square base tank and,
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thereby, finalises the case studies originated in Part 1. Extension to other forcing
types, e.g. with other resonant frequencies or by heave as well as for shallow liquid
depth, requires their serious modification. However, the authors believe, the present
wave classification results exhibit a useful ‘forecast’ of steady-state wave types and
their effective frequency ranges for a broad variety of three-dimensional resonant tank
motions and, thereby, it could both facilitate engineers who face these tank motions in
everyday practice to model, for instance, a floating ship tank in oblique sea and, even
more importantly, motivate mechanicians and mathematicians to pay more attention to
the corresponding experimental and numerical studies. The present paper could also
be a guidance for future experimental studies, which should focus on classification
of the steady-state wave, i.e. establishing the frequency ranges where wave modes
from figure 3 are stable. The classification may become rather difficult when two or
more stable wave modes co-exist in a frequency range. This problem was already
discussed in § 4 in the context of the nearly standing waves on the branches U′E
and Ũ′Ẽ and stable swirling. Their experimental detection needs a new strategy with
non-zero initial scenarios.
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