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The Milnor-Stasheff Filtration on Spaces
and Generalized Cyclic Maps

Norio Iwase, Mamoru Mimura, Nobuyuki Oda, and Yeon Soo Yoon

Abstract. The concept of Ci-spaces is introduced, situated at an intermediate stage between H-spaces
and T-spaces. The C-space corresponds to the k-th Milnor—Stasheff filtration on spaces. It is proved
that a space X is a Cg-space if and only if the Gottlieb set G(Z,X) = [Z, X] for any space Z with
catZ < k, which generalizes the fact that X is a T-space if and only if G(XB,X) = [XB, X] for any

space B. Some results on the Cy-space are generalized to the C ,{ -space foramap f: A — X. Projective
spaces, lens spaces and spaces with a few cells are studied as examples of Cy-spaces, and non-Cy-spaces.

1 Introduction

A 0-connected space X is called a T-space if the fibration X — XS — X is fiber
homotopically trivial [[I]], and it is known that any 0-connected H-space is a T-space.
To investigate intermediate stages between H-spaces and T-spaces, Aguadé [1]] de-
fined Ty-spaces for any integer k > 1 and k = 0o, making use of the Milnor—Stasheff
filtration on spaces, so that the T, -space is an H-space and the T;-space is a T-
space. It seems that relations between Ti-spaces and the L-S category of spaces were
not investigated clearly after his work. In this paper we define the concept of the
Cy-space for k > 1 so that the C;-space is the same as the T-space and the C,-space
is an H-space. We also employ the Milnor—Stasheff filtration on spaces to define Cy-
spaces. However, the definition of the Cy-space is directly connected with the L-S
category; it enables us to prove, for example, that a space X is a Cy-space if and only
if the Gottlieb set G(Z, X) = [Z, X] for any space Z with catZ < k (Theorem 2.3),
which is a generalization of the fact that X is a T-space if and only if the Gottlieb
group G(XB, X) = [¥B, X] for any space B [26, Theorem 2.2].

For each k, let ji: $QX = PL(QX) — P*(QX) and e : P*(QX) — P(QX) ~ X
be the natural inclusions for the spaces P¥(Q2X) [16,21] (see §2). Let f: A — X be
any map. A 0-connected space X is called a C,{ -space if e : PK(QX) — X is f-cyclic
(Definition[3.1)). A C ix—space X is called a Cy-space (Definition[2.]).

We show that a space X is a C,{-space if and only if G/(Z,X) = [Z,X] for any
space Z with catZ < k (Theorem[3.2)). Let f: A — X and ¢g: B — Y be any maps.
The product space X x Y is a C,{Xg-space if and only if X is a C,{-space and Y is a
C3-space (Theorem[4.7)). It follows that the product space X x Y is a Cy-space if and
only if both X and Y are Cy-spaces (Theorem[4.8)).
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Let X be a covering space of a space X with the covering map p: X — X and

1 < k< oo Let f: A— X, f: B — X, and g: B — A be maps such that the
following diagram is homotopy commutative,

In Theorem [4.9] we show that if X is a CI{ -space, then the covering space Xisa C,{ -
space. A relation between two “multiplications” that are induced by a pairing and a
copairing [18, Proposition 3.4] will be used to prove Theorem A similar result
holds for the T,{ -space, which is a generalization of Aguadé’s Ty-space (see Defini-
tion[3.3). If we put f = 1y, ]7 = 1g, 9 = p, then we see that any covering space of a
Cy-space (resp. Aguadé’s Ti-space) is a C-space (resp. T-space) forany 1 < k < oo
(Theorem [4.10Q]).

In the last section we study projective spaces, lens spaces and spaces with a few
cells.

2 Cy-Spaces

We work in the category of topological spaces with base point. The symbol f ~
g: X — Y means the based homotopy relation and the symbol X ~ Y the based
homotopy equivalence. The set of based homotopy classes of maps [f]: X — Y is
denoted by [X,Y]. Let f: A — X be a map. A based map g: B — X is said to be
f-cyclic [17]] if there exists a map ¢: B x A — X such that the diagram

fvg
AVB —— XVX

is homotopy commutative, where j: AVB — A x Bis theinclusionand V: XVX —
X is the folding map. We call such a map ¢ an associated map of an f-cyclic map g.

Clearly, g is f-cyclic if and only if f is g-cyclic. We write f_1g if g is f-cyclic. If
fLlg formaps f: A — Xand ¢g: B — X, then (wo fo f')L(wogog’) for any
mapsw: X = W, f': A’ — A,and ¢’: B’ — Bby [17, Theorems 1.4 and 1.5]. This
formula is used repeatedly in the following arguments without further reference. A
based map g: B — X is said to be cyclic [23] if 1x_Lg, that is, g is 1x-cyclic. The
Gottlieb set denoted by G(B, X) is the set of all homotopy classes of cyclic maps from
Bto X.
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The loop space €2X of any space X has a homotopy type of an associative H-space.
A 0-connected space X is filtered by the projective spaces of QX [16}21]]:

% = PU(OQX) < 20X = PY(QX) < --- <3 PF(QX) < --- <3 PP(QX) ~ X.

For each k, let j¥: £QX = PY(QX) — PK(QX) and € : PF(QX) — P®(QX) ~ X
be the natural inclusions. We write e¥ = ef: ¥QX = P'(QX) — X. We see that
jr ~ X XOX — Xand e, ~ 1x: X — X,

A 0-connected space X is called a Ty-space [1] if 1x1e; for some extension
2 PF(QX) — X of &1 ©OX — X, that is, there exists a map ¢x: X X PFOX) » X
such that ¢ 0 jo (1x V j¥) ~ Vo (1x Ve*): X VEQX — X. Aguadé showed that
X is a T-space if and only if X is a T}-space [, Proposition 4.1]. If X is a Tj-space,
then it is a T;-space for any 1 < i < k. By [I} Proposition 4.1(i)(ii)], a 0-connected
space is an H-space if and only if it is a T -space; we remark that ., ~ 1y when X
is a 0-connected CW complex. The concepts of the T-space and the Gottlieb set are
closely connected by the fact that X is a T-space if and only if G(XB, X) = [¥B, X]
for any space B [26, Theorem 2.2].

Definition 2.1 Letk > 1 be an integer or k = co. A 0-connected space X is called
a Cy-space if 1x Lef, that is, the inclusion €} : P*(Q2X) — X is cyclic. A 0-connected
space X is called an NC-space if X is not a Cy-space for any k > 1.

Clearly any Cy-space is a Ty-space for any k > 1. We use the L-S category cat X
for a 0-connected space X in the sense that cat X = # if n is the minimum number
of categorical open coverings Uy, Uy, ..., U, of X, so that cat X = 0 if and only if X
is contractible and cat X < 1 if X is a suspension. Throughout this paper, we follow
Iwase for the notations for the L-S category; his list of references covers much of the
widely-known literature [[11] .

We now recall Ganea’s theorem [10L[11]].

Theorem 2.2 (Ganea [3l[10]) Letk > 1 be an integer or k = oo and assume that X is
a 0-connected space. The category cat X < k if and only if e} : PX(QX) — X has a right
homotopy inverse.

In the rest of this section, we mention some results on the Ci-space that are ob-
tained as special cases of the results on the C,{ -spaces for amap f: A — X in the

following sections, since the Cy-space is the CI{ -space for the identity map f =
lX: X — X.

The property of the T-spaces in [26, Theorem 2.2] is extended to the Ci-spaces
using the L-S category in the sense that the L-S category of any suspension space ¥.B
satisfies cat 2B < 1.

Theorem 2.3 Letk > 1 be aninteger. A space X is a Ci-space if and only if G(Z, X) =
[Z,X] for any space Z with cat Z < k.

Theorem[2.3]is a special case of Theorem [3.2]which is proved in the next section.
The following proposition is a direct consequence of the definition.
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Proposition 2.4 (i) A space X is a T-space if and only if X is a C,-space.
(i) Any C,,-space is a C,-space foroo > m > n > 1.
(iii) A space X is an H-space if and only if X is a Co-space.

As a direct consequence of Proposition [3.4((ii),(v) and Theorem[4.3] the following
theorem is obtained.

Theorem 2.5 Assume that catX = k > 1. Then X is an H-space if and only if X is a
C,-space for some n > k.

Itis known [14]] that cat X < dim X for any finite CW complex X. Thus, we obtain
the following corollary.

Corollary 2.6 Ifa T-space X is a 1-dimensional finite CW complex, then X = S'.
Example 2.7 By [l Proposition 4.2] Aguadé obtained a space X such that X is a

T,_1-space but not a Tj-space. This space X is not a C,-space, but it is not known
whether X is a C,_-space or not.

3 C/-SpacesforaMap f: A — X

We denote the set of all homotopy classes of f-cyclic maps from B to X by
G(B;A, f,X) = G/(B,X) = f+(B,X) C [B,X].

This is called the Gottlieb set for amap f: A — X. If f = 1x: X — X, then we
recover the set G(B, X) defined by Varadarajan [23]:

G(B,X) = G(B; X, 1x, X) = G*(B,X) = (1x) (B, X).

In general, G(B,X) C G/(B,X) C [B,X] for any spaces A, B, X and any map
f: A — X. An example is shown in [27] such that G(B, X) # G(B; A, f,X) # [B,X]:

Gs5(S* X &) =22 D27 # G5(S°,i1,8 x ) 22 DL #75(S° x ) = LB L.

Definition 3.1 Letk > 1 be an integer or k = co. Let f: A — X be any map. A
0-connected space X is called a C,j:-space if fLef (oref: PK(QX) — Xis f-cyclic). A
0-connected space X is called an NC/-space if X is not a C,{—space for any k > 1.

We see that a C,l"—space X is a Cy-space.

Theorem 3.2 Let f: A — X be any map. A space X is a C,’:-space if and only if
Gz, X) =12 X] for any space Z with cat Z < k.

Proof Suppose that X is a C,{ -space, namely, f_Le}. Let Z be a space with cat Z < k
and g: Z — X any map. Since catZ < k, there exists a map 57 : Z — P¥(QZ) such
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that ef os? ~ 1. We see that ef o P*(€2g) ~ goe? by the naturality of the construction
of PX(QZ), as is shown in the following homotopy commutative diagram:

PH(Qg)
PKQZ) ——= PKOX)

V4 X

Hence the relation f_Lef implies fL(ef o P¥(2g) o s7) or flg. It follows that
Gz, X)=1zX].

Conversely, assume that G/ (z,X) = [Z,X] for any space Z with catZ < k. It is
known that catCy < catY + 1 for any map 6: X — Y [24} (1.6) Theorem, p. 459],
where Cy is the mapping cone of 6. Thus cat PF(QX) = catCy < cat PF1(QX) + 1,
where 0: (QX) * - - - % (QX)(k-times) — P*~!(QX) is the map in [ZI} Part I, Theo-
rem 12 ]. By induction, we have cat P¥(Q2X) < k. Thus we know that ef : PKOX) —
X is f-cyclic by our assumption, and hence X isa C ,’: -space. ]

A space X is called an H-space for a map f: A — X if 1x is f-cyclic (namely
fLlx), and a T/-space foramap f: A — X if eX: ¥QX — X is f-cyclic (namely
fLe*)[28,29]. Any H-space X is an Hf -space and any H/-space X is a T/-space for
any map f: A — X. We remark that the 2-dimensional sphere $* is not an H-space
nor a T-space, but it is an H™-space and a T"-space for the Hopf map 7,: S — S
[29, Example 2.10], [26, Corollary 2.8].

Definition 3.3 Let f: A — X be any map. A space X is called a T,{ -space if f1e
for some extension & : P<(Q2X) — X of eX: £QX — X, that is, there exists a map
¢r: A x P*(QX) — X such that ¢ o jo (1x V j¥) ~ Vo (fVeX): AVPH(OX) — X.

An H'¥-space X is an H-space and a T,ix-space X is a Ti-space.

Proposition 3.4 Let f: A — X be any map.

(i) Xisa le—space S Xisa T{—space & Xisa T/ -space.

(i) Any C{rspace isa C,’;-spacefor co>m>n> 1.

(iii) Any T,ﬁ-space isa T,{-spacefor co>m>n> 1.

(iv) IfXisa C,{-space, then X isa T,{-spacefor oo >k>1.

(v)  If X has the homotopy type of a CW complex, then the following equivalences hold:

X isan H -space < X isa cl -space < X is a TS -space.

Proof These results are direct consequences of the definitions except the following
part of (v): “Xis a Té[o—space = X is an H/-space”, which is proved by a method
similar to the proof of [[1, Proposition 4.1 (ii)] as follows.

Suppose that X isa Tg’:o-space. Then f_Le for some extensione: P°(QX)(~ X) —
X ofef: 30X — X, and there exists a map m: A x P*°(QX) — X with axes f and e,
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making the following diagram commutative up to homotopy:

1xeX

AxX —— AxPPOX) —s X

\ U
Ixef

A x XOX

Let g: X — X be a map given by g(x) = mo (1 x €X)7!(*,x) for any x € X.
Then g ~ €0 (eX,)™! and we have g o ef ~ ef, and hence Qg ~ 1gx by taking
adjoints. Then it follows that g: X — X is a weak homotopy equivalence and hence is
a homotopy equivalence if X has the homotopy type of a CW complex, by a theorem
of J. H. C. Whitehead, and there exists a map h: X — X such that g o h ~ 1x. Hence
we have f_1g, which implies that f 1 (g o h) or f_L1x by the composition formula we
discussed at the start of Section[2 ]

4 More about T/-Spaces and C/-Spaces

Proposition 4.1 Let f: A— X andg: B — A be any maps.
(i) IfXisan H'-space, then X is an H/°%-space.

(i) IfXisa T,{ -space, then X is a T,{ ¢ _space.

(iii) IfXisa C,{-space, then X is a C{og-space.

Proof The relations (i) fLl1y, (ii) f_Le, and (iii) fJ_ei( imply (i) (f o g) L1y, (ii)
(f o g)Ley, and (iii) (f o g)_Lef, respectively, and we have the results. u

Proposition 4.2 Assumethat f: A — X hasarightinverses: X — A, i.e., fos ~ 1x.
Then the following results hold.

(i)  An H-space X is an H-space.

(i) A T,{ -space X is a Ty-space.

(iii) AC ,{ -space X is a Cy-space.

Proof These are immediate by Proposition .11 ]

If X is an H/ -space, then X is a C,{—space for any k > 1 by Proposition 3.4 (ii), (v).
The following theorem shows that the converse holds if cat X < k.

Theorem 4.3 Let f: A — X be any map.

(i) IfXisa C,{-space and cat X < k, then X is an H/ -space.
(ii) IfX is a Cy-space and cat X < k, then X is an H-space.

Proof (i) Since cat X < k, we see that G/ (X, X) = [X, X] by Theorem[3.2] It follows
that f 1 1x. (ii) is the case where f = 1x, and hence 1xL1x. [ |

Theorem 4.4 Assume thatY is a homotopy retract of X with the mapsr: X — Y and
s:Y — Xsuchthatros ~ ly.
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(1) IfXisa C,{-space, thenY isa C;of-spacefor anymap f: A — X.

(ii) IfX is a Ci-space, then Y is a Cy-space.

Proof Let 7 = PK(Qr): PK(QX) — PK(QY) and 5, = P*(s): PK(QY) — PX(QX)
be the maps induced by r and s, respectively. Then we see that

eZ:rosoez:ezo?kOEk:roefOEk:Pk(QY)%Y.

Then (i) the relation fLei( implies (ro f)L(ro ekx 05;),or (ro f)LeZ and (ii) the
relation 1x_Le implies (rolyos) L(roef o5;), or 1y Le [17, Theorems 1.4,1.5]. M

The following result is a generalization of Woo and Kim [25} Theorem 3.6].
Proposition 4.5 Let f: A — Xandg: B— Y be any maps. The relation
Gz, X xY)2G(Z,X) x G(Z,Y)
holds for any space Z (under the identification [Z,X x Y] = [Z,X] x [Z,Y]).

Proof Letw:Z — Xand 3: Z — Y be maps. We defineamap (o, 8): Z - X XY
by (a, ) = (o x B) o Az for the diagonal map Az: Z — Z x Z. Suppose that
(o, B) € GI(Z,X) x G¥(Z,Y), which is identified with a map (o, 3): Z — X x Y.
Since f Lo and g1 3, we have (f x g) L(«a x B) [17, Proposition 1.7]). It follows that
(f x @) L{(ax B) oAz} or (f x g)L(a, B), and hence (o, B) € G/ *&(Z,X x Y).
Conversely, suppose that (o, 3) € G/2(Z,X x Y) or (f x g)L(a, B). Let
p1: X xY — Xand py: X x Y — Y be the projections and i;: X — X X Y and
i: Y = X X Y be the inclusions defined by i1(x) = (x, yo) and i,(y) = (xo, y) for
anyx € X and y € Y, where xy € X and yy € Y are base points. It follows that

{pro(fxgoinfl{pio(a,)} and {pro(fxg)oir}L{pro(a,fp)}
and we have f_ 1o and gL 3. It follows that a € G/(Z,X) and 8 € G¢(Z,Y). [ |

Remark 4.6 The converse of Proposition 1.7 of [17] holds by an argument similar
to the proof of Proposition @5l Let fi: X1 — Z1, : Xo — Z, g1: Y1 — 7y,
£: Y, — Z, be any maps. Then the following statements are equivalent.

() filgiand f1g.

(i) (fi x f2)L(g x &)

Theorem 4.7 Let f: A — Xandg: B — Y be any maps. The product space X X Y
isa C,’:Xg—space ifand only if X isa C,{—space and Y is a C{-space.

Proof If X xYisa C,{Xg—space, then for any space Z with cat Z < k we see
G(Z,X)xRZ,Y)2GZ,XxY)=[Z,XxY]|=1[ZX]x[Z,Y]

by Theorem[3.2]and Proposition 43} and hence G/(Z, X) = [Z,X] and G¥(Z,Y) =
[Z,Y].

Conversely, suppose that X is a C,{ -space and Y is a C{-space. Then Gl(z,X) =
[Z,X] and G¢(Z,Y) = [Z,Y] for any space Z with catZ < k by Theorem 3.2 It
follows that G*8(Z, X xY) 2 G (Z, X) x G8(Z,Y) = [Z,X| x [Z,Y] = [Z,X x Y]
for any space Z with cat Z < k. ]

https://doi.org/10.4153/CMB-2011-130-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-130-8

530 N. Iwase, M. Mimura, N. Oda, and Y. S. Yoon

Theorem 4.8 The product space X X Y is a Cy-space if and only if both X and Y are
Cy-spaces.

Proof Set f = 1x and ¢ = 1y in Theorem[4.7] Then we have the result. [ |
We now consider covering spaces of C ,{ -spaces and T,{ -spaces.

Theorem 4.9 Let X be a covering space of a space X with the covering map p: X — X
and1 <k <oc. Let f:A— X, f: B— X, and q: B — A be maps such that the
following diagram is homotopy commutative:

f

B— X
TR
f

A— X
(i) IfXisa C{—space, then the covering space X is a C,{—space.
(i) IfXisa T,{ -space, then the covering space Xisa T,{ -space.

Proof (i) Since X is a C,{ -space, there exists a map m for f_Ley. Consider the fol-
lowing diagram.

- iy -
Bx PFOQX) ——— = X

axP*(Qp) i L p

My

AXPHOX) ———— X
We must show that
(my 0 (q x P(Qp)).(m1 (B x PKQX)) C p.m(X)

to obtain a map #1;: B X P*(QX) — X for ]?J_e{( Let (o, 8) € 7 (B % PF(QX)) be
any element. We see that

(my 0 (q x PXQp)).((a, B) = (f 0 @)u(@) + (¢f 0 PK(Q2p)).(B)
= (po la)+(poe)(B)
= pu(ful@) + (€D).(B)) € pami(X),

by [18, Proposition 3.4 (1)], since fogq ~ p o j?by assumption and the following
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diagram is homotopy commutative:

PKOX) — > X

P(Qp) J/ i p
e

PHOX) — > X

(ii) is proved by an argument similar to (i); the proof is omitted. ]

The following theorem is obtained by setting A = X, B = X, q = p: X — X,
f = 1x,and f = 153 in Theorem 4.9

Theorem 4.10 Any covering space of a Cy-space (resp. Ty-space) is a Ci-space (resp.
Ty-space) for any 1 < k < oo.

5 Applications and Examples
We have the following result by Theorem[2.5]

Proposition 5.1 If X is a C,,-space with cat X < m for some m > 1, then X is an
H-space.

Proposition 5.2 (i) IfcatX = 1 (for example, X = XA, or a general co-H-space)
and X is not an H-space, then X is an NC-space.
(i) If¥XisaC-space, then XX = S', 3, or §7.

Proof (i) and (ii) are obtained by Proposition[5.1] [ |

Let X be a 0-connected space. A space X is called a Gottlieb space or a G-space
if the Gottlieb group G,,(X) = 7,(X) for any m > 1 [4)/5]. A space X is called a
Whitehead space or a W -space if every Whitehead product [, 3] = 0 in [S™"L X]
for any a € [S"!,X], B € [S™*,X], and any n,m > 0. A space X is called a
generalized Whitehead space or a GW -space if every generalized Whitehead product
on X is trivial, that is, [, 5] = 0in [X(AAB), X] forany o € [¥A, X], B € [¥B, X],
and any spaces A, B.

Remark 5.3 The following implications hold:

(i) XisaC,-space = X is a G-space =X is a W-space.

(ii) XisaC;-space =X is a GW-space =X is a W -space.

(See [26, Theorem 2.2] and [20, Theorem 1.9] for (i); [12} Remark (4), p. 616] for
(ii).)

The complex projective space CP* is a GW-space [12}, Theorem 1] such that
cat(CP®) = 3, but it is not a C-space for any k (Example 5.7). We note that CP3
is not a G-space [20, Remark 3.4].

If p > 2, then L3(p) is a G-space, but it is not a Cy-space for any k > 2 (see
Example and Theorem [5.13]).
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Proposition 5.4 Assume that X is a 1-connected space.

(i) X isa G-space = X is a rational H-space.

(ii) Ifk > 1, then the rationalization of any Ty-space (and hence any Ci-space) is an
H-space.

Proof (i) is obtained by Haslam [7] (see also [13} Theorem 3.4]). (ii) is a direct
consequence of (i). [ |

Example 5.5 Itisknown that H-spaces, T-spaces, and GW -spaces are equivalent in

the class of spaces of L-S category < 1 (see Propositions[2.4], 5.Tland the definition of

the GW -space). Then the following results hold by Proposition[3.4(v) and Theorem

[43(ii).

(i) S',S%,and 7 are H-spaces and hence Cy-spaces for any k > 1.

(i) fl1 < n<ooandn # 1,3,7, then S" is not an H-space and hence an NC-
space, since cat S” = 1.

In the following argument we consider projective spaces RP", CP", and lens spaces
L"(p) (p > 2); however, the cases RP>°, CP*°, and L*°(p) are not referred to, since
they are H-spaces and hence Cy-spaces for any 1 < k < oo.

Example 5.6 1f1 < n < coand n # 1, 3,7, then the real projective space RP" is
an NC-space by Example[5.5(ii)and Theorem 4101 However, RP!, RP?, and RP” are
H-spaces and hence Cy-spaces for any 1 < k < oo.

Example 5.7 If a 1-connected space X is not a rational H-space, then X is an NC-
space by Proposition[5.4l For 1 < n < oo, the complex projective space CP" is not a
rational H-space, and hence it is an NC-space.

Let $*"*! be the unit sphere in the (1 + 1)-dimensional complex vector space C"*!
(n > 1). Let w be the p-th root of unity (p > 2). Then the group I' generated by
w acts on S by w - (20,21, ...,2,) = (wzp,wz1,...,wz,). Let the lens space be
L¥*1(p) = $>"*1 /T, the quotient space of S*"*! by I. See [24, Example 3, p. 91].

Proposition 5.8 ([24, Theorem (7.9), Chapter II]) Let p be an odd prime.

H*(L*"*(p);2/p) = //\(xl) @ {2/p [x]/(5™)},
Z/p

where x; € H' (L*"*!(p); Z/p) and x, = Brx1 € H2(L*" Y (p); 7./ p).

Proposition 5.9 Let p be a prime.

(i) If2n+1 3,7, then L*"*(p) is not a G-space.
(i) If2n+1 +# 3,7, then L***'(p) is a NC-space.

Proof (i) If L*"*!(p) is a G-space, then S*"*! is a G-space [6, Theorem 2.2].
(ii) If L*"*1(p) is a Cx-space, then S*"*! is a Cy-space by Theorem £.10l [ |
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Let us recall that L3(p) is a G-space by [[15, Corollary I1.10], since > = Sp(1) is
a Lie group. For general L*"*1(p), we only know that m,(L*"*1(p)) = G,(L*"*(p))
by [2, Theorem] or [19, Theorem A]. See also [4, Theorems I1.4, I1.5] and [5} The-
orem 6.2]. However, for L*(p), we obtain the result using an argument similar to
[15], including a proof for the fundamental group that is simpler than [2}[19] in this
particular case.

Example 5.10 L*(p)is a G-space for any p > 2.

Actually, we can show the result in this way. Assume that m(L*(p)) = Z/p is
generated by the inclusion map a: S! < L3(p), which has a lift &: [0, 1] — $° such
that @(0) = 1, &(1) = £ and m 0 & = v o w, where 7: $> — L3(p) is the canonical
projection taking the orbit space by the action of (¢ | £P) 22 7Z/p a subgroup of a Lie
group S°, and where w: [0, 1] — S! is the standard identification map. Since S° is a
Lie group, there is an associative unital multiplication p: §> x §* — §° that defines a
map f:[0,1] x$* = S by f = po (& x 1). Then f induces a map f of orbit spaces
by the action of Z/ p, since f(1,£-x) = a(1)-&-x = £-£-x = €+ .x = €71 (0, x):

f a
[0,1] x §° s? [0,1]
\L WX l s l w
f a
St x L3(p) L3 (p) st
U /
(@1
StV I3(p),

Thus a € G;(L*(p)) and hence G, (L*(p)) = m;(L*(p)). Since the universal cover of
L*(p) is S°, which is a Lie group, we see that the projection 7: S> — L*(p) is a cyclic
map, and hence G, (L*(p)) = m,(L*(p)) for n > 2. It follows that L*(p) is a G-space.

To examine the existence of a Cy-structure on L*(p), we need the following lemma
for a space X using observations on X2X.

Lemma 5.11 Let X be a 0-connected CW-complex whose universal cover X satisfies
that QX has the homotopy type of a wedge sum of spheres. Then X is a C,-space if and
only if X is a G-space.

Proof Since QX ~ m,(X) x QX, we have

YOX~( ) SHVEQXV( V  SiAQX),
0£AEm (X) 0ANET (X)

which has the homotopy type of a wedge of spheres. Thus we have the lemma. H

Proposition 5.12 L*(p) isa C,-space for any p > 2.
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Proof By Example[5.10]and Lemma[5.11] we have the result. [ |

Theorem 5.13 L*(p) is a Cy-space if and only if p = 2.

Remark When p = 2, thelens space L*(2) (= RP? =2 SO(3)) is actually an H-space
(see [12, Remark (1), p. 616]), and hence a Cy-space for any k.

Proof of Theorem[5.13] By Proposition we know that L*(p) is a C;-space. We
also know that I*(2) = RP®> = SO(3) is a Lie group. So we are left to show that L*(p)
is not a C,-space when p # 2. If L*(p) is a C,-space, then there is a map

m: PHQL(p)) x L*(p) — L*(p)

whose axes are eés(p) : P2(QL*(p)) — L*(p) and the identity of L*(p).
Let L*(p)® = S!Ue, be the 2-skeleton of L*(p) = S'Ue,Ue,. Then there is a map

s;: L(p)® — P2(QL(p)@) C PHQL*(p)) such that eE(P) 085y ~ iy: I3(p)?® —
L3(p) is the canonical inclusion. On the other hand, we have

H*(L*(p); 7/ p) = //\(xl) ®{Z/plx]/(3)}
2/p

= H (L (p)?32/p) @ 2/ p{xix,},  keriy = 7/p{xix,},

where x; is in H'(L*(p)®;2/p) C H'(L*(p);Z/p) with a Bockstein relation 3,x; =

x,. Thus (eés(m)*x,' # 0fori=1,2,since ef(p) 08y ~ 1.

Now let h: P?(QL%(p)) A L*(p) — SL3(p) be the Hopf construction of the map
m: PH(QL*(p)) x L*(p) — L3(p), and let C;, be the mapping cone of h. Then the
connecting homomorphism

§: H (SPX(QL(p)) A L*(p); 2/ p) — H*(Ci; 2/ p)

is an isomorphism, since H1(XL*(p);Z/p) = 0 for q > 5. Thus we have

H%(Cy; 2/ p) =
H*(P(QL(p)) AL (p);2/p) D HX(L*(p)?;2/p) @ H*(L*(p); 2/ p).

Let s*: H*(XX) — H"~!(X) be the suspension homomorphism (n > 1). For di-
mensional reasons, we know that x; and x; are primitive with respect to m, and hence
s*7Lx; lies in the image of the restriction H'"!(Cy,; Z/p) — H"N/(SL3(p); Z/p), say
Yirllsp(p) = s*71x; for i = 1,2. Then by [22} Corollary 1.4(a)], we know

y§ = +5(s" " (x, ® x3)) # 0,

while we know that y3 = —y3 and hence 2y3 = 0. Thus we have p = 2. [

Making use of the classification of GW -spaces of type (g, n, m) in [12} Theorem 1],
the following result is proved.
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Theorem 5.14 Let X be a Cy-space for some k > 1 with at most three cells (other than
the base point 0-cell). Then X has the homotopy type of one of the spaces in the following
list.

(i) X =S8 5 ortheir products; otherwise;

(ii) Ifm (X) is a non-zero finite group, then X = L*(p, {) for an integer p > 2, where
{ is a unit of the quotient ring Zm /(1 + T + - - - + TP ™) of the group ring Zx for
thegroupm = (1| 7P = 1) 2 7/ p;

(iii) Ifm(X) = 0, then X = SU(3) or Ex, (k # 2 mod 4); in the latter case Ey,, is an
H-space.

Proof Since a Ci-space for some k > 1 is a T-space and hence a GW -space, we can
examine the GW -spaces with up to 3 cells listed in Theorem 1 of [12]]. However, CP?
in the theorem is an NC-space by Example[5.7] and hence the result follows. ]

Remark 5.15 In view of Theorem [5.14] we see that any real, complex or quater-
nionic Stiefel manifold of 2-frames is an NC-space unless it is an H-space. We note
that a Stiefel manifold is an H-space if and only if it is a Lie group or S7, by [8, Theo-
rems 1.1, 1.2] and [[9} Corollary 0.6].
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