METACYCLIC INVARIANTS OF KNOTS AND LINKS: CORRIGENDUM

STEVEN W. REYNER

Theorem 1 of [1] is incomplete due to the fact that there are representations into Γ_p which are neither onto nor cyclic. For example, if G is the group $\pi_1(S^3 - 4_1)$, the group of the four knot, and $\Delta(t)$ is its Alexander polynomial, then $\Delta(t) = 1 - 3t + t^2$. Since 5 divides $\Delta(2^2)$, Theorem 1 of [1] states that there is a representation of G onto Γ_5 . However, there is no representation onto Γ_5 ; there is a representation onto the subgroup, the dihedral group of order 10.

We use the notation of [1] throughout. To correctly state the theorem, we need the following definition: a representation ρ of G into Γ_p is non-cyclic if $\rho(G)$ is not cyclic. The corrected theorem is now:

THEOREM 1. G can be non-cyclicly represented into Γ_p if and only if the odd prime p divides $\Delta(q^{b_1}, \ldots, q^{b_u})$ for some b. The number of inequivalent representations is equal to

$$\sum_{b} \frac{p^{d(b)}-1}{p-1},$$

where d(b) is the largest integer d such that p divides $E_d(q^{b_1}, \ldots, q^{b_u})$. Furthermore, the index of the image of G in Γ_p is the greatest common divisor of b_1, \ldots, b_u , and p-1.

Proof. Fox [1] actually proved the corrected theorem except for the last (added) property. If $\rho: x_j \to \omega^{a_j} \xi^{b_e(j)}$ represents G non-cyclicly into $\Gamma_p = |\omega, \xi: \omega^p, \xi^{p-1}, \xi \omega \xi^{-1} \omega^{-q}|$, then for some distinct integers i and j, $(q-1)a_i: q^{b_e(i)} - 1$ and $(q-1)a_j: q^{b_e(j)} - 1$ are not equal and

$$\left[\omega^{a_{i}}\xi^{b_{e(i)}},\,\omega^{a_{i}}\xi^{b_{e(i)}}\right]\,=\,\omega^{a_{i}(1-q^{b_{e(i)}})-a_{i}(1-q^{b_{e(i)}})}$$

is a power of ω distinct from the identity. Consequently:

- (1) $\rho(G)$ is generated by ω and $\xi^{b_e(k)}$, for $k = 1, \ldots, u$;
- (2) the index of $\rho(G)$ in Γ_p equals the index of the group generated by $\xi^{b_{\ell}(k)}$, $k = 1, \ldots, u$ in the cyclic group generated by ξ ; and
- (3) this index is just the greatest common divisor of $b_{e(1)}, \ldots, b_{e(u)}$, and p-1, as claimed.

Received May 26, 1972 and in revised form, September 20, 1972.

Although some representations may be of different index than others, each subgroup of G determined by a non-cyclic representation into Γ_p will have index p in G.

Reference

1. R. H. Fox, Metacyclic invariants of knots and links, Can. J. of Math. 22 (1970), 193-201.

State University of New York College, Oswego, New York