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1. Preliminaries 

In this paper we will study analytic solutions to the linear functional 
equation 

«( / (*))֊*·?(*)=*(*) 
where / and h are given functions, a; is a given complex number and the 
function g is to be found. This is a generalization of Schroder's functional 
equation. The results obtained are global in nature and the solutions 
holomorphic. The equation will be viewed from the standpoint of linear 
operator theory. When studied in this manner one arrives at a general 
operator inversion formula. 

If U be a plane domain whose boundary contains at least two members, 
§([/) will denote the linear topological space of functions holomorphic 
on U with the topology of continuous convergence. ® (U) will be the group 
of conformal homeomorphisms of U onto U and 3(U) will be the semi­
group (under composition) of members of § which have values in U. We 
reserve the letters /, g, h, q, and s for functions. Juxtaposition of these 
symbols indicates composition of functions; g • f means multiplication. 
By fz we mean the value of the function / at the complex number z. Fol­
lowing K. Menger [1] we give a name to the identity function, i.e. by the 
function j we mean that function defined by jz = z for each complex 
number z. We reserve the symbol L to stand for an operator and L° to 
stand for the identity operator. We will be indiscriminate and use the 
remaining letters to stand for constant functions or the corresponding 
complex numbers. If x is the constant function of value x by x · L we 
mean the operator which yields the function x · Lf for each function /. 

With each function / e 3 we associate the translation operator Lf which 
takes a function ge£) into Lg = gj e § . Because of the properties of right 
substitution each operator L is linear. In operator notation we will solve 

(L-x • L°)g = h 
for g by interpolating on the set S(L), the discrete spectrum of L. 

1 THIS PAPER FORMS PART OF A THESIS WRITTEN UNDER THE DIRECTION OF PROF. M. MCKIERNAN. 
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[2] Series solution of a functional equation 49 

2 . The operator inversion 

THEOREM 1. Let f e 3—% and suppose there is an a eU such that fa = a^ 
Then S(Lf) = {1, c, c2, · · ·} where c ֊ Dfa, the derivative of f at a. If x $ S 
(the closure of S) the linear operator (L—x · £°) can be uniquely inverted 
over in the form 

L° (L-L°) (L֊L°)(L֊cL°) 
~ (x֊l) " (x֊l)(x-c) " (x-l)(x-c)(x-c*) '"' 

The combined results of M. Heins [2] for multiply-connected and 
A. Denjoy and J. Wolff for simply-connected domains [2] implies that 
|c| < 1 and the sequence of iterates of / converges in the topology of § 
to the constant function of value a. We first prove 

LEMMA 1. Let f e 8—® with fa — aeU and h e § with x ^ 0. If g is 
regular at z = a and in a neighbourhood of z = a satisfies (L—x · L°)g = h 
then g can be continued analytically throughout U and (L—x · L°)g -- h holds 
on U. 

PROOF. If deU there is a domain NadCU whose closure is compact 
in U and which contains both a and d. Suppose that h e |> and that g is 
regular on a neighborhood NaCU of z = a with (L—x • L°)g = h. We 
define the natural iterates of / recursively f0 = j , ft = f, fn+1 = ff„, 
n — 1, 2, · · ·. There is a positive integer k such that f^N^) CNa because 
of the uniform convergence of the sequence {fr} on the closure of N^. Put 
Ux = f(Nad), U2 = f(Uy), etc. These are all domains containing the point 
z = a. On Uk_t put gt^ = (gf—h)/x; since fz e Uk for z e Uk_x this is well 
defined. On C7t_2 put gk_2 = (gk-if—h)/x, etc. until the original regular 
element is extended to all of Nai. As d e U was arbitrary and each extension 
is a bona fide analytic continuation the result is analytic on U and satisfies 
thereon (L—x • L°)g = h. 

To proceed with the proof of theorem 1 we first suppose that c ^ 0. 
The results on the solutions to Schroder's functional equation (c.f. Fatou 
[3], Ch. 2) imply that S = {1, c, c2, · · ·}, i.e. there is no function g e & 
(in fact no function regular at z = a) for which (L—x · L°)g — 0 save for 
g = 0 unless x has one of the values 1, c, c2, · · ·. Furthermore, there exists 
a unique function s e § with the properties that (L—c · L°)s = 0, sa = 0 
and Dsa = 1. If x — cr then every solution to (L—x • L°)g = 0 in § is a 
constant function times sr, i.e. the corresponding space of characteristic 
functions is spanned by the r-th. power of the function s. 

Put p0 = 1, pn = (/—c"-1) · pn_1։ n = 1, 2, · · ·. Then the operators 
pnL satisfy L(pnL)—cn · pnL = pn+1L; using this formula it is a straight­
forward matter to show that the series (1) applied to h formally satisfies 
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the equation (L֊x · L°)g — h, and this depends only on the fact that the 
series converges for hz and hfz. We show that in fact (1) applied to any 
h e § gives rise to a series which converges absolutely and uniformly on 
a neighborhood of z = a in U. Since h e § means h is regular at z = a and 
£>s# = 1 means s is locally invertible at z = a, hs*1 is regular at z = 0 = sa, 
(where s ֊ 1 represents the local inverse to s at zero). We can then say that 
h = br · sr where the bT are uniquely determined by h. Near z = a 
we have 

CO 
(2) * „ - * ( * ) = _ * „ * * . & , . ( » ) * 

since />mcn = 0 for n <. m. Also for k ՝2^n 

^c '+ ' /^c* = c" · (1—c-*-1)/^—c"-*-1) 
means 

\i>nc^lpnc"\ = |(W+i)/<l֊ c *+i֊»)| 
^ (l + | c | ) / ( l - | e | ) 

since 0 < |c| < 1. Using this and (2) we have 
oo 

\pnLh(z)\ ^ |0„c"| · |s*|" · 2 · {(l + |c|) · \sz\l(l-\c\)}*֊». 

But since sa = 0 the series 

!|6»KI»|- (l-r|c|)/(l-|c|)}» 
is bounded uniformly in 2 near z = a by Af say. Thus 

|#.£A(z)| <: \puc՝\ • { ( l - | c | ) / ( l+ |c | ) }" • M 
and 

\pnLh(z)lpn+1x\ ^ \p„c՝lpn+lx\ · ( ( l - | c | ) / ( l + |c|))"-M. 
Now if x $ 8 we can show j^>„+1~| ^ | x | n + 1 · Af' > 0, Af' independent of n. 
For 

\Pn+i*\ = N^-lIl l-C-ar-i l 

and since the product H~0 |1—cr · x_1\ is absolutely convergent hence 
non-null and bounded away from zero the assertion follows. Further, 

n 

\pncn\ — |c|"<—»/* · TJ I1— C| < lei"'"-1'/2
 · Af" 

Af" independent of « since the product H~i|l—C| is absolutely con­
vergent. Collecting these parts 
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(3) 
< |e|»(»-i)/2. M 

\x\n+1 · M' 
n 

l֊\c\ 
l + \c\ 

Mt independent of n and z for z sufficiently near to z = a. As |c| < 1, 
from and after some value of n the quantity ((1 —|c|) · |c| ( B~1 > / 2)/((l + |cl) · |*|) 
is less than one. Summing (3) on n, the right hand sum is dominated by 
a convergent geometric series, hence (1) applied to h converges absolutely 
and uniformly on a sufficiently small neighborhood of z = a. 

We have thus generated a local regular (at a) solution to the equation 
(L—x · L°)g — h for x $8 and A e § . Lemma 1 implies that g is analytic 
on U and if U be simply connected we know g e £>. But even if U not have 
connectivity one, g is still holomorphic on U. For let ga be the regular element 
of the analytic g generated by (1). Suppose that for some ¿ £ ¡ 7 the process 
in lemma 1 applied to ga leads to more than one regular element of g 
above d. Let gd and g* represent these two elements of g. By our assumption 
both must satisfy (L—x · L°)g = h near z = d, i.e. gf—x · g = h. Then 
the difference g* = gd—g* is regular at z = d and can be continued through­
out U. Also, since h is holomorphic g*f—x · g* = 0 near z = d and this 
must hold throughout U for any continuation of g* and g*f since / is holo­
morphic on U. But then the continuation of g* to z = a implies a regular 
solution to (L—x · L°)g* = 0 at z = a. As x 4 S this can only be the zero 
function. Thus g* is the sero function on all of U and This reasoning 
is, of course, false if x £ S; and even if there is a local solution to (L—x • L°)g 
= h for x e S it will generally not be holomorphic on U as is evidenced 
say by x = 0. This completes the proof of theorem 1 for the case c ^= 0. 

If c = Dfa = 0 the function / has the form near a 

with ak ^ 0, where k is an integer exceeding one (we assume / is not a 
constant function). We easily verify that the only solutions g to 
(L—x • L°)g = 0 with g ^ 0 and g e § occur when x — 1. The functions g 
corresponding to x = 1 are all constant. In this situation we use the solutions 
to Bottcher's functional equation (see e.g. Fatou [3], Ch. 2). There is a 
function q e § with the properties; qa = 0, Dqa ^ 0, and qf = q*. Further­
more, the only other functions satisfying all of these conditions have the 
form co · q where co is a (k— l)st root of unity. Noticing that q is locally 
invertible at z = a we see that for h e § we have, near z — a 

00 

« + !«»· (ƒ-*)· 

oo 
h = 2br-f. r=0 
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The interpolation polynomials pn+1 become (j—l)՝jn and pn+lL is 
Ln+1֊L", as c = 0. We find 

CO 00 

(I" + 1 ֊i")/ i = 2 br • (L-+i ? ) '֊ 2 6, · 
R=0 R=0 

= (60+6i · ?*<"+1> + · · •)֊(b0+b1 · · ·') 
= < T * - ( & 1 · < ? * + · · · ) ֊ ? " * · ( & ! + · · · ) · 

Thus \Ln+1hz—Lnhz\ ^ | · M where Af is independent of z and « 
if z be sufficiently near A . Now we get 

(L»+i-L«)hz 
(x-1) rn+l 

(qz)nk-M (qzY 
(x-1) -x^1 X 

M'. 

As qa = 0 and k 2, for z near enough to A we have |(J2)*/a;| < u < 1 
where we suppose that a; is not zero or one. Thus 

(4) 
I (Ln^-Ln)hz 

(x-1) rn+l 
< M » · M'. 

Summing (4) on » we obtain a dominant geometric series on the right, 
proving that for x ^ 0 or 1 and h e § the series (1) converges absolutely 
and uniformly near z = a. We obtain then a local solution to (L—x · L°)g = h. 
Again, lemma 1 insures that g is analytic on U and satisfies (L—x · L°)g = h 
and precisely the same reasoning as in the case c ^ 0 allows us to conclude 
that g e |) whatever the connectivity of U provided only that x ^ 0 or 1. 
This completes the proof of theorem 1. 

The class of functions § in theorem 1 can be enlarged to the class 3JI 
of functions meromorphic on U provided we restrict c = Dfa to be non­
zero. If / e 3f֊© and fa = a e U with c = Dfa # 0 then on2Jt, S(Lf) = { C } ^ 
and as before each characteristic space is spanned by s r where s is the 
principal solution to Schroder's equation. Let Mr C 3R be the class of functions 
meromorphic on U which have a pole of order no greater than r at z = A . 
If h e 3Rr and we wish to solve gf—x · g = h we use the standard procedure 
and multiply through by cr · sr = (sf)r = (Ls)r. Then 

(5) 

Putting g* = g • 

cr · sT · gf—X · cT · g • sr = h · sr · cr. 

h* = h • sr · cr we get from (5) 

g*f—x • cr • g* = h* = (L—x · c' · L°)g*. 

But now h* is regular at z = A . Our results in theorem 1 give for 
x · cr # 0, 1, c, · · · 

h* h*f-h* 

https://doi.org/10.1017/S1446788700025854 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025854


[6] Series solution of a functional equation 53 

But in terms of g and h (6) becomes 

I L° (L—c-'-L0) ) 
(7) g — — — • H 1 \ h. 

To extend our local polar element to a member of 3R we need a lemma. 

Lemma 2. Suppose / e3—© røjVA fa = a e U and that ZCU is isolated 
in U. Put Z0 = Z and Zn = f-x[Zn_{\ nU, n = 1, 2, · · • and Z* = (JS° 
Then U—Z* = U* is a domain with the property that f[U*] CU*. 

Proof. U* has the property that f[U*] C U*, for if z e U* with fz $ U* 
then fz e Z* but this in turn means z e Z* which we assumed was not the 
case. Each Zn has no limit points in U; for suppose the assertion holds for 
some n 25 0. We show it holds for « + l . If t e Zn+1 is a limit point of Zn+1 

in U there is a sequence {tk} C Z n + 1 such that tk^-t eU. But then ֊> ft 
and since / ^ 6 Zn, fteU. This is impossible unless ftk = for all k from 
and after some value. But unless the points tk are themselves identical 
from and after some point this is impossible because there is a neighborhood 
of t in which / never again assumes the value ft. Therefore, each Z„ has 
limit points belonging exclusively to the frontier of U. This implies that 
if t e U is a limit point of Z* then any neighborhood of t must intersect 
infinitely many of the sets Z„. Now suppose t e U is a limit point of Z*. 
Then there is a sequence of disks Xx D X2 D X3 D · · · in U, centers t with 
diameters contracting to zero and there is a point in X1։ tn^ e Zn^t tn^ t 
for some nx. By the previous, in X2 there is a point t„։ e Z„։ with nt < n2. 
We continue in this fashion determining a sequence of distinct points 
{t*)> ni < N 2 < ns < - ' · converging to teU. As t„t e Z„k, fnitnt eZ0, 
k = 1, 2, • · ·. As {/,} converges continuously to z = a on U, ֊> a. 
This is a contradiction for then Z0 itself would have a limit point in U. 
This proves U* is open. It is connected since Z* is isolated in U. 

We identify Z in lemma 2 with the poles of h* (this does not include 
z — a as Å* is regular there). On L7*, h* is holomorphic. We can apply lemma 
1 as f[U*] C U* and fa — a e U*, to guarantee that g* is holomorphic 
on U*. Thus g is meromorphic on U having possible poles on the complete 
/-inverse image of the set of poles of h. 

Theorem 2. Let f e 3—® with fa = aeU and c — Bf a 0. Then 
S(Lf) = {c1-}™«, on the field W. If 3Kr is the class of functions having a pole of 
at most order r at z = a and meromorphic on U, then x $ {0, c~r, c~r+1, · · ·} 
means (L—x · L°) is uniquely invertible on ՝SRr as 
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54 W. Pranger m 
3. Discussion and applications 

The assumptions concerning the function / in theorem 1 are natural 
as the work of M. Heins [2] shows; for fz = z has at most one solution 
if / e Of, / ^ 7՛. If / has no fixed point in U the derived set of {/r} constitutes 
a class of constant functions whose values belong to the boundary of U 
and form a continuum there. In this case the discussion of the operator 
(L֊x · L°) is difficult, though one can show that in many instances (1) 
provides a solution to (L—x · L°)g = h. For example if U is the right half-
plane and / is / + 1 then Lg — g(j'+l) and we are dealing with the finite 
difference situation. Formula (1) is well known in this instance. 

It is interesting that the analogue of theorem 2 for c = 0 does not 
arise; a fact one readily deduces by taking U as the unit disk |z| < 1, 
/ = f, h = l/j and the equation (L—x · L°)g = Ijj = gf—x · g. In fact 
there is no regular or polar element at a — 0 satisfying this equation. 
Moreover, any further extension of theorems 1 and 2 to a still larger class 
of functions must of necessity be of a different character from the results 
herein stated. For Pincherle (see e.g. Walsh [4]) has shown that if 0 < c < 1 
there is, for any complex number ljx a function g* meromorphic on the 
plane punctured at z = 0 and satisfying 

g*(jlc)-llx-g* = 0. 

One has some degree of liberty in specifying the zeros and poles of g* 
which makes it useful. If the function s is the basic Schroder function for 
/ with c = Dfa, fa = a; we have, upon setting g = g*s 

if = S*sf = g*(c- s) = x- g*s = x- g 
or 

gf-x • g = 0 = (L-x • L°)g. 

As g* is meromorphic on the plane punctured at zero g is meromorphic 
on a disk punctured at z = a. This shows that when the value of the derivative 
at the fixed point is real and positive the spectrum of the translation 
operator Lf associated with the function / will include every complex number 
if we allow the class of functions acted on by Lt to have arbitrary behavior 
at z — a, i.e. if we allow arbitrary isolated singular points. 

It is worth noting that even for x = 0, (1) provides a local solution 
to gf = h (for c T£ 0), i.e. essentially inverts / locally, concerning this see 
the recent paper of M. McKiernan [7]. Also, we may mention some facts 
concerning the case xeS(L) relative to theorem 1. 

THEOREM 3. Let f e $—® with fa = aeU. 
a) If c = Dfa 0 with x = cm for m a non-negative integer and, h e §, 

there is no solution g to (L֊x · L°)g = h regular at z — a unless bm — 0 
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[8] Series solution of a functional equation 55 
in the expansion h = ՝^br · sT where s is the unique function satisfying 
(L—c · La)s = 0, sa = 0, Dsa = 1. If bm = 0 there is a function g satisfying 
(L֊x • L°)g = h and analytic on U. Any two regular elements satisfying this 
equation at z = a differ by a function of the form b · sm, b a constant function. 

b) If c = 0 and x = 1, there is no solution to (L—L°)g = h regular 
atz = a unless br = 0 for r = 0 (mod k), r 0 in the expansion h = 2 &r · qr 

where q is one of the functions satisfying qf = qk, qa = 0, Dqa ^ 0 and 
f = a + ՝£!?=k an • (ƒ—«)", ak 0, k 2: 2. If these conditions are met there 
is a solution g to (L—L°)g = h analytic on U. Any two regular elements 
of g satisfying the equation at z = a differ by a constant function. 

If U is the unit disk about the origin and / = j% with h = j then theorem 
1 implies there exists a unique function g regular on \z\ < 1 with 
gj2—x · g = j (we take x > 1). This is Weierstrasses example of a function 
not continuable beyond the rim |̂ r| = 1 and a very rapid way of verifying 
this is by using the functional equation itself. The function g is continuous 
on U. If we put u(6) = Re {g(ei'0)) the function u is Weierstrasses example 
of a continuous, real-valued, nowhere differentiable function. This function 
satisfies the system 

M(2 · j)֊x · u = cos 
w(/-f-2 · n)—u ֊ 0, 

both examples of the general equation herein studied. G. Julia [5] has 
given a general theorem concerning the existence of non-continuable 
solutions to gf—x · g = h for rational functions / and the role of the same 
equation in constructing non-differentiable continuous functions is em­
phasized in the work of G. de Rham [6]. 
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