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THE BP-COACTION FOR PROJECTIVE SPACES
DONALD M. DAVIS

1. Introduction. The Brown-Peterson spectrum B P has been used recently
to establish some new information about the stable homotopy groups of
spheres [9; 11]. The best results have been achieved by using the associated
homology theory BP4( ), the Hopf algebra BP,(BP), and the Adams-
Novikov spectral sequence

Extpp,pp(BPs, BPy(X)) = 4’ (X) .

A knowledge of the stable homotopy groups of stunted real projective spaces
P, = RP*/RP"!is useful in studying the problem of immersing manifolds in
Euclidean space [7]. One might hope that computing these groups via the
BP-Adams-Novikov spectral sequence would provide insight which the classical
Adams spectral sequence has missed (e.g. some elements have lower filtration).

As a first step in this program, we compute BP,(P,) and the coaction
BP4(P,) = BPy(BP) ® pp, BP«(P,). In order to state our main result, we
recall [3; 8] that BPy = BP4(pt) = 74 (BP) = Z(»)[v1, vs, . ..] and BPy (BP) ~
BPy[t, s, . . .], where v; and ¢; both have degree 2(2! — 1). We use only the
Brown-Peterson spectrum associated to the prime 2 [3; 6].

1.1 THEOREM. i) For 1 = n there are elements v; € BP3yp1(Poyy1) Such that
there 1s an isomorphism of ZL(s)[vs, vs, . . .J-modules

BP*(P2n+1) ~ Z(?)[’Um V3, - . ] (Yo Ynt+1y - - D/ @2F 1y ).
ii) The coaction
¥ : BPy (P2n+1) — BPy (BP) ® Bp, BPy (P2n+1)

s given by

i
V(yy) = Z; (S])(i—j) ® v
=

where
a) if T is a graded expression (such as S?), T'w denotes the component of T of
degree 2k,
b) S7 s the jth power of S =1 + S1 + Sa 4+ .. ., where

Sk_k-l-l((;)Nv) w'
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c) N, € BP,,(BP) is defined inductively by

2f
2a 92a+b +1
% i = 5 ml T v
a,b 720 v20

where x 1s an indeterminate, and
d) m, € meen_1y(BP) ® Q is related to v, by

n—1
iy
Uy = 2, — Z Ui My
i=1

Thus the first few nonzero groups of BPy(Pa,y1) are BPoyi1(Pogi1) = Zo,
BP2n+3(P2,L+1) = Z4, BP2n+5(_P2n+]) = Zg, and BPQ,L+7(P2”+1) = Z16 @ Zg, \Vit]l
99y, generating the latter Z,-summand. The formula for the coaction is ex-
tremely complicated. The first few terms are

V(i) =1@vi— (- 1D ®ve1+ ((2(i -2) + (i ; 2) Y

+ (- 2)‘01t1) ® vi—2 — ((1 g 3)1513
+ (1 - 3)((21. - 3)t13 + (1 + 1)7)1t12 + ﬂlzfx + fz)) vis+ ...

In Section 3 we use this coaction (in P,_,) to prove that if S* has 4 inde-
pendent vector fields, then n = 7(8). This is of course a very elementary result
which was known long before Adams’ solution of the vector field problem [2].
However it illustrates with a minimum of computation the application of
coalgebraic methods (and particularly BP,) to geometric questions. The
author has proved by similar methods the known result that if S” has 10
independent vector fields, then n = 31(32), but the calculations involved are
extraordinarily tedious.

Theorem 1.1 is not quite complete in that it does not give the action of
v1 € BP, onour generators of BP4(P2,.1). (In order to use the coaction formula
we must know the structure of BP4(Ps,y1) as a BPg-module.) Some partial
information, sufficient for our application to vector fields, is given in Theorem
2.5. We conjecture that

[log2 (i—n+2)]
VYe = —2Y41 — 2, Ui eren Vi
=
Theorem 1.1 (i) is a straightforward Adams spectral sequence computation,
while Theorem 1.1 (ii) follows from Adams' formula [3] for the M U-coaction in
CP? using the Spanier-Whitehead dual of the canonical map RP” — CP®.
Thus the methods are not new, and indeed the result may be known to a few
specialists. The thrust of the paper is to stimulate applications of BP in new
directions. The author wishes to thank Haynes Miller and Steve Wilson for
introducing him to BP and answering a few questions. After this paper had
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been written, the author was told that BP4(P;) was computed in Ming’s
thesis [10].

2. Proof of Theorem 1.1. In this section we prove the analogues of Theorem
1.1 for Pytyy = RP?™/RP™ and Pl Theorem 1.1 is obtained by letting
m = o0 in Payr.

Brown and Peterson [6] showed that

H*(BP; Z,) ~//(Sq!) = /I = o/ //E.
Here (Sq!) denotes the 2-sided ideal generated by Sq?, I denotes the left ideal
generated by Milnor basis elements £,°, #y0,..., and E the primitively
generated exterior subHopf algebra of &/ generated by £,°, &,°, . .. Thus by
the change-of-rings theorem, for any space X, Exty, (X A BP) = Extg(X).
Here and throughout the paper we abbreviate Ext, (H* (X ; Z,), Z2) to Ext, (X),
where A = E or &. In particular

Exty, (BP) = Extg(Z,, Zs) = Zo[xo, x1, %2, . . .],
where x; € Extg!'?"'=1(Z,y, Z,).
2.1 ProposITION. In H*(RP®; Zy) ~ Zsla], P L(a?) = jal+?¥-1,
Proof. Write 22 = Y ;a ;Sq!, where Sq’ are admissible (Adem) monomials
of degree 2° — 1 and «; € Z,. Applying &; shows a1 92 ., 21y = 1. But
Sq2™ ... Sq?Sq! is the only admissible monomial of degree 2¢ — 1 which can

be nonzero on a 1-dimensional class. Therefore, & la = a?.
Assume the Proposition proved for j — 1. Since & 0 is primitive

PLa?) =P ) Va+ ot U P L)
= (J — l)a”?i—l + adtei-1 = ja"+2‘—1.

2.2 LEMMA. Suppose B is a subalgebra of A such that A 1s a free B-module on
generators of degree 0 and d. Suppose M s a bounded-below A-module such that
Extp® (M, Z;) = 0 whenever t — s 1s odd. Then there is an isomorphism of
Z,[x]-modules

Ext ** (M, Zs) = Zs[x] ® Extp** (M, Z,), where x € Ext,V*(Zs, Z,).
Proof. We use the exact sequence of [4, 3.2]:
— Ext "M, Zy) 5 Ext, (M, Zy) — Exty" (M, Z,)
— Ext, "M, Z,).

We first note that Ext,®'(M, Z;) = 0 when ¢ — s is odd, for the first such
nonzero element would have to induce an element in Extg® *(M, Zs), where
none exists. Thus the exact sequence above is in fact short exact. This implies
that Ext,*'(M, Z,) contains a subset .S which maps isomorphically onto
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Extg®'(M, Z,), and
S®xS® xS @ ... C Ext,>'(M, Z,).

To show the inclusion is actually equality, consider the smallest degree element
not in the sum and use the exact sequence to find one of smaller degree.

2.3 CorOLLARY. Extg** (P§T+1) 1s @ free ZLo[x1, X2, . . .]-moedule on generators
2m
)

Znr Ently -+ -« Em—1, Where g € Extg® 21 (Poyi1).

Proof. E may be constructed by adding one generator & at a time, and
Lemma 2.2 may be applied. The induction is begun by noting that if &/ is the
subalgebra of &7 generated by Z,°, then

s=0t=2r4+1,n=1<m

Z,
Ext, * = .
o (P'y) = { otherwise.

2.4 THEOREM. A's a module over Ext g** (Zs, Z), Extg** (Piry1) is generated
by the elements g, of 2.3 with the only relations being consequences of

[log2 (1—n+1)]
R,:0 = E Xyg—2V4+1, N

=0

IA

1 < m.

Proof. That R; is a relation follows readily from the cobar resolution [1]. To
see this, let Hy = Hy (Pé;"+1) and let E4 denote the dual of E. E, is a primi-
tively generated exterior algebra on classes £; of degree 2¢ — 1. Let £, = E/E,.
EXtE (P2;L+1) is ker dg/lm dl n

d1 = ds
H*#E*@H*Q’E*®b*®H*v

where
[log2(2i—2n)]
d1(Gai—1) = 0, di(@y) = > £ @ A2i—2via,
v=1

and da(¢; ® Q) = ¢ @ did;.

Then x,_1g;—9»1,1 corresponds to £, ® &2;—2743, s0 that the relation R, is due to
d1(Qarye).
That these are the only relations follows by induction from the exact sequence

1 pai X
— Extp,’ bt +1(P2n+l ! EthmS t(P2n+1
— Extg,,” t(-P2n+l> e
where E, is the exterior algebra generated by &°, ..., % 0.

Since Extds"(Pglﬂ.l A BP) = 0 for t — s odd, there can be no nonzero
differentials in the Adams spectral sequence converging to ' (Piy 1 A BP) ~
BP*(PZ"H). For example, the Adams spectral sequence chart, (see e.g. [7])
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for m,(Po,1¥t12 A BP) begins

q = 2n+

1 3 b 7 9 11 13 15 17

Here vertical lines indicate multiplication by x, in Ext ( ) which corresponds
(up to elements of higher filtration) to multiplication by 2 in 7 ( ).

2.5 THEOREM. Suppose {v; € BP“+1(P§,,"‘+,) :n S 1 < m} 1s any collection
of filtration zero gemerators. Then as a graded abelian group BPy (P§Z"+1) has
gemerators v’ ... v, 'y, and vi'wy'2. .. v, ry,_1 of degree 21 + 1 + >
21,(2* — 1) and filtration .1, truncated by 27"y, .. vty = 0, for all
n<1<mi, 20,r=0. Moreover, forn <1 < m, Z[m?“_"“)]v VY i—2’41 has
Sfiltration =2.

Remark. We shall soon give a specific set of generators v,. The last part of the
theorem gives a partial description of the action of v; on the v, Theorem 1.1 (i)
follows from this theorem by letting m become infinite.

Proof. The generators v; € mai_1) (BP) must have filtration 1 and must be
represented in Extzp(Z,, Z,) by x, Similarly y; must be represented in
Ext(Pa41 A BP) by g, The relation x,"*™g, = 0 in Extz(Pi) is
established by induction on 7 using the relation R;. Since there are no elements
of filtration greater than that of xo™t'="g,, this implies 2¢+1—"y, = (. The final
statement of the theorem follows from the Ext relation R,.

2.6 PROPOSITION. BP, (Pg;”if) ) BP, (PZZ‘+1) @ BP, (S2mt1)
BP,(P) =~ BPy(P.,) @ BPy(S™).

Proof. This follows easily from the exact BP-homology sequences of the
relevant cofibrations.

In fact, the splitting of homotopy groups comes from a splitting of spaces.

2.7 ProrosiTioN. Porfi A BP >~ Py’ i A BP \/ S*™*! A BP
Pit A BP >~ Piii A BP VSt A BP.

Proof. To prove the first we let
S2m+1 _f_; Pg;n:_ll /\ BP
be a map such that the homotopy class of

s d, pamii n gp K s\ B
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is a generator. Then

sttt A gp LABE pamer s pp pp LAE pm pp

k SZm+1 /\ B

induces an isomorphism of Z,-cohomology groups and hence of homotopy
groups. Thus so does

P A BP v ST A pp LA BP) V(P A W A BP)), pims

Thus it is a homotopy equivalence by J. H. C. Whitehead’s theorem.
For the second, we note that by G. W. Whitehead’s duality theorem [13]

[Py, S A BP) & moba,a(P3izinca A BP) = 0.

N BP

Thus the cofibration sequence

PI" A BP 5 Pzn+1 A BP — S™' A BP

implies that there is a map

P2n+1 L P /\ BP
such that if = 1 A . As before,

P AAw(fABP)V G A BP) 5om

Py ABPV S™AB T A BP

is a homotopy equivalence. This completes the proof.

Adams [3, Lemma 2.14] has defined generators 8; ¢ BP:,(CP”). We use
these to define v; € BP2;11(RP). There are canonical maps

h n
RP; — CP[(m+1)/21

which are compatible with respect to inclusions and collapsings. The Spanier-
Whitehead (2% — 1)-dual [12; 5] is a map

ECPzL 1-1_[(m+1)/2] D(h ) RPgIIj—l—m

—1—[n/2) —1-n
which induces an epimorphism in Z,-cohomology. Reindexing, we have maps
gt ZCPr, — RPN, e=0orl,

compatible with respect to inclusions and collapsings, and inducing epimor-
phisms in Z,-cohomology. Consideration of the induced homomorphism in
Extz( ) shows that

2m+ e

BP,(SCPI,) 872" BP, (Pis

is surjective.
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2.8 Definition. v; = gonTi', (s8:) € BPyi1(Potio).
2m +¢€

Theorems 2.5 and 2.6 describe the structure of BP4 (P21 ) as a BPy-
module with respect to these generators. The coaction formula of Theorem
1.1(ii), valid either in finite- or infinite-dimensional real projective space,
follows now from the analogous formula for the §;.

Proof of Theorem 1.1(ii). The following diagram is commutative
)4
MU, (CP®)—>M Uy (MU) ® v, MUx(CP®)

T TR T

BP4(CP®) —%—> BP,(BP) ®yp.BPy(CP?)

and 7' (8,Y) = B;. Thus

139 = (r @ s = 3 o T 1) ®8

j=1 k=0 (i—7.

by [3; 11.4]. Thus .S; of Theorem 1.1(ii) is Adams’ 7b,. Adams does not give an
expression for the wb;; however, he does give an expression for =M, where

1 <) —k—1
by = pan) (Z M,) 13,7.5].

=0 ()

Letting N; = wMj, our 1.1(ii)(c) is Adams’ 16.3. The relation 1.1(ii)(d)
between v, and m; was proved in [§8].

3. Application to vector fields on spheres. [t is well-known (2] that if
S" has k independent vector fields, there is a map

s L p;

n—k

such that following it by the collapsing map yields (up to homotopy) 1gn.
Consideration of the induced map in Hx( ; Z) or BPx( ) shows # must be odd,
say n = 2m + 1. Let X denote a generator of BP,(S"). Then ¥ (X) = 1 ® X,
for there are no elements in BPx(S*) of smaller degree. Thus ¥(fxX) =1 ®
f+X and f«X = v, + terms involving lower v; This enables us to obtain
restrictions on #, although the computations become extremely tedious for
k= 10.

We illustrate by showing if S* has 4 vector fields, then n = 7(8), by showing
if there exists a degree 1 map S?"+! — Pty then m = 3(4). Of course,
this is easily established using the Steenrod operations Sq? and Sq?, but this
proof illustrates our method with a minimum of computation. BPx(Pimts
begins
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!

| _ 2m+
—3 =1 41

(i.e. its first generators are v,—2, Ym—1, ¥1Ym—1, and vy, of order 2, 4, 4, and o0 ).
We show that if

(3.1) ¥(vw + Nvyym—1) = 1 Q@ (vm + Nvrym—1)

then m = 3(4).

The left-hand-side of (3.1) is evaluated by 1.1(ii). In evaluating the right-
hand-side, we note that there is a homomorphism 7z : BPy — BP,(BP) such
that in BPy(BP) ®pp, BPx(X), 1 Q@ v-v = ng() -t ® v (see [3, Proof of
16.1 (v)]). nx is defined by

nelm) = 3 i [3,16.16)]

The behavior of 5z on the v, is then determined using 1.1(ii) (d). In particular
nr(@) = vy + 26, ngp(we) = vo + 2 — dvity? — v — 445

Ignoring cancelling terms, (3.1) becomes

—(m — Dt @ Y1 + ((m ; 2):3 -+ mvltl) ® Vm-2

+ Noi(—(m — 2)t1 @ Ym—2) = N2t1 @ Ym—1.

By Theorem 2.5 2y,,_; = —v1y,_s, for there are no terms of higher filtration.
Thus the right-hand-side becomes

— Nt @ viymee = —N(@W1 4+ 20H)t1 @ Ym—2 = —Nviti @ ym—s,
and the equation becomes

— 92
- (Wl - 1)tl ® Ym—1 + ((m 9 H>t12 + (m - N(m - 3))7}1t1) ® Ym—2 = 0

The only possible way to eliminate the first term is to have m = 2/ 4 1, so that
the first term becomes
=1t @ 2vp1 = Ihh @ V1ym—2 = lit1 @ Y,
and the equation becomes
2l — 1), -
2 t1 + (31 + 1 —_ N(2l - 2))Ult1 ® Ym—2 = 0

This implies that both coefficients must be even, i.e. / is odd, and hence
m = 3(4).
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