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THE 5P-C0ACTI0N FOR PROJECTIVE SPACES 

DONALD M. DAVIS 

1. Introduction. The Brown-Peterson spectrum BP has been used recently 
to establish some new information about the stable homotopy groups of 
spheres [9; 11]. The best results have been achieved by using the associated 
homology theory BP*( ), the Hopf algebra BP*(BP), and the Adams-
Novikov spectral sequence 

ExtBP«BP(BP*, BP*(X)) => T*'(X)ip). 

A knowledge of the stable homotopy groups of stunted real projective spaces 
Pn = RPœ/RPn-1 is useful in studying the problem of immersing manifolds in 
Euclidean space [7]. One might hope that computing these groups via the 
i^P-Adams-Novikov spectral sequence would provide insight which the classical 
Adams spectral sequence has missed (e.g. some elements have lower filtration). 

As a first step in this program, we compute BP#(Pn) and the coaction 
BP*(Pn) ->BP*(BP) <8>Bp*BP*(Pn). In order to state our main result, we 
recall [3; 8] that BP* = BPm(pt) = ir*{BP) = Z(2)[vu v2y . . .] and BP*(BP) ~ 
BP*[ti, t2, . . .], where vt and tt both have degree 2(2* — 1). We use only the 
Brown-Peterson spectrum associated to the prime 2 [3; 6]. 

1.1 THEOREM, i) For i ^ n there are elements yt £ BP2i+i(P2n+i) such that 
there is an isomorphism of Z,{2)[v2, vz, . . .]-modules 

BP*(P2n+1) « Z(2)[v2, v*, . . .](7», 7n+i, • • .)/(2'+1-wY*). 

ii) The coaction 

¥ : BP*{P2n+1)->BP*{BP) ®BP, BP*(P2n+1) 

is given by 

3=1 

where 
a) if T is a graded expression (such as Sj), T(k) denotes the component of T of 

degree 2k, 
b) Sj is the jth power of S = 1 + 5i + S2 + . . ., where 

* - r n ( ( S "•)*')„• 
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c) Nv Ç BP2v{BP) is defined inductively by 

2 matb
2ax2a+b = X) mf\ £ Nvx

v+1) 

where x is an indeterminate, and 
d) mn Ç TT2(2n-i)(BP) ® Q is related to vn by 

n-l 

vn = 2mn - X) Vn-i^i 
i=l 

T h u s the first few nonzero groups of BP*(P2n+i) are BP2n+i(P2n+i) = Z2 , 
BP2n+z{P2n+l) = ZhBP2n+5(P2n+1) = Z 8 , a n d 5 P 2 n + 7 ( P 2 , + i ) = Z1 6 © Z2 , with 
V27n generating the lat ter Z 2 -summand. The formula for the coaction is ex­
tremely complicated. T h e first few terms are 

*(7<) = 1 ® 7 i - (i - l ) / i ® T^-i + ( (2(i - 2) + y ~ 2 ) ) ^ 2 

+ (i - 2> i^ i j (g> 7i-2 -

+ (i - 3)((2* - 3)/i3 + (i + 1 W ' + i ^ x + *2)J ® 7 i - 3 + • • • 

In Section 3 we use this coaction (in Pn—0 to prove t ha t if Sn has 4 inde­
pendent vector fields, then n = 7(8) . This is of course a very elementary result 
which was known long before Adams ' solution of the vector field problem [2]. 
However it illustrates with a minimum of computa t ion the application of 
coalgebraic methods (and part icularly BP*) to geometric questions. T h e 
author has proved by similar methods the known result t ha t if Sn has 10 
independent vector fields, then n = 31(32), bu t the calculations involved are 
extraordinarily tedious. 

Theorem 1.1 is not quite complete in t ha t it does not give the action of 
V\ £ BP* on our generators of BP* (P2«+i) • (In order to use the coaction formula 
we must know the s t ructure of BP*(P2n+i) as a BP#-module.) Some partial 
information, sufficient for our application to vector fields, is given in Theorem 
2.5. We conjecture t ha t 

[log2(<-n+2)] 

VïYt = — 27*+l ~ X ) A/yi+2-2 7Ï+2-2''. 
J=2 

Theorem 1.1 (i) is a straightforward Adams spectral sequence computat ion, 
while Theorem 1.1 (ii) follows from Adams ' formula [3] for the M£/-coaction in 
CP°° using the Spanier-Whitehead dual of the canonical map RP00 —> CPœ. 
T h u s the methods are not new, and indeed the result may be known to a few 
specialists. T h e thrus t of the paper is to s t imulate applications of BP in new 
directions. T h e author wishes to thank Haynes Miller and Steve Wilson for 
introducing him to BP and answering a few questions. After this paper had 

W 
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been writ ten, the author was told tha t BP^(P1) was computed in Ming's 
thesis [10]. 

2. Proof of T h e o r e m 1.1. In this section we prove the analogues of Theorem 
1.1 for Pln+i = RP2m/RP2n and P ^ i 1 . Theorem 1.1 is obtained by letting 
m = oo in PfcT+i. 

Brown and Peterson [6] showed tha t 

H*(BP; Z2) « j Z / f S q 1 ) = j / / 7 = SÏ//E. 

Here (Sq1) denotes the 2-sided ideal generated by Sq1, I denotes the left ideal 
generated by Milnor basis elements 0i°, 0<P, . . . , and E the primitively 
generated exterior subHopf algebra ols/ generated by 0\Q, 0<P, . • • T h u s by 
the change-of-rings theorem, for any space X, E x t ^ ( X A BP) œ ExtE(X). 
Here and throughout the paper we abbreviate ExtA (H* (X\Z%), Z2) to Ext^ (X), 
where A = £ or J ^ . In particular 

Ex t^CBP) œ Ext#(Z 2 , Z2) œ Z2[x0, xi, x2, . . . ] , 

where x , G E x t * 1 ' 2 ' * 1 - 1 ^ , ^ ) . 

2.1 PROPOSITION. 7» H*(RPœ; Z2) « Z2[<*], ^ , ° f a> ) = ja'**-1. 

Proof. Wri te 01° — ]T/ a /Sq7 , where Sq7 are admissible (Adem) monomials 
of degree 2* — 1 and aT Ç Z2 . Applying £* shows a(2*'-ii2*-2 2,1) = 1. But 
Sq2'"1 . . . S q ^ q 1 is the only admissible monomial of degree 2i — 1 which can 
be nonzero on a 1-dimensional class. Therefore, 0i°a = a2\ 

Assume the Proposition proved for j — 1. Since 0 *° is primitive 

0i°(aj) = 0i°(aj~1) \J a + a^1 \J 0i°(a) 

= (j - 1 V + 2 ' - 1 + a^2'-1 = jaj+2i~K 

2.2 LEMMA. Suppose B is a subalgebra of A such that A is a free B-module on 
generators of degree 0 and d. Suppose M is a bounded-below A-module such that 
ExtB

s,t(M, Z2) = 0 whenever t — s is odd. Then there is an isomorphism of 
Z2[x]-modules 

ExtA*>*(M, Z2) œ Z2[x] ® E x t s * ' * ( M , Z 2 ) , where x Ç Ext^1-d(Z2 , Z 2 ) . 

Proof. We use the exact sequence of [4, 3.2] : 

-> ExtA
s-lft~d(M, Z2) ^ ExtA

Stt(M, Z2) -> ExtB
s'l(M, Z2) 

- + E x t / ' < - d ( M , Z 2 ) . 

We first note tha t ExtA
s,t(M, Z2) = 0 when t — s is odd, for the first such 

nonzero element would have to induce an element in ExtB
s,t(M, Z 2 ) , where 

none exists. Thus the exact sequence above is in fact short exact. This implies 
t ha t ExtA

s,t(M, Z2) contains a subset 5 which maps isomorphically onto 

https://doi.org/10.4153/CJM-1978-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-004-9


48 DONALD M. DAVIS 

E x t f î
s , ' ( M , Z 2 ) , a n d 

5 0 xS ® x2S 0 . . . C ExtA
s'l(M} Z 2 ) . 

T o show the inclusion is actually equality, consider the smallest degree element 
not in the sum and use the exact sequence to find one of smaller degree. 

2.3 COROLLARY. E x t ^ - ^ P ^ + i ) is a free Z2[xi, x2, . . .]-module on generators 

gn, gn+i, • • • , gm-i, where g{ 6 E x t / ' 2 i + 1 (P2™+i)-

Proof. E may be constructed by adding one generator ^ { ° a t a time, and 
Lemma 2.2 may be applied. The induction is begun by noting tha t if J ^ 0 is the 
subalgebra of j / generated by - ^ i ° , then 

Z 2 s = 0,t = 2i-\-l,n^i<m 
Ext^'(PLV) = in 2 \l0't = 

0 ^ (0 otherwise 
2.4 T H E O R E M . AS a module over Ext#* '*(Z 2 , Z 2 ) , Ex t#* ' * (P 2 r + i ) is generated 

by the elements gf of 2.3 with the only relations being consequences of 

[log2(i-n+l)] 

Ri : 0 = ^2 Xygi-2v+ij n < i < m. 

Proof. T h a t Rt is a relation follows readily from the cobar resolution [1]. T o 
see this, let H* = H*(P2n+i) and let P * denote the dual of E. P * is a primi­
tively generated exterior algebra on classes £* of degree 2 ' — 1. Let P * = E*/EQ. 
Ext^ 1 , *(P 2 r+ i ) is ker d2/im d\ in 

H* - i P * ® H* -4- P * ® p * ® # * , 

where 

[log2(2i-2n)] 

^l(«2i-l) = 0, <Zi(($2i) = Z ) è* ® <*2i-2"+l, 

and d2(£* ® <$i) = £* ® dia^. 

Then x„_ig;_2"-i+i corresponds to £„ (8) a2i-2 , /+3, so t ha t the relation Rt is due to 

di(<$2/+2). 
T h a t these are the only relations follows by induction from the exact sequence 

-r^ 5—1, ï—2^+1 /• 7-»2m \ %i— 1 f̂  , s,t/-r)2m \ 

> Ext^- (P2^+i) > Ext#t- (P2n+i) 

> Ext»,•_!*' (P 2n+l) > 

where P* is the exterior algebra generated by ^ i ° , . . . , &t°. 

Since E x t ^ ' ^ P ^ + i A P P ) = 0 for t — 5 odd, there can be no nonzero 
differentials in the Adams spectral sequence converging to 7iV(P2r+i A BP) c^. 
PP*(P 2 ™ + i ) . For example, the Adams spectral sequence chart , (see e.g. [7]) 
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for Tg(P2n+i2n+n A BP) begins 

_ L 
1 3 

I II 
4 t • T • 

t t ' I 

7 9 11 13 15 17 

q = 2rc + 

Here vertical lines indicate multiplication by XQ in Ex t ( ) which corresponds 
(up to elements of higher filtration) to multiplication by 2 in 7r+( ). 

2.5 T H E O R E M . Suppose {7, £ BP2Ï+IC^ÎT+I) : w ^ i < m} w <wy collection 

of filtration zero generators. Then as a graded abelian group BP*(P2™+i) has 
generators v2

u . . . wr*
r7< and Viilv2 vr

irym^ of 2i + 1 + E - i 
2iv(2

v — 1) and filtration ^r
v=\iv truncated by 2i+1~nViil . . . vr

iryt = 0, for all 
n ^ i < m, iv ^ 0, r ^ 0. Moreover, for n ^ i < m, ]Cl=o2( '~n+1)^*7i-2 , '+i Aas 
filtration ^ 2 . 

Remark. We shall soon give a specific set of generators 7*. The last par t of the 
theorem gives a partial description of the action of V\ on the y {. Theorem 1.1 (i) 
follows from this theorem by letting m become infinite. 

Proof. The generators vt £ ir2{2i-i){BP) must have filtration 1 and must be 
represented in Ex t# (Z 2 , Z2) by xt. Similarly yt must be represented in 
Ext(P2

2r+i A BP) by gi. The relation x^l~n
gi = 0 in E x t ^ P ^ + i ) is 

established by induction on i using the relation Rit Since there are no elements 
of filtration greater than tha t of Xoi+1~~ngi, this implies 2i+1~nyi = 0. The final 
s ta tement of the theorem follows from the Ext relation Rt. 

2.6 PROPOSITION. BP*{P2
2™$1) & BP*(P2

2™+1) 0 BP*(S2m+l) 

BP*(P%) tt BPt(P%+!) 0 BP*(S*n). 

Proof. This follows easily from the exact ^P-homology sequences of the 
relevant cofibrations. 

In fact, the splitting of homotopy groups comes from a splitting of spaces. 

2.7 PROPOSITION. P ^ 1 A BP ~ P\n+i A BP V S2m+1 A BP 

P% ABP~ P2
2:+1 ABPV 52i A BP. 

Proof. T o prove the first we let 

5 2 m + 1 4 Pl:ti ABP 

be a map such tha t the homotopy class of 

S2m+1 4 pgi+1 A B p X 52W+1 A B p 
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is a generator. Then 

S2m+1 A BP / A ^ > PSft1 A P P A P P ^ / x "> PS+i1 A BP ?2m+l A D D / A -SP „ 2 ^ + 1 A K P A R P P A V D2m+1 

- ^ 52 m + 1 A P 

induces an isomorphism of Z2-cohomology groups and hence of homotopy 
groups. Thus so does 

Pt:+1 ABPV 5 2 m + 1 A ^ ( ' A ^ ) V ( ( f A r i ( / A ^ ) ) ) C A Bp 

Thus it is a homotopy equivalence by J. H. C. Whitehead's theorem. 
For the second, we note that by G. W. Whitehead's duality theorem [13] 

[Pln+u S2n+l A BP] « TT 2 L_ 2 ,_ 2 (P^:^-1 2
1 A BP) = 0. 

Thus the cofibration sequence 

Pi: ABP-^ PSr+i A P P -> 52 n + 1 A BP 

implies that there is a map 

P ^ i ^ P ^ A P P 

such that if = 1 A t. As before, 

P\:+y ABPV 52" A P P ( I A M W A - B P ) V f r A - B ^ p i ^ ^ p 

is a homotopy equivalence. This completes the proof. 

Adams [3, Lemma 2.14] has defined generators pt G PP 2 ï (CPœ ) . We use 
these to define yt £ PP 2 f + i (PP) . There are canonical maps 

-n-p n rim r-p[n/2] 
^-Lm » Ur[(m+l)/2] 

which are compatible with respect to inclusions and collapsings. The Spanier-
Whitehead (2L - l)-dual [12; 5] is a map 

V /-p2f'-1-l-[(7n+l)/2] D(hm ) 2 f - l - m 
LL>r<iu x_i_[n/2] » i i r î - l - n 

which induces an epimorphism in Z2-cohomology. Reindexing, we have maps 
2m 4- e -K^n~nm JD -n^m 4- « n -j 

g2nJi : 2CPn_i —> RP2n-i , e = 0 or 1, 

compatible with respect to inclusions and collapsings, and inducing epimor-
phisms in Z2-cohomology. Consideration of the induced homomorphism in 
Ext#( ) shows that 

2m+e 

PP* (2CPr_i) i 5 t ± ; 5 P * ( P ^ ) 

is surjective. 
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2.8 Definition. T , = gu^\(sfa) G BP2M(P^). 

Theorems 2.5 and 2.6 describe the structure of BP*(Pl™^[e) as a BP*-
module with respect to these generators. The coaction formula of Theorem 
1.1 (ii), valid either in finite- or infinite-dimensional real projective space, 
follows now from the analogous formula for the /3*. 

Proof of Theorem 1.1 (ii). The following diagram is commutative 

MUtiC^-^+MUtiMU) ®Mu*MU*(CPœ) 

I 7 T ® 7T 

BP*(CPœ) * > BP*(BP) ®BP*BP*(CPœ) 

and TT 'C /?^ ) = pi. Thus 

y (fit) = (T ® IT')*!/*,"" = E J E bk\ ® fa 

by [3; 11.4]. Thus 5A- of Theorem 1.1 (ii) is Adams' irbk. Adams does not give an 
expression for the Trbk] however, he does give an expression for irMk, where 

-i / oo \ - k - l 

Jt = r x T S M A [3,7.5]. 

Letting Nk = irMk, our 1.1 (ii) (c) is Adams' 16.3. The relation 1.1 (ii) (d) 
between vt and mt was proved in [8]. 

3. Application to vector fields on spheres. It is well-known [2] that if 
S"1 has k independent vector fields, there is a map 

5* - 4 Pn
n_k 

such that following it by the collapsing map yields (up to homotopy) l^n. 
Consideration of the induced map in H* ( ; Z) or BP* ( ) shows n must be odd, 
say n = 2m + 1. Let X denote a generator of BPJSn). Then V(X) = 1 ® X, 
for there are no elements in BP^(Sn) of smaller degree. Thus ^(f*X) = 1 ® 
f*X and f*X = ym + terms involving lower yt. This enables us to obtain 
restrictions on n, although the computations become extremely tedious for 
k ^ 10. 

We illustrate by showing if Sn has 4 vector fields, then n = 7(8), by showing 
if there exists a degree 1 map 52 m + 1 —» PlZ-l, then m = 3(4). Of course, 
this is easily established using the Steenrod operations Sq2 and Sq4, but this 
proof illustrates our method with a minimum of computation. BP*(Pl%±l) 
begins 
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II 
2m + 

- 3 - 1 + 1 

(i.e. its first generators are ym-2, ym-\, ï>i7m-i> and ym, of order 2, 4, 4, and oo ). 

We show tha t if 

(3.1) ¥ ( 7 w + NViyn-x) = 1 ® (7m + iWl7m-l) 

then w - 3(4) . 
T h e left-hand-side of (3.1) is evaluated by 1.1 (ii). In evaluat ing the right-

hand-side, we note t ha t there is a homomorphism rjR : BP* —> BP*(BP) such 
tha t in BP*(BP) ® BPsK BP*(X), l®vy = riB(v) • t ® y (see [3, Proof of 
16.1 (v)]) . rjR is defined by 

17 «(w*) = 22 niA-i21 [3, 16.1(i)]. 

The behavior of ^ on the z^ is then determined using 1.1 (ii) (d). In particular 

VRM = vi + 2tu r)R(v2) = v2 + 2/2 ~ o^iti2 - 3^i2/i - 4/i3. 

Ignoring cancelling terms, (3.1) becomes 

- (m - l ) / i ® 7w_i + 1 1 2 P1* + m ^ i ) ® Tm-2 

+ i V i ; ^ - (w - 2)h ® 7*1-2) = iV2/i ® 7m-i. 

By Theorem 2.5 2ym_i = — z>i7w_2, for there are no terms of higher filtration. 
T h u s the right-hand-side becomes 

-Nh ® Vi7m-2 = - i V ( ^ l + 2/i)/i ® 7m-2 = -NVxh ® 7m-2, 

and the equation becomes 

- (m - l)*x ® 7*1-1 + ( \ J 2 ) ^ 2 + (w - iV(w - 3)>i*iJ ® 7m-2 = 0. 

The only possible way to eliminate the first term is to have m = 2/ + 1, so tha t 
the first term becomes 

- Itx ® 27m_! = lh ® ^i7w_2 = fol/l ® 7m-2, 

and the equation becomes 

This implies t ha t both coefficients mus t be even, i.e. / is odd, and hence 
m = 3(4) . 
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