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Abstract

If a weighted Euler transformation is applied to the asymptotic series for e* E,(z) the remainder
can be expressed as an integral. Examination of this integral shows that for a transformation
of given order the smallest term of the resulting series remains at approximately a constant
distance from the start of the series. If, however, there is no restriction on the order of trans-
formation the remainder may be decreased to zero by increasing the number of terms used,
but if z is close to the negative real axis the rate of decrease is small. A more general theorem
for alternating real series and Taylor’s series is also given,

Subject classification (Amer. Math. Soc. (MOS) 1970): 30 A 84, 41 A 60.

1. Introduction

An asymptotic power series is defined as a truncated power series, such as

* o(—1) a,/z7, for which the remainder is O(1/z"+2). This means in practice that
the sum is usually most accurate if we stop at the smallest term.

Sirovich (1971) shows that the Euler transformation may be used to continue
analytically a power series outside its radius of convergence and mentions that a
transformation by Shanks (1955) sometimes produces very striking increases in
the rate of convergence of a series.

It is the purpose of this note to examine a transformation similar to but simpler
than Shanks’s and to show how it transforms the remainder of a particular
asymptotic series. We proceed by first looking at a numerical example. The
example is chosen because the remainder can be expressed as an integral. We may
then consult tables of the integral for particular values and use the saddle point
approximation to the integral for more general approximate properties.
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2. The weighted Euler sum
Let

S5(2) = Sp(2) + R, (2)
where

Sa(z) = S(~1yaz
r=0

and §(z) is a function of z which has an asymptotic series S,,(z) with a remainder
R,(2).

We construct a weighted average of the asymptotic sums from S,,(z) to S,(z)
weighting each sum S,,,(z)(r=0,1,...,n—m) with the binomial coefficient

(n:m) and (— 1) times the reciprocal of its last term, namely,

n—m(n —-m n—m

L= Z (", )s,,,+,(z) ™, / ) (”"r”') ™¥a,, ... o)

This transformation has been described by the author (1972) as a weighted Euler
transformation and it has two further properties not mentioned in the previous
paper:

(i) While any individual member of T, ,(z) may be calculated directly using
equation (1), the whole table may be calculated using a recurrence relation as

follows. Let
n—m —_—
Pan@) =" (") SmesD) 2 s,
and
n—-m —-_m
0na@®="Z (") e
hence
P, m,m(z) = Sm(z) zm/ Qs Qm,m(z) = zm/ an

and

P, m,n(z) =P, m,n—l(z) +P, m+1,n(z)’ Qm,n(z) = Qm,n—l(z ) + Qm+1,n(z)' (2)

(ii) We may equally well use the reciprocals of the first term omitted in the

weighted average. Thus, if we separate out the last term of each truncated series,
Sm++(2), in the numerator of the right-hand side of equation (1) we obtain

"im(”—’")(—l)m%(‘;',%;) (Z_mﬂ) = (-1m(A-)*"=0 ifn>m.

r=0 r m+r.
Hence we obtain an alternative expression
n—-m

CRNORSSH (i ERNOEL TN b Ly L I

r=0
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3. The remainder of a known asymptotic series

If we integrate the exponential integral by parts n times we obtain an asymptotic
series whose remainder is expressed in closed form as another integral:

F(2)=eE((2)= J:o _e_;;“’dx
=8,@)+ (=" F,4(2)
where
Sa(z) = %‘-i—é-l- cee (=D (n;nl)!

and

n z—

Fy(z) = f (n— 1)'e"‘zdx_(n nl) lef E,(2).

The integrals E,(z) are bounded except when z=0 or —oco and have been
tabulated, for instance by Abramowitz (1964), for many real positive and complex
values of z. When z is complex the imaginary part of F,(z) has a discontinuity
depending on whether the path of integration from z to oo goes clockwise or
anticlockwise round the origin. On the other hand, the value of S,(z) is unique.
This contradiction is usually resolved by cutting the z plane along the negative
real axis.

If we construct the weighted Euler sum, T, ,(z), using equation (3) then the
transformed remainder is given as

zm+r

Fy(z)— (z)—— (" m) (m+r— 1)|( nm +'F,,,+,(Z)/ ( )m

= (- f()—z‘)’"(l—)—zc)" e“‘dx/ (” rm)m—:%. @

For this particular series and transformation we are able to express the remainder
as an integral divided by a finite sum. A computer programme using equation (2)
and a table of E,(z) can be used to calculate numerical values of the remainder
for small values of m and n and approximations to equation (4) may be used for
larger values of ».

4. Numerical values of the remainder

In order to illustrate how the remainder is affected by transforming a series
some values of the remainder for small values of m and n are given in Tables 1 and 2.
The leading diagonal consists of the remainders R,,,(z) for the original series
while the parallel diagonals are the remainders after successive transformations of
the series. The most important feature of these diagonals is that the remainders
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have a minimum at m = | z| for the leading diagonal and m =|z|+1 for the other
diagonals. However, this feature of the table is somewhat masked by the fact that
the remainders decrease both when we increase n and when we decrease m to its
minimum possible value, namely m = 1. Finally, we note that the rate of con-
vergence of the weighted Euler transformation is different in the two tables.
These observations may be extended by examining the integral for the remainder.

TABLE 1
Values of R,, , (2) calculated from F(2) and T, (2)

n
N 1 2 3 4 5 6

1 —.13867 102800 00419 00086 .00022 0000630

2 11133 —.01367 —.00231 —.00051 —.00014

3 —.13867 01133 00195 0.00044

4 .23633 —.01367 —.00231

5 —.51367 02204

6 1.36133
TABLE 2

Values of R, ,(—1+i) calculated from Fi(—1+i)—=Tp (—1+i)

1 2 3 4 5 6

A

1 .383—-196/ —.117+.304i .133+.054i .056—-.061i —.019—.050i -—.035—.007{
2 .383+.304i —.117—.196i —.1174054i .004 +.074i .041+.022i
3 —.117+.804i .183—-.096i —.002—.119i .056—.061¢
4 —1.617+ .804{ 183 +.204; .139—-.001i
5 —-4.617—2.196i —.206+ .451i
6 —4.617—17.196i

5. Approximations to the remainder

We now calculate an approximation to the remainder by using equation (4),
Stirling’s approximation for the factorials and saddle point approximations to the
integrals. The numerator can be written in the form

fwef‘z’dx where f(x)=z—x+mlnz+(n—m)ln(x—z)—nlnx.
2

The integrand has two saddle points. If z does not lie on the negative real axis,
the saddle point appropriate to the integral from z directly to infinity is x,, where

Xo = tz—m+J{(z—m)2+4nz}).

The sign of the square root is chosen so that the imaginary parts of z and x, have
the same sign.
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The saddle point approximation to the integral is then

_ zm(x — z)n—m+1 J(21r)
TR e mR- =B ©
If n is large this may be further approximated as
J@@)zAintip—imitexp{—2 J(nz) + 3z + (— 322+ 2mz + m® — 2m)[4 {(nz) + O(1/n)}.
(6)

The denominator of equation (4) may also be approximated by an integral

n—m+in—m mtr
( )——dr.
J - r J(m+r-1!
If n is sufficiently large that |z| lies in the range m/(n—m) <|z|<(n—m)(n—1)
the integrand is small at the ends of the range and has a single maximum so we
may again use a saddle point approximation.

As before, one of the two saddle points is near the path of integration giving a
saddle point approximation for the denominator of equation (4)

(n—m)te™t 0+ ™ (r+m—13) )
2a(n—r—m+ )" Jinn—m+1)—(n—r—-m+H?%’

where
r=3}[J{4zn+(z—m+1)%—z—m).
If n is large this may be further approximated as
(2 Jm) L ztmH pim
x exp{2(nz) —4z+ @22 —2mz—m?+2m—1)/4 J(nz) + O(1/n)}  (8)

and the transformed remainder R, ,(z) is the ratio of the expressions (6) and (8)
namely

Ry n(2) = (= 1)1 27
xexp{—4J(nz)+z+(—4z2+2mz+m?*—2m+3)/2J(nz)+ O(1/n)}.  (9)

As an alternative to equation (9) if we are concerned with a sequence of trans-
formations of the same order, kK = n—m, and k is large then equation (9) may be
rewritten as

Rymii(2) = (= 1) 127
xexp{—4y(kz)+z+(—%z%2—-2mz+m2—-2m+%)/2 J(kz) + O(1/k)}.  (10)

As a check on the accuracy of the approximations used we evaluate R;g¢(2);
(i) exactly .0000630, (ii) from expressions (5) and (7) .0000605, (iii) from expression
(9) .0000609, (iv) from equation (10) .0000593, and these improve as n increases.
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6. Three limiting properties of the weighted Euler transformation
L. If z is not on the negative real axis then R, ,(z)—>0 as n—co.

Proor. If in equation (9) m and z are constant and » is large the dominant term
is e~4/("9)_ and if z is not on the negative real axis then |z has a positive real part,
so e~4("9) 50 as n—>co0. Hence R, ,(z) >0 as n—>oo.

Other related properties are: (i) if z is real negative then /(nz) will be pure
imaginary; hence as n increases the phase of e~%"? will change but its amplitude
will not decrease and so R,, ,(z) will, to this approximation, not decrease if z is
on the negative real axis; (ii) the rate of decay of R, ,(z) as n increases depends
on the value of e~+17&02) If z = £+ in then H(|z) = J{+ (£ +2?)} which is
constant on a parabola with focus at the origin and enclosing the negative real axis.
Hence the values of z which give the same rate of decay as n increases lie on a
parabola in the complex plane with focus at the origin. However, the actual size
of R, .(z) depends also on the other terms in the exponential in equation (9), and
in particular on the factor ¢* whose modulus depends on the real part of z.

11. If n and z are constant the remainder may be reduced by decreasing m to 1.

ProoF. If n and z are constant and z = (p+ig)? then equation (9) may be
written in the form

1
Kexp [2 O

(P~ 2+ 2+ + g+ 2m+ 2+ g D}-+OU )|
where K is a complex constant. /z maps onto the right-hand half x plane so p is
positive and so the real part of the exponential increases if m>1—p*—q? and the

minimum value of m is 1. Hence, the remainder may be reduced by decreasing m
to 1.

III. The sequence of remainders for all transformations of order k has a minimum
when m = |z|+ 1+ O0(1/ k).

PRrOOF. If k and z are constants and z = (p+iq)? then equation (10) may be
written in the form

1
Koxp |55 )
x {p(m?—2m—2m(p? +q%) +ig(—m2+2m—2m(p® +q2))} + 0(1/k)] s
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where K is a complex constant and p is positive. For a minimum remainder we
minimize the real part of the exponential by choosing m = 1+p%+4% = 1+|z|,
the terms neglected being of order |k smaller than those considered. As a comment
we should compare this result with the minima for small m and n in Tables 1 and 2.

7. Extension to more general series

We now consider a more general theorem but restrict ourselves to alternating
series of real terms.

Let ¥ (—1)f(x) be an alternating series of real terms which is an asymptotic
expansion of a function F(x) whose remainder after n terms is (— 1)/, (x) A(n, x).

THEOREM. If f,(x) is positive and A"—™ Xm, X) is bounded, where
AXm, x) = Aim+ 1, x)— A(m, x),

then the remainder of the asymptotic expansion may be made as small as we please
by a weighted Euler transformation.

PrOOF. The remainder after a weighted Euler transformation using binomial
coefficients and the reciprocals of the last terms as weights is

S (e 2070

The numerator is (—1)* A®~™ A(m, x). Also, all the terms of the denominator are
positive and if m <k <n then a subset of these terms is

(n—m)! 1
(k—m)!(n—k)! f(x)°
If k>m and k and m are held constant while 7 is increased then the denominator
is greater than (n—m)!/(k —m)! (n— k)! f,.(x) which tends to infinity as n is increased.
Hence, if the numerator is bounded, the remainder may be made as small as we
please by a weighted Euler transformation.

8. Transforming Taylor’s series

The Taylor’s series for f(x) with the integral form of remainder is

(x a)

) =3 2= rog)+ f (x— t) EZ ctnin gy,
8={)

If we apply a weighted Euler transformation to a set of these series weighting

the set of series of (m+1) up to (n+1) terms inclusive with the binomial
coefficients and reciprocals of the last term of each series while alternating their
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signs, namely

H[(n—m r!
=0 (r - m) G= @)’

then the transformed remainder is

z(x t)’ f(r+1)(t) n—m r!
) o o [ B )(r m) =97

A similar expression for the remainder may also be obtained as in Section 2(ii)
using the next terms of the Taylor’s series in the weights.

If the Taylor’s series satisfies the conditions for the theorem of Section 7, namely
that the numerator is bounded for all n» and the terms of the denominator are all
positive, then the transformed remainder has a zero limit as n—oco. If these
conditions apply outside the original radius of convergence of the Taylor’s series
then the transformation will give f(x) outside the radius of convergence.

pChy an
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