
Forum of Mathematics, Sigma (2025), Vol. 13:e122 1–18
doi:10.1017/fms.2025.10080

RESEARCH ARTICLE

Lower bounds on density for topologically nontrivial minimal
cones up to dimension six
Jacob Bernstein 1 and Lu Wang 2

1Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, United States;
E-mail: jberns15@jhu.edu
2Department of Mathematics, Yale University, 219 Prospect Street, New Haven, CT, 06511, United States;
E-mail: lu.wang@yale.edu (Corresponding author)

Received: 6 February 2025; Revised: 29 April 2025; Accepted: 30 June 2025

2020 Mathematical Subject Classification: Primary – 53A10, 53E10; Secondary – 58E12, 55N10

Abstract
We prove lower bounds on the density of regular minimal cones of dimension less than seven provided the
complements of the cones are topologically nontrivial.
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1. Introduction

In this paper, we prove nearly sharp lower bounds on the density of certain minimal cones of dimension
less than 7. Recall, a regular minimal cone in R𝑛+1 is a cone, C, with vertex at the origin 0 such that
C \ {0} is a nonempty smooth minimal hypersurface – that is, its mean curvature is equal to 0 at all
points. When 𝑛 ≥ 2, a regular cone is minimal if and only if its associated varifold is stationary for area
but this is not necessarily the case when 𝑛 = 1. The density, Θ(C), of C at 0 is defined to be

Θ(C) =
H𝑛 (C ∩ 𝐵𝑛+1

1 (0))
𝜔𝑛

=
H𝑛 (C ∩ 𝐵𝑛+1

𝑅 (0))
𝜔𝑛𝑅𝑛

, 𝑅 > 0, (1.1)

where 𝐵𝑛+1
𝑅 (0) is the open ball in R𝑛+1 centered at 0 with radius R, 𝜔𝑛 = |𝐵𝑛

1 (0) | is the volume of
the unit n-ball in R𝑛, and H𝑛 is the n-dimensional Hausdorff measure. The upper semi-continuity of
density for stationary varifolds implies that when C is associated to a stationary varifold (e.g., 𝑛 ≥ 2),
Θ(C) ≥ 1 and standard dimension reduction arguments ensure equality occurs only when C is trivial
(i.e., a hyperplane). Allard’s regularity theorem [1] implies that there exist constants 𝜖 (𝑛) > 0 so that if
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C is a non-flat regular minimal cone, then Θ(C) ≥ 1+ 𝜖 (𝑛). In [15], Cheng–Li–Yau give an explicit, but
very rough, lower bound for 𝜖 (𝑛) – see Appendix A.

Following Colding–Minicozzi [16], the entropy of a hypersurface Σ ⊂ R𝑛+1 is

𝜆(Σ) = sup
x0∈R𝑛+1 ,𝑡0>0

(4𝜋𝑡0)−
𝑛
2

∫
Σ
𝑒
− |x−x0 |2

4𝑡0 𝑑H𝑛. (1.2)

Because a regular stationary cone, C, may be thought of as an eternal weak mean curvature flow,
Huisken’s monotonicity formula [24, 30] implies that 𝜆(C) = Θ(C). Likewise, the entropy of a round
k-sphere, S𝑘 ⊂ R𝑘+1 equals the Gaussian density of the self-similarly shrinking S𝑘 at its center [16].
Thus, by Stone’s computation [37, Appendix A],

2 = 𝜆(S0) > 𝜆(S1) > 𝜆(S2) > 𝜆(S3) > · · · →
√

2. (1.3)

In [32, Theorem 1∗], Ilmanen–White used mean curvature flow and the existence of the Hardt–Simon
foliation [19] to show that if C is a regular area-minimizing cone that is topologically nontrivial, then
Θ(C) ≥ 𝜆(S𝑛−1) >

√
2. There are no non-flat area-minimizing cones when 𝑛 ≤ 6, and so their theorem

does not apply in these dimensions. However, using a different argument inspired by [9], we obtain
the same lower bound for any topologically nontrivial regular minimal cones in precisely this range of
dimensions.

Theorem 1.1. For 𝑛 ≤ 6, let C be a regular minimal cone in R𝑛+1. If at least one of the components of
R
𝑛+1 \ C is not contractible, then

Θ(C) ≥ 𝜆(S𝑛−1) >
√

2.

This partially answers a question raised in [32, §5, Problem 1]. Using the same method together with
work of White [41], we also show that under stronger topological hypotheses one obtains a better lower
bound.

Theorem 1.2. For 2 ≤ 𝑛 ≤ 6, let C be a regular minimal cone in R𝑛+1. If at least one of the components
of R𝑛+1 \ C is not a homology ball, then

Θ(C) ≥ 𝜆(S𝑛−2) >
√

2.

In very low dimensions, these bounds are trivial. Indeed, a regular minimal cone in R2 is the union
of ℓ of rays based at 0 and has density ℓ

2 ; however, the associated varifold is not stationary unless a
balancing condition is satisfied. In particular, every component of the complement of a regular minimal
cone is contractible, and so Theorem 1.1 is vacuous. We observe that when such a cone is stationary
its entropy is ℓ

2 , but may be higher in general. In particular, the lowest density of a nontrivial stationary
cone in R2 is 3

2 . Moreover, ℓ is even if and only if the associated varifold is cyclic mod 2 – a condition
automatically satisfied by any regular minimal cone in higher dimensions. Hence, the lowest entropy of
a nontrivial stationary and cyclic mod 2 cone in R2 is 𝜆(S0) = 2.

Likewise, in R3, the only regular minimal cones are planes because great circles are the only closed
geodesics in S2. Thus, Theorems 1.1 and 1.2 are again both vacuous. Within the larger class of nontrivial
stationary cones in R3, one readily sees that the density is bounded below by 3

2 , which is given by the
union of three half-planes and by 2 when the cones are also cyclic mod 2. In addition, the cone over
the edges of a regular tetrahedron is a stationary cone with density lying in ( 3

2 , 2). In fact, there are no
other nontrivial stationary cones with density below 2 – see [35, Lemma A.2] where the authors also
compute the densities of the cones over all the geodesic nets in S2 – see [21, 38].

In the first nontrivial dimension, R4, the classification of surfaces and Alexander’s theorem ensure
that the hypotheses of Theorems 1.1 and 1.2 are both equivalent to the hypothesis that the link of the
cone has positive genus, and so, in this dimension, Theorem 1.2 implies Theorem 1.1. When 𝑛 ≥ 4,
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there exist homology balls that are not contractible, and so the hypotheses of Theorem 1.1 are genuinely
weaker than those of Theorem 1.2. In [25, 26, 27, 28], there are many examples of nontrivial regular
minimal cones whose links are topological spheres. However, the authors are unaware of any example
of a regular minimal cone whose link bounds a homology ball but not a homotopy ball.

Ilmanen–White [32, Theorem 2] also proved that given a regular area-minimizing cone, if one of the
components of the complement of the cone has nontrivial k-th homotopy group, then the density of the
cone at 0 is greater than or equal to 𝜆(S𝑘 ). By Theorem 1.2, this result is also true for regular minimal
cones in R4, but is stronger than what we are able to show when 4 ≤ 𝑛 ≤ 6, and it seems that extending
this result to non-area minimizing cones remains an open problem. We remark that, in his thesis [43],
Zhu was able to obtain nontrivial bounds under the weakest possible topological hypotheses. Namely,
it is a simple consequence of [43, Corollary 2.2] that if C is a n-dimensional regular minimal cone
whose link is not isotopic to the standard sphere, then Θ(C) ≥ 𝜆(S𝑛−2)

𝜆(S𝑛−1) > 1. When 𝑛 ≥ 4, the topological
hypotheses of Theorem 1.2 are only enough to ensure the link is not a homology sphere. However, the
weaker topological hypothesis in Zhu’s work leads to a worse lower bound on density – see Appendix A.

The density bounds of Theorems 1.1 and 1.2 are probably not sharp for cones of a given dimension
but cannot be improved by much. For positive integers l and m, let

C𝑚,𝑙 =
{
(y, z) ∈ R𝑚+1 × R𝑙+1 : 𝑙 |y|2 = 𝑚 |z|2

}
⊂ R𝑚+𝑙+2

be the family of generalized Simons’ cones. One readily computes – see Appendix A – that Θ(C1,1) =
𝜋/2 ≈ 1.57. In fact, by Marques–Neves’ proof of the Willmore conjecture, that is, [33, Theorem B],
and Almgren’s theorem [2] this is the sharp lower bound for any non-flat regular minimal cones in R4.
By comparison, the bound coming from Theorem 1.2 is 𝜆(S1) =

√
2𝜋/𝑒 ≈ 1.52. Thus, the lower bound

from Theorem 1.2 is only about 3% lower than the sharp bound. Likewise, for 4 ≤ 𝑛 ≤ 6 and 𝑞 = 𝑛−1
2 ,

the cone C �𝑞�, 
𝑞� maximizes density among the C𝑚,𝑙 with 𝑙 +𝑚 = 𝑛 − 1, and its complement contains a
component that is not a homology ball and so also not contractible. It is readily checked that the density
of C �𝑞�, 
𝑞� at 0 is about 3%–5% higher than the lower bounds from Theorems 1.1 and 1.2. Indeed,
since Θ(C𝑚,𝑙) → 𝜆(S𝑚) as 𝑙 → ∞, the bounds 𝜆(S𝑛−1) and 𝜆(S𝑛−2) of Theorems 1.1 and 1.2 may be
the best possible that are independent of dimension. Similarly, Θ(C𝑚,𝑙) →

√
2 as 𝑙, 𝑚 → ∞. According

to [32],
√

2 was conjectured by B. Solomon to be the optimal lower bound on the density of nontrivial
regular area-minimizing cones. In [42, pg. 288], S. T. Yau asked the more ambitious question of whether
appropriate C𝑚,𝑙 minimize area among non-totally geodesic minimal hypersurfaces in the sphere –
in [42], this question is attributed to B. Solomon as a conjecture; see also [32, Section 5]. In [14], this
stronger question is answered in the affirmative among highly symmetric minimal hypersurfaces.

To prove Theorems 1.1 and 1.2, we use properties of self-expanders – that is, solutions to (2.1). This
is because the existence of the Hardt–Simon foliation [19], one of the key ingredients in the approach
of [32], requires the cone to be area-minimizing and not just minimal. Instead, for a regular minimal cone
that is not area-minimizing, it follows from [9] and [17] that there are two self-expanders asymptotic to
the cone with the property that any other self-expander asymptotic to the cone is trapped between them.
Furthermore, the complement of each of these self-expanders is the union of two components, one star-
shaped relative to 0 and the other homotopy equivalent to a component of the complement of the link.
By combining ideas from [9] and [5], we can then show, in low dimensions and in a certain generic
sense, that there is a finite collection of gradient flows for the expander functional (see (2.3)) whose
union essentially connects the two self-expanders above – here, the dimension restriction is related to
regularity properties of minimizing hypersurfaces that simplify things but do not seem to be essential
to the argument. These flows evolve in a monotone manner and exhibit good regularity properties.
This allows us to use work of White [41] to establish a relationship between the topologies of the self-
expanders and the entropy of the cone. To complete the proof, we show it is possible to reduce to the
generic situation by a suitable perturbation of the two self-expanders and their asymptotic cones.

We point out that while Ilmanen–White’s argument uses properties special to area-minimizing cones,
our argument uses properties that are special to regular minimal cones that are not area-minimizing.
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Another key difference between our argument and that of [32], and one that explains why we cannot
prove as strong a result as [32, Theorem 2], is that in their paper, the authors are able to apply [41] to a
single monotone flow, while in our paper, we apply it to a sequence of monotone flows whose directions
alternate.

This paper is organized as follows. In Section 2, we give necessary background on monotone gradient
flow for the expander functional. In Section 3, we use the results of White [41] to study the relationship
between topologies of self-expanders asymptotic to a given cone of low entropy. In Section 4, we prove
topological properties for self-expanders asymptotic to a regular minimal cone of low entropy. The main
results about densities of minimal cones then follow from this.

Notation and conventions

Throughout the paper, 𝐵𝑘
𝑟 (𝑝) and 𝐵̄𝑘

𝑟 (𝑝) are respectively the open and closed ball of center p and radius
r in R𝑘 . We omit the superscript k when its value is clear from context. We also omit the center when it
is the origin. Denote by int(𝐴), cl(𝐴), and 𝜕𝐴, respectively, the interior, closure, and boundary of a set
𝐴 ⊆ R𝑘 .

Unless otherwise specified, the vertex of a cone will always be assumed to be the origin. A cone
C ⊂ R𝑛+1 is 𝐶𝛾-regular if the link L(C) of C is an (𝑛 − 1)-dimensional embedded 𝐶𝛾-submanifold of
S
𝑛. Here, when 𝛾 is not an integer, 𝐶𝛾 is understood as the usual Hölder regularity 𝐶 �𝛾�, {𝛾 }.

A hypersurface Σ ⊂ R𝑛+1 is 𝐶𝛾-asymptotically conical if there is a 𝐶𝛾-regular cone C ⊂ R𝑛+1 such
that lim𝜌→0+ 𝜌Σ = C in 𝐶

𝛾
𝑙𝑜𝑐 (R

𝑛+1 \ {0}); that is, there is a smooth hypersurface Γ ⊂ R𝑛+1 \ {0} so
that in each annulus 𝐵𝑅 \ 𝐵̄𝑅−1 , for sufficiently small 𝜌 > 0, the 𝜌Σ and C can be written as the normal
graphs of functions 𝑢𝑖 and u, respectively, over Γ so 𝑢𝑖 → 𝑢 in the 𝐶𝛾 topology. In this case, C is called
the asymptotic cone of Σ and is denoted by C (Σ).

2. Monotone expander flows

In this section, we give background on monotone expander flows that are asymptotic to a cone. These
play an important technical role in the proof of the main results.

A hypersurface Σ ⊂ R𝑛+1 is a self-expander if it satisfies the equation

HΣ − x⊥

2
= 0, (2.1)

where x is the position vector, the superscript ⊥ denotes the projection to the unit normal nΣ of Σ, and
HΣ is the mean curvature given by

HΣ = −𝐻ΣnΣ = −divΣ (nΣ)nΣ .

A hypersurface Σ is a self-expander if and only if the family of homothetic hypersurfaces, {Σ𝑡 }𝑡>0 =
{
√
𝑡Σ}𝑡>0, is a mean curvature flow – that is, a solution to the equation(

𝜕x
𝜕𝑡

)⊥
= HΣ𝑡 . (2.2)

Self-expanders model the behavior of a mean curvature flow when it emerges from a conical singularity
(see [3] and [10]), so it is natural to study self-expanders Σ asymptotic to cones C in the sense that
lim𝑡→0 H𝑛�

√
𝑡Σ = H𝑛�C. By [8, Proposition 3.3], if the cone C is 𝐶𝛾-regular for some 𝛾 ≥ 2, then Σ

has quadratic curvature decay and is 𝐶𝛾′-asymptotic to C for any 𝛾′ ∈ (0, 𝛾).
Variationally, self-expanders are critical points for the functional

𝐸 (Σ) =
∫
Σ
𝑒

|x|2
4 𝑑H𝑛. (2.3)
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The associated negative gradient flow is then called an expander flow – that is, a family {Σ𝑡 } of
hypersurfaces in R𝑛+1 satisfying the equation(

𝜕x
𝜕𝑡

)⊥
= HΣ𝑡 −

x⊥

2
. (2.4)

In general, an expander flow may become singular in finite time. However, various notions of weak
solutions to (2.4) are at our disposal which allow us to continue the flow through singularities. For
the purposes of this paper, we mention two of them: expander weak flow of closed sets in R𝑛+1 – see
[22, §11] for vector field − x

2 ; expander Brakke flow of Radon measures associated to n-dimensional
varifolds in R𝑛+1 – see [22, §13]. We omit the precise definitions for these weak flows because they are
not needed in what follows.

Of particular interest is the following special class of weak expander flows whose existence was
shown in [5]:

Definition 2.1. Given 𝑇 ∈ R and a 𝐶3-regular cone C ⊂ R𝑛+1, a strongly regular strictly monotone
expander weak flow asymptotic to C with starting time T is a family S = {Ω𝑡 }𝑡≥𝑇 of closed sets in R𝑛+1

with 𝑀𝑡 = 𝜕Ω𝑡 satisfying the following:

1. The spacetime track of S ,
⋃

𝑡≥𝑇 Ω𝑡 × {𝑡} is an expander weak flow with starting time T;
2. Ω𝑡2 ⊆ int(Ω𝑡1) for 𝑡2 > 𝑡1 ≥ 𝑇 ;
3. Given 𝜖 > 0, there is a radius 𝑅0 > 1 so that for 𝑡 ∈ [𝑇,∞), there is a𝐶2 function 𝑢(·, 𝑡) : C\𝐵𝑅0 → R

satisfying

sup
𝑝∈C\𝐵𝑅0

2∑
𝑖=0

|x(𝑝) |𝑖−1 |∇𝑖
C𝑢(𝑝, 𝑡) | ≤ 𝜖

and

𝑀𝑡 \ 𝐵2𝑅0 ⊂
{
x(𝑝) + 𝑢(𝑝, 𝑡)nC (𝑝) : 𝑝 ∈ C \ 𝐵𝑅0

}
⊂ 𝑀𝑡 ;

4. For [𝑎, 𝑏] ⊂ [𝑇,∞), {𝑀𝑡 }𝑡 ∈[𝑎,𝑏] is a partition of Ω𝑎 \ int(Ω𝑏);
5. {H𝑛�𝑀𝑡 }𝑡≥𝑇 is a unit-regular1 expander Brakke flow;
6. If S𝑖 is a blow-up sequence to S at a point 𝑋0 ∈ R𝑛+1 × (𝑇,∞)2 that converges to a limit flow

S ′ = {Ω′
𝑡 }𝑡 ∈R, then Ω′

𝑡 is convex for each t, and there is a 𝑇 ′ ∈ [−∞,∞] so that
(a) int(Ω′

𝑡 ) ≠ ∅ if 𝑡 < 𝑇 ′, while int(Ω′
𝑡 ) = ∅ if 𝑡 = 𝑇 ′;

(b) The spacetime tracks of the S𝑖 converge, in 𝐶∞
𝑙𝑜𝑐 (R

𝑛+1 × (−∞, 𝑇 ′)), to the spacetime track of S ′,
and {𝜕Ω′

𝑡 }𝑡<𝑇 ′ is a smooth mean curvature flow;
(c) Ω′

𝑡 = ∅ for 𝑡 > 𝑇 ′.
Furthermore, if S ′ is a tangent flow (i.e., the blow-ups of S are all centered at 𝑋0), then {𝜕Ω′

𝑡 }𝑡 ∈R
is either a static R𝑛 or a self-similarly shrinking Sℓ × R𝑛−ℓ for some 1 ≤ ℓ ≤ 𝑛.

We will need the following result of [5].

Proposition 2.2. For 𝑛 ≤ 6, let Ω be a closed subset ofR𝑛+1 such that 𝜕Ω is a𝐶3-asymptotically conical
hypersurface with asymptotic cone C. Assume that Ω is strictly expander mean convex; that is,

2𝐻𝜕Ω (𝑝) + x(𝑝) · n𝜕Ω (𝑝) > 0 for𝑝 ∈ 𝜕Ω,

1We say a flow is unit-regular if near every spacetime point of Gaussian density 1, the flow is regular in a ball in spacetime –
see [40].

2The S𝑖 are obtained by translating S by −𝑋𝑖 and then parabolically dilating by 𝜌𝑖 ; that is, (x, 𝑡) ↦→ (𝜌𝑖x, 𝜌2
𝑖 𝑡) for 𝑋𝑖 → 𝑋0

in spacetime and 𝜌𝑖 → ∞.
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where n𝜕Ω is the outward unit normal to Ω. Then there exists a strongly regular strictly monotone
expander weak flow S = {Ω𝑡 }𝑡≥0 asymptotic to C which starts with Ω0 = Ω, and such that the Ω𝑡

converge, in 𝐶∞
𝑙𝑜𝑐 (R

𝑛+1), to Ω′ =
⋂

𝑡≥0 Ω𝑡 and 𝜕Ω′ is a stable self-expander asymptotic to C.
In addition, if there is a closed set Ω′′ ⊆ Ω such that 𝜕Ω′′ is a smooth self-expander asymptotic to C,

then one can ensure that Ω′′ ⊆ Ω′.

3. Topological change of monotone expander flows and entropy

In this section, we observe how the results of White [41] can be used to understand the relationship be-
tween the topologies of asymptotically conical self-expanders when the asymptotic cone has sufficiently
small entropy.

Throughout this section, C ⊂ R𝑛+1 will be a cone of at least 𝐶3 regularity. Denote its link by L(C).
It is always possible to find an open subset 𝜔+ ⊂ S𝑛 \ L(C) with boundary L(C) – see [9, Section 4]
where the pair (𝜔+,L(C)) is called a boundary link. There is then a unique choice of unit normal, 𝜈,
on L(C) ⊂ S𝑛 so that 𝜈 is the outward normal to 𝜔+. We remark that −𝜈 is the outward normal to
𝜔− = S𝑛 \ cl(𝜔+) and (𝜔−,L(C)) is the only other boundary link associated to L(C).

Given a 𝐶3-asymptotically conical hypersurface Σ ⊂ R𝑛+1 with C (Σ) = C, define Ω+(Σ) ⊂ R𝑛+1 to
be the closed set with boundary Σ such that as 𝜌 → 0+, the 𝜌Ω+(Σ) ∩ S𝑛 converge as closed sets to
cl(𝜔+). In this case, one may orient Σ so that the outward normal points out of Ω+(Σ), and this choice
is compatible with the choice of 𝜈 in the obvious manner. Likewise, let Ω−(Σ) = R𝑛+1 \ int(Ω+(Σ)).

For two 𝐶3-asymptotically conical hypersurfaces Σ0,Σ1 ⊂ R𝑛+1 with the same asymptotic cone C,
we say Σ0 � Σ1 if Ω+(Σ1) ⊆ Ω+(Σ0). Let E (C) be the set of self-expanders asymptotic to C, and
thus, (E (C), �) is a partially ordered set. Observe that by swapping 𝜔+ with 𝜔−, which is the same as
swapping 𝜈 with −𝜈, one reverses the role of Ω+(Σ) and Ω−(Σ) and reverses the partial order.

We first study the case of a nondegenerate cone – that is, a cone, C for which there are no nontrivial
Jacobi fields that fix infinity on any element of E (C). For such C, all stable self-expanders in E (C) are
strictly stable.
Theorem 3.1. For 2 ≤ 𝑛 ≤ 6, let C be a nondegenerate 𝐶4-regular cone in R𝑛+1 such that L(C) is
connected and, for some 𝑚 ∈ [1, 𝑛 − 1],

𝜆(C) < 𝜆(S𝑚 × R𝑛−𝑚).

If Γ+ and Γ− are two elements of E (C) with Γ− � Γ+, then the inclusions 𝔦± : Ω±(Γ±) → Ω±(Γ∓) induce
homomorphisms

𝔦±∗ : 𝐻𝑘 (Ω±(Γ±)) → 𝐻𝑘 (Ω±(Γ∓))

such that
1. When 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑚, the maps 𝔦±∗ are bijective;
2. When 𝑛 − 𝑚 − 1 = 𝑘 ≤ 𝑚, the maps 𝔦±∗ are injective;
3. When 𝑛 − 𝑚 ≤ 𝑘 = 𝑚 + 1, the maps 𝔦±∗ are surjective.
Remark 3.2. It is an immediate consequence of the main result of [9] that, for 2 ≤ 𝑛 ≤ 6, if C is any
𝐶3-regular cone in R𝑛+1 with 𝜆(C) < 𝜆(S𝑛−1 × R), then given Γ+, Γ− ∈ E (C) with Γ− � Γ+, the
inclusions 𝔦± : Ω±(Γ±) → Ω±(Γ∓) are homotopy equivalences, and so 𝔦±∗ are all isomorphisms.

To prove Theorem 3.1, we need several auxiliary lemmas/propositions. If M = {𝜇𝑡 }𝑡≥𝑇 is a family
of Radon measures on R𝑛+1 and 𝑋0 = (x0, 𝑡0) is a spacetime point, then the Gaussian density of M
at 𝑋0, denoted 𝜃 (M, 𝑋0), is defined to be

𝜃 (M, 𝑋0) = lim
𝑡→𝑡−0

∫
(4𝜋(𝑡0 − 𝑡))−

𝑛
2 𝑒

− |x−x0 |2
4(𝑡0−𝑡 ) 𝑑𝜇𝑡 (3.1)

whenever the limit exists and is finite. Otherwise, we set 𝜃 (M, 𝑋0) = ∞.
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Lemma 3.3. Given 𝑇 ∈ R and a 𝐶3-regular cone C ⊂ R𝑛+1, let S = {Ω𝑡 }𝑡≥𝑇 be a strongly regular
strictly monotone expander weak flow asymptotic to C with starting time T. If 𝑀𝑡 = 𝜕Ω𝑡 and for some
𝑚 ∈ [1, 𝑛 − 1],

𝜆(𝑀𝑇 ) < 𝜆(S𝑚 × R𝑛−𝑚)

then for M = {H𝑛�𝑀𝑡 }𝑡≥𝑇 and every point 𝑋0 ∈ R𝑛+1 × (𝑇,∞),

𝜃 (M, 𝑋0) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1).

Proof. First, without loss of generality, we may assume 𝑇 = 0. Observe that if 𝑁𝜏 = 𝑒𝑡/2𝑀𝑡 with 𝜏 = 𝑒𝑡 ,
then 𝜆(𝑁𝜏) = 𝜆(𝑀log 𝜏) for 𝜏 ≥ 1 and {H𝑛�𝑁𝜏}𝜏≥1 is an integral Brakke flow. Thus, by the Huisken
monotonicity (see [24] and [30]), one has that 𝜆(𝑀𝑡 ) is decreasing in t. In particular, 𝜆(𝑀𝑡 ) ≤ 𝜆(𝑀0) for
all 𝑡 ≥ 0. By a variant of Huisken’s monotonicity formula (see [39, §11]), as our hypotheses ensure that
every tangent flow to M at a point 𝑋0 ∈ R𝑛+1 × (0,∞) is null, a static R𝑛 or a self-similarly shrinking
S
ℓ × R𝑛−ℓ , one has either 𝜃 (M, 𝑋0) = 0, 𝜃 (M, 𝑋0) = 1, or

𝜆(Sℓ × R𝑛−ℓ) = 𝜃 (M, 𝑋0) ≤ 𝜆(𝑀0) < 𝜆(S𝑚 × R𝑛−𝑚).

Combined with (1.3), it follows that 𝜃 (M, 𝑋0) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1). �

Let Ω be a closed subset of R𝑛+1 with smooth boundary, and let K be a closed subset of Ω. Following
White [41, Definition 5.1], a point 𝑝 ∈ 𝐾 is a regular point of K provided that either p is an interior point
of K; or 𝑝 ∈ Ω \ 𝜕Ω and Ω has a neighborhood, U, of p such that 𝐾 ∩𝑈 is diffeomorphic to a closed
half-space in R𝑛+1; or 𝑝 ∈ 𝜕Ω and Ω has a neighborhood U of p for which there is a diffeomorphism
that maps U onto the closed half-space {𝑥1 ≥ 0} ⊂ R𝑛+1 and that maps 𝐾 ∩𝑈 onto {𝑥1 ≥ 0, 𝑥2 ≥ 0}.
Points in K that are not regular points are singular points of K. We say K has smooth boundary if every
point in the boundary 𝜕𝐾 of 𝐾 ⊆ Ω is a regular point of K.

The following quantity is introduced by White [41, Definition 4.2].

Definition 3.4. Let Ω be a closed subset of R𝑛+1 with smooth boundary. For a closed set 𝐾 ⊆ Ω, we
define 𝑄(𝐾) to be the largest integer l with the following properties:

1. The singular set sing(𝐾) has Hausdorff dimension ≤ 𝑛 − 𝑙;
2. Let 𝑝𝑖 be a sequence of points in the interior of K converging to a point p in 𝜕𝐾 . Translate K by −𝑝𝑖

and dilate by 1/dist(𝑝𝑖 , 𝜕𝐾) to get 𝐾𝑖 . Then a subsequence of the 𝐾𝑖 converges to a convex set 𝐾 ′

(in R𝑛+1 or in a closed half-space in R𝑛+1) with smooth boundary, and the convergence is smooth on
bounded sets;

3. If 𝐾 ′ is as in (2), then 𝜕𝐾 ′ has trivial j-th homotopy group for every 𝑗 < 𝑙.

If no such integer exists, let 𝑄(𝐾) = −∞.

It is shown in [41, Proposition 4.3] that for mean convex mean curvature flow of compact hypersur-
faces, lower bounds on the quantity Q are closely related to upper bounds on the Gaussian density. We
adapt the arguments of [41] to establish an analogous relationship between these bounds for strongly
regular strictly monotone expander weak flows asymptotic to a cone.

Lemma 3.5. Given 𝑇 ∈ R and a 𝐶3-regular cone C ⊂ R𝑛+1, let S = {Ω𝑡 }𝑡≥𝑇 be a strongly reg-
ular strictly monotone expander weak flow asymptotic to C with starting time T. Assume that for
M = {H𝑛�𝜕Ω𝑡 }𝑡≥𝑇 and some 𝑚 ∈ [1, 𝑛 − 1],

𝜃 (M, 𝑋0) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1)

at every point 𝑋0 ∈ R𝑛+1 × (𝑇,∞). There is an 𝑅1 > 1 so that for each 𝑅 > 𝑅1, if one sets 𝐾𝑡 = Ω𝑡 ∩ 𝐵̄𝑅,
then 𝑄(𝐾𝑡 ) ≥ 𝑚 + 1 for each 𝑡 > 𝑇 .
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Proof. Fix 𝜖 = 10−10 and let 𝑅0 be the radius given by Definition 2.1. We choose 𝑅1 = 4𝑅0 and so,
for 𝑅 > 𝑅1, the closed ball 𝐵̄𝑅 has a collared neighborhood U of 𝜕𝐵𝑅 so that the restriction {𝐾𝑡 }𝑡≥𝑇
of S to 𝐵̄𝑅 is regular in U. By our hypotheses and (1.3), every tangent flow at a given singularity is a
self-similarly shrinking Sℓ ×R𝑛−ℓ with ℓ ≥ 𝑚 + 1. It follows from a dimension reduction argument (see
[39, §11]) that, for 𝑡 > 𝑇 , the singular set of 𝐾𝑡 has Hausdorff dimension at most 𝑛 − 𝑚 − 1.

For 𝑡 > 𝑇 fixed, let 𝑝𝑖 be a sequence of points in the interior of 𝐾𝑡 converging to a point 𝑝 ∈ 𝜕𝐾𝑡 , and
let 𝜌𝑖 = 1/dist(𝑝𝑖 , 𝜕𝐾𝑡 ) so 𝜌𝑖 → ∞. Translate 𝐾𝑡 by −𝑝𝑖 and dilate by 𝜌𝑖 to get 𝐾 𝑖

𝑡 . Then a subsequence
of the 𝐾 𝑖

𝑡 converges to a set 𝐾 ′. If 𝑝 ∈ 𝜕𝐵𝑅, then p is a regular point of 𝐾𝑡 . Thus, modulo a rigid motion,
𝐾 ′ = {𝑥1 ≥ 0} ⊂ R𝑛+1 or 𝐾 ′ = {x · v ≥ 0, 𝑥1 ≥ 0} ⊂ {𝑥1 ≥ 0} for some v ∈ S𝑛, and the convergence
is smooth on bounded sets. In particular, 𝐾 ′ has trivial homotopy groups. So we may assume 𝑝 ∈ 𝐵𝑅.
Since the 𝐾 𝑖

𝑡 are part of a blow-up sequence of S and contain 𝐵1, our hypotheses ensure 𝐾 ′ is a convex
subset of R𝑛+1 with smooth boundary and the convergence is smooth on bounded sets.

It remains only to show that 𝜕𝐾 ′ has trivial j-th homotopy group for 𝑗 < 𝑚 + 1. By convexity, either
𝜕𝐾 ′ is homeomorphic to R𝑛, thus having trivial homotopy groups, or 𝜕𝐾 ′ is isometric to 𝜕𝐾 × R𝑛−𝑞
for some compact, convex set 𝐾 ⊂ R𝑞+1 – see [13, p. 3]. As 𝜕𝐾 ′ is part of a limit flow at 𝑃 = (𝑝, 𝑡), one
appeals to a variant of Huisken’s monotonicity formula (see [39, §11]) and the Gaussian density bound
to get

𝜆(𝜕𝐾 ′) ≤ 𝜃 (M, 𝑃) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1) < 2. (3.2)

In particular, this gives 𝑞 ≥ 1, as otherwise, 𝜕𝐾 ′ is the union of two parallel planes with entropy 2.
Thus, by results of Huisken [23], the mean curvature flow starting from 𝜕𝐾 ′ is given by the product of
R
𝑛−𝑞 and the flow K starting from 𝜕𝐾 ⊂ R𝑞+1, where K is smooth until it disappears in a round point.

Thus, 𝜕𝐾 ′ is diffeomorphic to S𝑞 × R𝑛−𝑞 , and so, by Huisken monotonicity (see [24]) and (3.2),

𝜆(S𝑞 × R𝑛−𝑞) ≤ 𝜆(𝜕𝐾 ′) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1).

Combined with (1.3), it follows that 𝑞 ≥ 𝑚 + 1 and so 𝜋 𝑗 (𝜕𝐾 ′) = {0} for 𝑗 < 𝑚 + 1. �

Next, we use results of White [41] together with facts about algebraic topology to study topological
properties of the expander flow as in Lemma 3.5.
Proposition 3.6. Given 𝑇 ∈ R and a 𝐶3-regular cone C ⊂ R𝑛+1, let S = {Ω𝑡 }𝑡≥𝑇 be a strongly
regular strictly monotone expander weak flow asymptotic to C with starting time T. Assume that for
M = {H𝑛�𝜕Ω𝑡 }𝑡≥𝑇 and some 𝑚 ∈ [1, 𝑛 − 1],

𝜃 (M, 𝑋0) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1)

at every point 𝑋0 ∈ R𝑛+1 × (𝑇,∞). If [𝑎, 𝑏] ⊂ (𝑇,∞) and both Ω𝑐
𝑎 and Ω𝑐

𝑏 are path-connected, then
the inclusion 𝔧 : Ω𝑐

𝑎 → Ω𝑐
𝑏 induces homomorphisms

𝔧∗ : 𝐻𝑘 (Ω𝑐
𝑎) → 𝐻𝑘 (Ω𝑐

𝑏)

which are bijective when 𝑘 < 𝑚 + 1 and surjective when 𝑘 = 𝑚 + 1.
If, in addition, both 𝜕Ω𝑎 and 𝜕Ω𝑏 are smooth hypersurfaces, then the above remains true for the

closures of Ω𝑐
𝑎 and Ω𝑐

𝑏 , and the inclusion 𝔦 : Ω𝑏 → Ω𝑎 induces homomorphisms

𝔦∗ : 𝐻𝑘 (Ω𝑏) → 𝐻𝑘 (Ω𝑎)

which are bijective when 𝑘 > 𝑛 − 𝑚 − 1 and injective when 𝑘 = 𝑛 − 𝑚 − 1.
Proof. Fix 𝜖 = 10−10 and let 𝑅0 be the radius given by Definition 2.1. Let 𝑅1 be the constant given by
Lemma 3.5. For 𝑅 > 4 max{𝑅0, 𝑅1} fixed, we think of 𝐵̄𝑅 as a manifold with boundary 𝑆𝑅. For 𝑡 ≥ 𝑇 ,
let 𝐾𝑡 = Ω𝑡 ∩ 𝐵̄𝑅. In what follows, denote by

𝐾𝑐
𝑡 , int(𝐾𝑡 ), and 𝜕𝐾𝑡
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the relative (in 𝐵̄𝑅) complement, interior, and boundary, respectively, of 𝐾𝑡 . Observe 𝐾𝑡 and 𝐾𝑐
𝑡

are deformation retracts of Ω𝑡 and Ω𝑐
𝑡 , respectively. Thus, by homotopy equivalence, if the maps

𝔧′ : 𝐾𝑐
𝑎 → 𝐾𝑐

𝑏 and 𝔦′ : 𝐾𝑏 → 𝐾𝑎 are the inclusion maps, then it suffices to show the following:

(i) The induced homomorphisms 𝔧′∗ : 𝐻𝑘 (𝐾𝑐
𝑎) → 𝐻𝑘 (𝐾𝑐

𝑏) are bijective when 𝑘 < 𝑚 + 1 and surjective
when 𝑘 = 𝑚 + 1; and;

(ii) Suppose both 𝜕𝐾𝑎 and 𝜕𝐾𝑏 are smooth, embedded manifolds with boundary and their boundaries
meet 𝑆𝑅 transversally – this last condition means 𝜕𝐾𝑎 and 𝜕𝐾𝑏 are manifolds with boundary in the
sense of [20, pg. 252]. Then the statement of (i) is still true for the relative (in 𝐵̄𝑅) closures of 𝐾𝑐

𝑎

and 𝐾𝑐
𝑏 , and the induced homomorphisms 𝔦′∗ : 𝐻𝑘 (𝐾𝑏) → 𝐻𝑘 (𝐾𝑎) are bijective when 𝑘 > 𝑛−𝑚−1

and injective when 𝑘 = 𝑛 − 𝑚 − 1.

To see (i), observe that, by Lemma 3.5,𝑄(𝐾𝑡 ) ≥ 𝑚+1 for 𝑡 ∈ [𝑎, 𝑏). Combined with our hypotheses,
it follows from [41, Theorem 5.2] that (𝐾𝑐

𝑏 , 𝐾
𝑐
𝑎) is (𝑚 + 1)-connected. Thus, by the relative Hurewicz

theorem (e.g., [20, Theorem 4.37]), as 𝐾𝑐
𝑏 and 𝐾𝑐

𝑎 are both path-connected,

𝐻ℓ (𝐾𝑐
𝑏 , 𝐾

𝑐
𝑎) = {0} for ℓ ≤ 𝑚 + 1. (3.3)

The claim follows from the long exact sequence for 𝐻∗(𝐾𝑐
𝑏 , 𝐾

𝑐
𝑎) – see [20, pp. 115–117].

To see (ii), as 𝜕𝐾𝑎 and 𝜕𝐾𝑏 are smooth, embedded manifolds with boundary that meet 𝑆𝑅 transver-
sally, it follows from homotopy equivalence that (i) holds for the relative (in 𝐵̄𝑅) closures of 𝐾𝑐

𝑎 and
𝐾𝑐
𝑏 . As arguing in [41, Theorem 6.2], by the excision theorem (see [20, Theorem 2.20]) and (3.3), if

ℓ ≤ 𝑚 + 1, then

𝐻ℓ (𝐾𝑎 \ int(𝐾𝑏), 𝜕𝐾𝑎) � 𝐻ℓ (𝐾𝑐
𝑏 , 𝐾

𝑐
𝑎) � {0}.

Combined with the universal coefficients theorem (see [20, Theorem 3.2]), one has

𝐻ℓ (𝐾𝑎 \ int(𝐾𝑏), 𝜕𝐾𝑎) = {0}.

The hypotheses on 𝐾𝑎 and 𝐾𝑏 ensure that 𝐾𝑎 \ int(𝐾𝑏) is an orientable compact manifold with boundary
of dimension 𝑛 + 1 in the sense of [20, pg. 252] – we emphasize this is in a topological sense and not a
smooth sense. Moreover, the boundary is 𝑀 ∪ 𝑁 where

𝑀 = 𝜕𝐾𝑎 and 𝑁 = 𝜕𝐾𝑏 ∪ 
��
⋃

𝑡 ∈[𝑎,𝑏)
𝜕𝐾𝑡 ∩ 𝑆𝑅

���.
Thus, by Poincaré–Lefschetz duality (see [20, Theorem 3.43]), it follows that

𝐻𝑛+1−ℓ (𝐾𝑎 \ int(𝐾𝑏), 𝑁) � 𝐻ℓ (𝐾𝑎 \ int(𝐾𝑏), 𝑀) � {0}.

As (𝐾𝑎 \ int(𝐾𝑏), 𝑁) is homotopy equivalent to (𝐾𝑎 \ int(𝐾𝑏), 𝜕𝐾𝑏), it follows that

𝐻𝑛+1−ℓ (𝐾𝑎 \ 𝐾𝑏 , 𝜕𝐾𝑏) = {0}.

Hence, one may use the excision theorem and the long exact sequence for 𝐻∗(𝐾𝑎, 𝐾𝑏) as before to get
the claim. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose without loss of generality, Γ− ≠ Γ+, as otherwise, the inclusion of
Ω±(Γ±) in Ω±(Γ∓) is equal to the identity map and so induces isomorphisms on the homologies (that
is, the theorem is trivially true). We first show there is a finite number of elements Γ1, Γ2, . . . , Γ𝐿 of
E (C) such that
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◦ Γ− = Γ1 � Γ2 � · · · � Γ𝐿 = Γ+;
◦ The Γℓ alternate between being (strictly) stable and unstable;
◦ If Γℓ is unstable, then there exist two perturbations by normal graphs of Γℓ to its either side,

Γ−
ℓ � Γℓ � Γ+

ℓ such that Ω±(Γ±
ℓ ) is strictly expander mean convex, and there is a strongly regular

strictly monotone expander weak flow Sℓ asymptotic to C that starts from Ω±(Γ±
ℓ ) and converges, in

𝐶∞
𝑙𝑜𝑐 (R

𝑛+1), to Ω±(Γℓ±1) as 𝑡 → ∞ provided 1 ≤ ℓ ± 1 ≤ 𝐿.

To see this, first observe that every element of E (C) is connected because L(C) is connected and
there are no closed expanders. By [9, Proposition 6.3] and [11, Proposition 3.2], if Γ± is unstable, then
there is a 𝐶3-asymptotically conical hypersurface Γ′

± given by a normal graph of Γ± that is trapped
between Γ− and Γ+, and so that Ω∓(Γ′

±) is strictly expander mean convex. Thus, by Proposition 2.2,
there is a strongly regular strictly monotone expander weak flow asymptotic to C that starts from Ω∓(Γ′

±)
and, as 𝑡 → ∞, converges smoothly to Ω∓(Γ̂±) for stable Γ̂± ∈ E (C). And the construction ensures
Γ− � Γ̂± � Γ+. Thus, we may assume both Γ+ and Γ− are stable. In what follows, we prove the claim by
extending the arguments of [9] for 𝑚 = 1 to general m.

Let E𝑆 (Γ−, Γ+) be the set of elements Γ of E (C) that are stable and such that Γ− � Γ � Γ+. The
compactness properties of the space of stable expanders – that is, [9, Proposition 4.4 and Proposition 7.2]
– imply there are finitely many topological types for the elements of E𝑆 (Γ−, Γ+). The nondegeneracy
hypothesis on C implies every element of E𝑆 (Γ−, Γ+) is strictly stable. Combining this with properties of
the manifold structure of the space of expanders from [7], one concludes that E𝑆 (Γ−, Γ+) is a finite set –
see [9, Lemma 8.1]. We use induction on the number of elements 𝐽 = |E𝑆 (Γ−, Γ+) |. There are at least two
elements by hypothesis and, when 𝐽 = 2, as Γ+, Γ− ∈ E (C) are (strictly) stable and Γ− � Γ+, a min-max
construction (see [11]) yields a Γ̃ ∈ E (C) \ {Γ+, Γ−} with Γ− � Γ̃ � Γ+. Indeed, our hypotheses ensure
that Γ̃ is connected and unstable, and so a straightforward modification of the arguments in the previous
paragraph gives the claim for 𝐽 = 2. Next, suppose Γ̃+ is a maximal element of E𝑆 (Γ−, Γ+) \ {Γ+}; that
is, there are no Γ ∈ E𝑆 (Γ−, Γ+) \ {Γ+, Γ̃+} such that Γ̃+ � Γ � Γ+; such an element exists as we are
considering a finite ordered set. For 𝐽 ≥ 3, one has |E𝑆 (Γ̃+, Γ+) | = 2 and |E𝑆 (Γ−, Γ̃+) | ≤ 𝐽 − 1. The
claim follows from the induction hypothesis.

For 1 ≤ ℓ ≤ 𝐿 − 1, let 𝔦+ℓ be the inclusion of Ω+(Γℓ+1) in Ω+(Γℓ) and 𝔦−ℓ the inclusion of Ω−(Γℓ) in
Ω−(Γℓ+1). If Γℓ is unstable, one can ensure, by [8, Lemma 3.5],

𝜆(Γ±
ℓ ) < 𝜆(Γℓ) + 𝜖 = 𝜆(C) + 𝜖 < 𝜆(S𝑚 × R𝑛−𝑚).

By Lemma 3.3, if Mℓ is the measure flow associated with Sℓ – see Item (5) of Definition 2.1 – one
has 𝜃 (Mℓ , 𝑋0) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1) at every spacetime point 𝑋0. Thus, Proposition 3.6 together with
homotopy equivalence implies that the induced homomorphisms (𝔦+ℓ )∗ : 𝐻𝑘 (Ω+(Γℓ+1)) → 𝐻𝑘 (Ω+(Γℓ))
are bijective when 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑚, are injective when 𝑛 − 𝑚 − 1 = 𝑘 ≤ 𝑚, and are surjective when
𝑛 − 𝑚 ≤ 𝑘 = 𝑚 + 1. The same is true for the induced maps (𝔦−ℓ )∗ : 𝐻𝑘 (Ω−(Γℓ)) → 𝐻𝑘 (Ω−(Γℓ+1)). As
𝔦+ = 𝔦+1 ◦ · · · ◦ 𝔦+𝐿−1 and 𝔦− = 𝔦−𝐿−1 ◦ · · · ◦ 𝔦

−
1 , the claim follows. �

Next, we aim to extend Theorem 3.1 by dropping the nondegeneracy hypothesis. Because nondegen-
erate cones are generic in an appropriate space of cones, one would like to perturb the pair Γ+, Γ− ∈ E (C)
with Γ− � Γ+ and cone C in order to self-expanders Γ′

+, Γ
′
− asymptotic to C ′ where C ′ is nondegenerate

– see [7, Corollary 1.2] – and then apply Theorem 3.1 to the perturbed pair.
In general, it may not be possible to perturb both elements in the pair to self-expanders – see Figure 1

for an illustration. However, one can always ensure that Γ′
+, Γ

′
− are either self-expanders or expander

mean convex hypersurfaces. For exapnder mean convex perturbations, invoking Propositions 2.2 and
3.6 yields self-expanders Γ̂+, Γ̂− ∈ E (C ′) along with relationships between the topologies of Γ′

± and Γ̂±.
However, to complete this argument, one must be able to control the relationship between the partial
orders and direction of the expander mean curvature vectors of the initial perturbations which is a subtle
issue. Specifically, one must know that Γ̂+ � Γ′

+, Γ′
− � Γ̂−, and Γ̂− � Γ̂+, which do not, in general, hold.
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Figure 1. A schematic illustration of the situation in case (2) together with case (c). The horizontal axis
is space of cones, the vertical axis the space of hypersurfaces asymptotic to the given cone where height
corresponds to the order, �. The arrows represent directions of flow lines.

To overcome this, we prove a restricted result by requiring Γ+ and Γ− to be the greatest and least element
of E (C) – whose existence is shown in [9, Theorem 4.1].

Proposition 3.7. For 2 ≤ 𝑛 ≤ 6, let C be a degenerate 𝐶5-regular cone in R𝑛+1 such that L(C) is
connected and, for some 𝑚 ∈ [1, 𝑛 − 1],

𝜆(C) < 𝜆(S𝑚 × R𝑛−𝑚).

If Γ+ and Γ− are respectively the greatest and least element of E (C), that is, Γ− � Γ � Γ+ for Γ ∈ E (C),
then the inclusions 𝔦± : Ω±(Γ±) → Ω±(Γ∓) induce homomorphisms

𝔦±∗ : 𝐻𝑘 (Ω±(Γ±)) → 𝐻𝑘 (Ω±(Γ∓))

such that

1. When 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑚, the maps 𝔦±∗ are bijective;
2. When 𝑛 − 𝑚 − 1 = 𝑘 ≤ 𝑚, the maps 𝔦±∗ are injective;
3. When 𝑛 − 𝑚 ≤ 𝑘 = 𝑚 + 1, the maps 𝔦±∗ are surjective.

Proof. First we show there is a sequence of nondegenerate 𝐶4-regular cones Cℓ ⊂ R𝑛+1 with link L(Cℓ)
so that L(Cℓ ) → L(C) in 𝐶4(S𝑛) and Γℓ

+ → Γ+ in 𝐶∞
𝑙𝑜𝑐 (R

𝑛+1), where Γℓ
+ is the greatest element of

E (Cℓ). In particular, for sufficiently large ℓ,

𝜆(Cℓ) < 𝜆(C) + 𝜖 < 𝜆(S𝑚 × R𝑛−𝑚). (3.4)
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To see this, first observe by [9, Theorem 4.1], one has Γ+ is a stable self-expander. Let K denote the
space of Jacobi fields on Γ+ that fix the infinity. Using standard spectral theory and the results of [4] –
see also [7, Lemma 6.1] and [11, Proposition 3.2] – together with the connectedness of Γ+, it follows
that dimK ≤ 1 and every element of K either is identically 0 or has a sign and an asymptotic expansion
with leading order term of the form 𝛼𝑟−𝑛−1𝑒−𝑟

2/4, where 𝑟 = |x| and 𝛼 is a function on L(C).
We now appeal to results of [7] to perturb the asymptotic cone and the self-expander Γ+. First, recall

that ACH4
𝑛 (Γ+) denotes the space of 𝐶4-asymptotically conical embeddings of Γ+ into R𝑛+1, equipped

with the weighted 𝐶4 norm with weight r – see [7, §3.2] for the precise definition. Following [7], say a
𝐶3-regular cone C ′ is nondegenerate if no self-expander asymptotic to C ′ admits a nontrivial Jacobi field
– as shown in [7], such cones are generic in a suitable sense. With this in mind, we use [7, Theorem 7.1]
to choose a sequence of 𝐶4-regular cones Cℓ along with 𝐶4-asymptotically conical hypersurfaces Γℓ
with nondegenerate asymptotic cone so that the Cℓ converge to C and the Γℓ converge Γ+ in ACH4

𝑛 (Γ+).
Here, we understand the convergence by identifying the Γℓ with the parameterizations given by the
inverse of the nearest point projections onto Γ+ which are elements of ACH4

𝑛 (Γ+).
It follows from [7, Theorem 7.1] that the cones Cℓ and hypersurfaces Γℓ can be chosen so that either:

1. If K = {0}, then Γℓ ∈ E (Cℓ) for each ℓ; or;
2. If K ≠ {0}, then 2HΓℓ − x⊥ is nowhere vanishing and the pushforward of it by the nearest projection

onto Γ+ is a nonzero element of K.

If case (2) occurs, then one can modify the choice of cones in order to ensure that 2HΓℓ − x⊥ points
into Ω+(Γℓ) – here, one chooses the boundary link of L(Cℓ) in the obvious way compatible with that
of L(C). This ensures that for the choice of unit normal nΓℓ on Γℓ that is compatible with the boundary
link – that is, that points out of Ω+(Γℓ) – one has 2𝐻Γℓ + x · nΓℓ > 0. That is, we may either choose
the Γℓ to all be self-expanders or to all be expander mean convex with expander mean curvature vector
pointing into Ω+(Γℓ).

In case (1), it is readily seen that the construction and the compactness properties of spaces of
expanders [9, Proposition 4.4] ensure that the Γℓ

+ converge smoothly on compact sets to Γ+. In case (2),
by Proposition 2.2, the expander flow starting from Γℓ is contained in Ω+(Γℓ) and is asymptotic at time
∞ to a stable self-expander Γ̂ℓ ∈ E (Cℓ). As Γℓ � Γ̂ℓ and Γℓ → Γ+, invoking compactness again gives
that the Γ̂ℓ converge, in 𝐶∞

𝑙𝑜𝑐 (R
𝑛+1), to a limit expander Γ̂ ∈ E (C) that satisfies Γ+ � Γ̂. As Γ+ is the

greatest element one must have Γ+ = Γ̂. The same reasoning ensures that, up to passing to a further
subsequence, the greatest elements, Γℓ

+, of E (Cℓ) also converge to Γ+. This verifies the initial claim that
we may find a sequence of cones Cℓ so that the greatest elements, Γℓ

+, of E (Cℓ) converge to Γ+.
Using the sequence of cones, Cℓ , from the previous step and making the same argument with Γ− in

place of Γ+ yields a sequence of 𝐶4-asymptotically conical hypersurfaces Υℓ with asymptotic cone Cℓ
that converges to Γ− in ACH4

𝑛 (Γ−) and such that, up to passing to a subsequence, one of the following
holds:

(a) Υℓ ∈ E (Cℓ) for each ℓ;
(b) 2𝐻Υℓ + x · nΥℓ < 0 for each ℓ;
(c) 2𝐻Υℓ + x · nΥℓ > 0 for each ℓ.

Here, nΥℓ is the outward normal to Ω+(Υℓ). Case (b) means the expander mean curvature vector points
into Ω+(Υℓ) and out of Ω−(Υℓ) and case (c) means it points out of Ω+(Υℓ) and into Ω−(Υℓ). Observe
that three cases may occur rather than two as in the previous step, as we have already fixed the sequence
of cones so we cannot specify whether the nowhere zero expander mean curvature vector points out of
or into Ω+(Υℓ) only that one of the two situations holds for all ℓ.

When case (a) or (b) occurs, one argues as before to see the least elements Γℓ
− of E (Cℓ) converge

smoothly on compact sets to Γ−. By [8, Proposition 3.3], there is a radius 𝑅 > 1 so that Ω±(Γℓ
−) ∩ 𝐵̄𝑅 is

a deformation retract of Ω±(Γℓ
−) for each ℓ. The nature of convergence ensures that Ω±(Γℓ

−) is homotopy
equivalent to Ω±(Γ−) for sufficiently large ℓ. Likewise, Ω±(Γℓ

+) is homotopy equivalent to Ω±(Γ+) for
large ℓ. The claim follows from this and Theorem 3.1 for Γℓ

− � Γℓ
+ (in view of (3.4)).
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It remains only to deal with case (c). We refer to Figure 1. Fix a large ℓ so that Ω±(Γℓ
+) and

Ω±(Υℓ) are homotopy equivalent to Ω±(Γ+) and Ω±(Γ−), respectively. Observing Υℓ � Γℓ
+, we then

let 𝔦+ℓ : Ω+(Γℓ
+) → Ω+(Υℓ) and 𝔦−ℓ : Ω−(Υℓ) → Ω−(Γℓ

+) be the inclusion maps. Hence, it suffices to
show the induced maps (𝔦+ℓ )∗ : 𝐻𝑘 (Ω+(Γℓ

+)) → 𝐻𝑘 (Ω+(Υℓ)) and (𝔦−ℓ )∗ : 𝐻𝑘 (Ω−(Υℓ)) → 𝐻𝑘 (Ω−(Γℓ
+))

are bijective when 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑚, are injective when 𝑛 − 𝑚 − 1 = 𝑘 ≤ 𝑚, and are surjective when
𝑛 − 𝑚 ≤ 𝑘 = 𝑚 + 1.

By Proposition 2.2, there is a strongly regular strictly monotone expander weak flow Sℓ asymptotic
to Cℓ with initial data Ω+(Υℓ), and the flow converges smoothly to a closed set with smooth boundary
Υ̂ℓ ∈ E (Cℓ) satisfying Υℓ � Υ̂ℓ � Γℓ

+. In particular, for large t, the time-t slice of the flow line is
smoothly isotopic to Υ̂ℓ . By construction,

𝜆(Υℓ) < 𝜆(Γ−) + 𝜖 = 𝜆(C) + 𝜖 < 𝜆(S𝑚 × R𝑛−𝑚),

and so the Huisken monotonicity [24] implies, for 𝑋0 ∈ R𝑛+1 × (0,∞), that

𝜃 (Mℓ , 𝑋0) ≤ 𝜆(S𝑚+1 × R𝑛−𝑚−1),

where Mℓ is the measure flow associated with Sℓ – see Item (5) of Definition 2.1. The result follows
by combining Proposition 3.6 applied to Sℓ which yields relations between the topologies of Υℓ � Υ̂ℓ

together with Theorem 3.1 which gives relationships between the topologies of Υ̂ℓ � Γℓ
+. Observe that

Theorem 3.1 applies to Υ̂ℓ � Γ+
ℓ because of (3.4) and because the Cℓ were chosen to be nondegenerate.

�

4. Density of minimal cones

In this section, we prove the main results about densities of minimal cones. We continue to use the
conventions of Section 3. We will repeatedly invoke the following auxiliary lemma about properties of
the greatest and least element of E (C) for a minimal cone C – see [9, Theorem 4.1] for the existence of
those elements.
Lemma 4.1. For 3 ≤ 𝑛 ≤ 6, let C ⊂ R𝑛+1 be a non-flat regular minimal cone. If Σ+ and Σ− are
respectively the greatest and least element of E (C), then the following is true:
1. L(C) is connected;
2. Σ± ⊂ int(Ω±(C));
3. The projections Π± : Σ± → S𝑛 given by

Π±(𝑝) = x(𝑝)
|x(𝑝) |

are diffeomorphisms onto their images int(Ω±(C)) ∩ S𝑛;
4. The sets Ω∓(Σ±) are star-shaped relative to 0;
5. The inclusions of Σ± into int(Ω±(C)) are deformation retracts.
Proof. First of all, because L(C) is a smooth minimal hypersurface in S𝑛, the Frankel theorem [18]
ensures it has only one connected component.

As C is a non-flat regular minimal cone, it is E-stationary and singular. It follows from the regularity
theory for area-minimizing hypersurfaces that C cannot be E-minimizing. Thus, Σ± ⊂ int(Ω±(C)), as
otherwise, one may use a minimization procedure (see [31, pp. 13–14] and [17, §6] or [9, §4]) to
construct a Σ′

± ∈ E (C) so that Σ′
± is contained in the interior of Ω±(Σ±) ∩ Ω±(C), either contradicting

Σ+ being the greatest element or Σ− being the least.
Next, we show

√
𝑡1Σ+ �

√
𝑡2Σ+ for 0 < 𝑡1 < 𝑡2, which implies HΣ+ vanishes nowhere and points

into Ω+(Σ+). To see this, we let 𝛿 = 𝑡2 − 𝑡1 and consider two mean curvature flows M = {
√
𝑡Σ+}𝑡>0

and M′ = {
√
𝑡 + 𝛿Σ+}𝑡>0. As Ω+(

√
𝛿Σ+) ⊂ int(Ω+(C)), the continuity of flows ensures that, for 𝑡 > 0
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small, Ω+(
√
𝑡 + 𝛿Σ+) ∩ 𝜕𝐵2𝑅 is contained in the interior of Ω+(

√
𝑡Σ+) ∩ 𝜕𝐵2𝑅. Suppose s is the first

time in (0, 𝑡1] such that this fails. As Σ+ is 𝐶2-asymptotic to C, there is a radius 𝑅 > 1 so that√
𝑡 + 𝛿Σ+ \𝐵2𝑅 can be written as an almost flat normal graph of a function 𝑢(𝑡, ·) over (a subset of)

√
𝑡Σ+

for 0 ≤ 𝑡 ≤ 𝑡1. A straightforward, but tedious, computation gives that u satisfies a uniformly parabolic
equation with bounded coefficients. As 𝑢 ≤ 0 on the parabolic boundary, the strict maximum principle
on noncompact regions – for example, Theorem 10 and Theorem 7 in [34, Chapter 3]3 – implies 𝑢 < 0
in the interior. That is, the restriction of M to (R𝑛+1 \ 𝐵̄2𝑅) × (0, 𝑠] is disjoint from M′. Thus, there
is a time 𝑠′ ∈ (0, 𝑠] so that the restriction of M to (0, 𝑠′) lies on one side of M′ and M touches M′

at a point in 𝐵̄2𝑅 at time 𝑠′, which violates the strict maximum principle on compact regions. That is,√
𝑡 + 𝛿Σ+ ∩

√
𝑡Σ+ ∩ 𝜕𝐵2𝑅 = ∅ for 𝑡 ∈ (0, 𝑡1]. The claim follows from the strict maximum principle.

Swapping the orientation, the arguments above imply HΣ− vanishes nowhere and points into Ω−(Σ−).
The expander equation (2.1) implies x · nΣ+ > 0 and x · nΣ− < 0, where nΣ± is the outward normal to
Ω+(Σ±). It follows from [6, Proposition 5.1] that the projection Π± : Σ± → S𝑛 is a diffeomorphism onto
its image, and the image is int(Ω±(C)) ∩ S𝑛. This also implies that Ω∓(Σ±) is star-shaped relative to 0
and that the inclusions of Σ± into int(Ω±(C)) are deformation retracts and so completes the proof. �

Theorem 1.1 follows from the proposition below.

Proposition 4.2. For 3 ≤ 𝑛 ≤ 6, let C be a regular minimal cone in R𝑛+1 with

𝜆(C) < 𝜆(S𝑛−1 × R).

Then, for Σ ∈ E (C), both Ω+(Σ) and Ω−(Σ) are contractible. This means Σ and both components of
S
𝑛 \ L(C) are contractible.

Remark 4.3. The fact that the two components of S𝑛 \L(C) are contractible implies L(C) is a homology
sphere, but cannot rule out the presence of torsion elements in the fundamental group when 𝑛 ≥ 4.

Proof of Proposition 4.2. By the maximum principle, if C is flat, then the only self-expander asymptotic
to C is a hyperplane and the claim holds trivially. Otherwise, letΣ+ andΣ− be respectively the greatest and
least element of E (C). By Lemma 4.1, L(C) is connected, and both Ω−(Σ+) and Ω+(Σ−) are star-shaped
relative to 0 and so are contractible. Combined with [9, Theorem 1.1], it follows that, for Σ ∈ E (C), both
Ω−(Σ) and Ω+(Σ) are contractible. Furthermore, by Lemma 4.1, if 𝜔± = int(Ω±(C)) ∩ S𝑛, then both
Σ± and 𝜔± are homotopy equivalent to Ω±(Σ±), and thus, both Σ± and 𝜔± are contractible. Finally, by
[9, Theorem 1.1], every Σ ∈ E (C) is diffeomorphic to Σ+ and so is contractible. �

Theorem 1.2 follows from the proposition below.

Proposition 4.4. For 3 ≤ 𝑛 ≤ 6, let C be a regular minimal cone in R𝑛+1 with

𝜆(C) < 𝜆(S𝑛−2 × R2).

If Σ+ and Σ− are respectively the greatest and least element of E (C), then, for 𝑘 ≥ 0,

𝐻̃𝑘 (Ω∓(Σ±)) = 𝐻̃𝑘 (Ω±(Σ±)) = {0}.

This means Σ+, Σ−, and the two components of S𝑛 \L(C) are all homology balls. In particular, L(C) is
a homology sphere, and when 𝑛 = 3, the cone C is flat.

Proof. If C is flat, then so is Σ±. Otherwise, by Lemma 4.1, L(C) is connected and Ω∓(Σ±) are star-
shaped relative to 0. In particular, it follows that Ω∓(Σ±) are homotopy equivalent to 𝐵𝑛+1

1 and so have
trivial reduced homology groups.

3Observe the domains of 𝑢 (𝑡 , ·) may be parametrized as a differentiable family of embeddings from C \ 𝐵2𝑅 into R𝑛+1. One
then applies the referenced results to the composition of u with the parametrization.
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Likewise, if 𝜔± = int(Ω±(C)) ∩ S𝑛, then Ω±(Σ±) is homotopy equivalent to 𝜔±, and so, for 𝑘 ≥ 0,

𝐻𝑘 (Ω±(Σ±)) � 𝐻𝑘 (𝜔±).

In particular, by the Alexander duality theorem – for example, [20, Theorem 3.44] – one immediately has

𝐻𝑛+1 (Ω±(Σ±)) � 𝐻𝑛 (Ω±(Σ±)) � 𝐻𝑛−1 (Ω±(Σ±)) � {0}.

By Theorem 3.1 and Proposition 3.7, for 2 ≤ 𝑘 ≤ 𝑛 − 2, one has 𝐻𝑘 (Ω±(Σ±)) is isomorphic
to 𝐻𝑘 (Ω±(Σ∓)) and so is trivial (this is vacuous for 𝑛 = 3). Moreover, for 1 = 𝑘 ≤ 𝑛 − 2, one has
𝐻1 (Ω±(Σ±)) is isomorphic to a subgroup of 𝐻1 (Ω±(Σ∓)). As 𝐻1 (Ω±(Σ∓)) is trivial, so is 𝐻1 (Ω±(Σ±)).
It follows that Ω±(Σ±) is a homology ball. Furthermore, by Lemma 4.1, both Σ± and 𝜔± are homotopy
equivalent to Ω±(Σ±) and so are homology balls.

To complete the proof, observe that, by the Mayer–Vietoris sequence (e.g., [20, p. 149]), as both 𝜔+
and 𝜔− are homology balls, L(C) is a homology sphere. When 𝑛 = 3, the link L(C) is a surface that is
a homology sphere and so, by the classification of surfaces, must be a topological S2. That is, L(C) is a
minimal two-sphere in S3 and so, by results of Almgren [2], must be totally geodesic; in this case, C is
flat. �

We also obtain a weaker topological restriction under weaker entropy bounds.

Proposition 4.5. For 5 ≤ 𝑛 ≤ 6, let C be a regular minimal cone in R𝑛+1 with

𝜆(C) < 𝜆(S𝑛−3 × R3).

If Σ+ and Σ− are respectively the greatest and least elements of E (C), then the following is true:

1. Ω∓(Σ±) is a homology ball;
2. When 𝑘 ≠ 1, 𝑛 − 2, one has 𝐻̃𝑘 (Ω±(Σ±)) = {0}. Otherwise, 𝐻̃𝑘 (Ω±(Σ±)) is a torsion-free group.

This means that when 𝑘 ≠ 1, 𝑛 − 2, one has 𝐻̃𝑘 (Σ±) = {0}, and otherwise, 𝐻̃𝑘 (Σ±) is a torsion-free
group. The same is true for the two components of S𝑛 \ L(C). In particular, 𝐻𝑘 (L(C)) = {0} when
2 ≤ 𝑘 ≤ 𝑛 − 3 and both 𝐻1 (L(C)) and 𝐻𝑛−2 (L(C)) are torsion-free groups.

Remark 4.6. Observe that this result applies to C2,2 ⊂ R6 and gives the nearly optimal lower bound
Θ(C2,2) ≥ 𝜆(S2). Indeed, this estimate is sharp for any method that compares to the entropy of spheres
because Θ(C2,2) < 𝜆(S1) – see Appendix A. However, it does not give any information about the density
of C1,3 ⊂ R6 even though direct computations give Θ(C1,3) > 𝜆(S1) > Θ(C2,2). Moreover, even if one
were able to strengthen the topological conclusions so that it gave information about C1,3, the result
would still not recover the bound 𝜆(S1) and so would not be sharp in that regard. This is in contrast to
Proposition 4.4 which applies to all generalized Simons’ cones.

Proof of Proposition 4.5. Arguing as in the proof of Proposition 4.4 gives that Ω∓(Σ±) has trivial
reduced homology groups and when 2 ≤ 𝑘 ≤ 𝑛 − 3, 𝐻𝑘 (Ω±(Σ±)) is trivial. By Lemma 4.1, if
𝜔± = int(Ω±(C)) ∩ S𝑛, then Ω±(Σ±) and 𝜔± are homotopy equivalent and so have the same homol-
ogy groups. Thus, combined with the Alexander duality (see [20, Theorem 3.44]), it follows that, for
𝑘 ≥ 𝑛 − 1, all 𝐻𝑘 (Ω±(Σ±)) are trivial. Likewise, by the universal coefficient theorem – for exam-
ple, [20, Theorem 3.2] – both 𝐻1(Ω±(Σ±)) and 𝐻𝑛−2 (Ω±(Σ±)) are torsion-free. Hence, the claim on
the homology of Ω±(Σ±) holds. To complete the proof, observe that by Lemma 4.1, both Σ± and 𝜔±
are homotopy equivalent to Ω±(Σ±) and so have the same homology groups as Ω±(Σ±). The descrip-
tion of the homology of L(C) follows immediately from this and the Mayer–Vietoris sequence (see
[20, p. 149]). �
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A. Explicit densities and entropies

We give the explicit value of the densities of the generalized Simons’ cones as well as the entropies of
spheres. We first remark that it follows from a computation of Stone [37, Appendix A] that

𝜆(S𝑛) = 2
√
𝜋
( 𝑛
2𝑒

) 𝑛
2 1

Γ
(
𝑛+1

2

) =
( 𝑛

2𝜋𝑒

) 𝑛
2
𝜎𝑛,

where 𝜎𝑛 is the area of S𝑛 and is given by

𝜎𝑛 = (𝑛 + 1)𝜔𝑛+1 = (𝑛 + 1) 𝜋
𝑛+1

2

Γ( 𝑛+3
2 )

.

Likewise, Ilmanen–White [32] compute that for C𝑚,𝑙 ⊂ R𝑚+𝑙+2 = R𝑛+1,

Θ(C𝑚,𝑙) = 𝜆(C𝑚,𝑙) =
𝜎𝑚𝜎𝑙

𝜎𝑚+𝑙

( 𝑚

𝑚 + 𝑙

) 𝑚
2
(

𝑙

𝑚 + 𝑙

) 𝑙
2

.

As observed in [32],

lim
𝑙→∞

Θ(C𝑚,𝑙) = 𝜆(S𝑚), lim
𝑚→∞

= Θ(C𝑚,𝑙) = 𝜆(S𝑙)

and

lim
𝑚,𝑙→∞

Θ(C𝑚,𝑙) = lim
𝑘→∞

𝜆(S𝑘 ) =
√

2.

The densities of generalized Simons’ cones in low dimensions is recorded in Table 1.
It is also convenient to set

𝑍 (𝑛) = 𝜆(S𝑛−2)
𝜆(S𝑛−1)

,

which is the density lower bounds proved by Zhu in [43]. We compare the densities of generalized
Simons’ cones, C𝑘,𝑛−𝑘−1 ⊂ R𝑛+1 for 3 ≤ 𝑛 ≤ 7 and 1 ≤ 𝑘 ≤ � 𝑛2 � with the bounds provided by
Propositions 4.2, 4.4 and 4.5 and 𝑍 (𝑛) in Table 2.

Finally, we compare the bounds using entropy of spheres with the universal bounds provided by [15].

Table 1. Densities of generalized Simons’ cones..

Θ(C𝑚,𝑙) 𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 4 · · ·
lim
𝑚→∞

Θ(C𝑚,𝑙)
= 𝜆(S𝑙)

𝑙 = 1 ≈ 1.57 ≈ 1.54 ≈ 1.530 ≈ 1.526 · · · ≈ 1.52
𝑙 = 2 ≈ 1.54 1.5 ≈ 1.487 ≈ 1.481 · · · ≈ 1.47
𝑙 = 3 ≈ 1.530 ≈ 1.487 ≈ 1.473 ≈ 1.466 · · · ≈ 1.453
𝑙 = 4 ≈ 1.526 ≈ 1.481 ≈ 1.466 35

24 ≈ 1.46 · · · ≈ 1.444
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

lim
𝑙→∞

Θ(C𝑚,𝑙)
= 𝜆(S𝑚)

≈ 1.52 ≈ 1.47 ≈ 1.453 ≈ 1.444 · · ·
√

2 ≈ 1.414
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Table 2. Densities of generalized Simons’ cones and theoretical bounds..

Θ(C𝑘,𝑛−𝑘−1) 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 · · · 𝑛 → ∞

𝑘 = 1 ≈ 1.57 ≈ 1.54 ≈ 1.530 ≈ 1.526 · · · ≈ 1.52
𝑘 = 2 * * 1.5 ≈ 1.487 · · · ≈ 1.47
.
.
. * * * *

. . .
.
.
.

𝑘 → ∞ * * * * · · ·
√

2 ≈ 1.414
𝜆(S𝑛−3) * * ≈ 1.47 ≈ 1.453 · · ·

√
2 ≈ 1.414

𝜆(S𝑛−2) ≈ 1.52 ≈ 1.47 ≈ 1.453 ≈ 1.444 · · ·
√

2 ≈ 1.414
𝜆(S𝑛−1) ≈ 1.47 ≈ 1.453 ≈ 1.444 ≈ 1.438 · · ·

√
2 ≈ 1.414

𝑍 (𝑛) ≈ 1.03 ≈ 1.01 ≈ 1.007 ≈ 1.004 · · · 1

Let

𝐶 ′
𝑛 =

𝑛
𝑛
2 𝑒Γ

(
𝑛
2 , 1

)
2

,

where Γ(𝑠, 𝑥) is the incomplete Gamma function and consider the explicit constants

𝜖𝐶𝐿𝑌 (𝑛) =
1

2𝑛 + 3 + 2 exp(2𝑛𝐶 ′
𝑛)

> 0.

Cheng–Li–Yau [15] show that if C ⊂ R𝑛+1 is a non-flat regular minimal cone, then

Θ(C) ≥ 1 + 𝜖𝐶𝐿𝑌 (𝑛).

These numbers are very small. Indeed, for 𝑛 ≥ 3,

2.3 × 10−10 ≈ 𝜖𝐶𝐿𝑌 (3) > 𝜖𝐶𝐿𝑌 (𝑛).
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