
Galaxy Evolution across the Hubble Time
Proceedings IAU Symposium No. 235, 2006
F. Combes & J. Palouš, eds.
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Abstract. We present a new K-band survey covering 623 arcmin2 in the VVDS 0226-0430 deep
field down to a limiting magnitude KVega � 20.5. We use the spectroscopic sample extracted from
this new K-band catalogue to assess the effectiveness of optical-near infrared color selections in
identifying extreme classes of objects at high redshift.
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1. The VVDS F02 K-selected sample
Near-infrared (NIR) selected samples are ideal tools for studying the process of mass

assembly at intermediate/high redshift, thanks to the advantages of NIR with respect
to optical selection. Within the context of the VIMOS-VLT Deep Survey (see Garilli
et al., Lamareille et al., and Vergani et al., this volume, for additional information on
the VVDS), we present a new K-band survey in the VVDS 0226-0430 deep field (F02),
already covered by the purely flux-limited VVDS spectroscopic survey (17.5 � IAB � 24;
Le Févre et al. 2005). Deep ancillary photometric data in this field are available through
the VVDS (BVRI; McCracken et al. 2003) and the CFHT Legacy Survey (u∗g′r′i′z′).
The new K-band data, obtained with SOFI at ESO-NTT, extend those described in
Iovino et al. (2005), thus covering a total contiguous area of 623 arcmin2 to a limiting
magnitude KVega � 20.5 (90% completeness). Our photometric catalogue includes 8857
objects down to KVega � 20.25. Galaxy counts are in good agreement with those from the
literature. The angular correlation function does not show any peculiarity as a function of
magnitude and angular scale and is broadly in agreement with results from the literature.
The K-selected spectroscopic sample contains 1792 galaxies with good quality redshifts.
A minimal incompleteness in color arises at KV ega > 19.8, as the reddest objects are
disfavoured by the IAB � 24 limit. For this red tail of the galaxy color distribution we
rely on the wide multiwavelength coverage to obtain good quality photometric redshifts
following the method adopted in Ilbert et al. (2006). For this purpose, we note that the
use of K-band data reduces considerably the percentage of catastrophic errors (see Ap-
pendix). A detailed description of this K-band sample is given in Temporin et al. (2007a).
Since the VVDS survey is purely flux-limited, this sample is ideal for assessing the ef-
fectiveness of different optical-NIR color selections to identify extreme classes of objects
like extremely red objects (EROs) and high-redshift galaxies (BzK; Daddi et al. 2004).

† The complete author list, as well as bibliographic references can be found in the Appendix.
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Figure 1. Comparison between spectroscopic and photometric redshifts obtained with and with-
out the use of the K-band. Distributions of the difference between photometric and spectroscopic
redshifts are shown for two magnitude ranges.

Some of our first results are summarized in the Appendix, while a thorough discussion
of the various color selections is presented in Temporin et al. (2007b).

Appendix A. On-line material
A.1. Photometric redshifts

Photometric redshifts have been derived for the whole K-band catalogue by using the code
Le Phare (developed by S. Arnouts and O. Ilbert; http://www.lam.oamp.fr/arnouts/LE
PHARE.html), following the method described in Ilbert et al. (2006). The use of pho-
tometric redshifts in our case is important especially for the red tail of the galaxy color
distribution, which is missed by the spectroscopic survey because of the imposed mag-
nitude limit (IAB � 24). For these objects the redshift distribution of the spectroscopic
sample cannot be introduced as an a priori information in the probability distribution
function. In this case, the quality of the photometric redshifts is significantly improved by
the additional information coming from the K-band data. In Fig. 1 we show a comparison
between spectroscopic redshifts and photometric redshifts obtained with and without the
use of the K-band data. It appears clearly that the use of the K-band reduces consid-
erably the fraction of catastrophic errors η. Further details are given in Temporin et al.
(2007a).
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Figure 2. Left. Redshift distributions of the whole spectroscopic sample (black), the
(r′-K)-EROs sample (magenta), and the (i′-K)-EROs sample (red). Right. Composite spectra of
the “early”-type (red) and “late”-type (green) galaxies extracted from the two EROs samples.

A.2. EROs and high redshift objects in the K-selected spectroscopic sample:
Color selections

Within our K-selected spectroscopic sample we have identified EROs according to two
color selections, (r′-K)Vega > 5 and (i′-K)Vega > 4. Our spectroscopic sample includes 148
and 70 EROs with secure redshifts that satisfy the 1st and 2nd criterion, respectively,
down to KVega � 20.25. The whole spectroscopic sample has a median redshift zmed ∼
0.7, while EROs have zmed ∼ 1.0–1.1 (Fig. 2), in agreement with other samples from the
literature. The color (i′-K) appears more effective than (r′-K) in selecting galaxies within
a narrow redshift range, up to z∼ 1.4.

A first comparison of the rest-frame observed spectral energy distributions (SEDs) with
Coleman, Wu, and Weedman (1980) templates suggests that both samples of EROs are
dominated by early-type galaxies. This is confirmed by the best-fit models resulting from
the SED fitting with the code Le Phare. Spectra of both samples, accordingly divided
into two broad classes (early and late), were used to build the composite spectra. The
“early”-type composite spectra built from 96 (r′-K)-EROs and 54 (i′-K)-EROs, show
spectral features typical of early-type galaxies. The “late”-type composite spectra built
from 17 (r′-K)-EROs and 15 (i′-K)-EROs, show signs of active star formation (Fig. 2).
An extended discussion is contained in Temporin et al. (2007b).

A.3. High redshift objects in the K-selected spectroscopic sample:
Effectiveness of the BzK Color selection

We explored the effectiveness of the BzK diagnostic diagram (Daddi et al. 2004) in se-
lecting high redshift galaxies from our K-selected spectroscopic sample. Our filter set
was verified to be similar to the one used by Daddi et al. (2004), hence no color term
was applied. Although the BzK method succeeds in identifying the high-redshift galaxies
in our spectroscopic sample, we found a 64% contamination by low-redshift galaxies in
the relevant area of the diagram, BzK = (z′−K) − (B−z′) > −0.2, which is expected
to be populated by star-forming galaxies at redshift z > 1.4 (Fig: 3). True high-redshift
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Figure 3. Upper left. BzK diagnostic diagram for the K-selected spectroscopic sample. Upper
right. Redshift distribution of galaxies with BzK � −0.2. Lower left BzK diagrams for galaxies
with z > 1.4, irrespective of their colors (green), and for galaxies with z < 1.4 and BzK � −0.2
(red). Lower right. Example of B and K-band images of low-redshift galaxies in multiple systems,
which contaminate the high-redshift locus of the BzK diagram. The red circle has a radius of
3 arcsec.

galaxies and low-redshift contaminants are shown separately in Fig. 3. Error bars are from
SExtractor (Bertin and Arnouts 1996) measurements. Apparently, photometric errors do
not justify the observed contamination. Also, in all three bands involved, the magnitude
distribution of the contaminant galaxies and that of high redshift galaxies are similar.

Interestingly, an inspection of the images of these objects revealed that ∼55% of the
contaminants are members of tight (projected) pairs or multiple systems. Two such
examples are shown in Fig. 3. The contamination rate lowers to 44% when tight pairs or
multiple systems like those in Fig. 3, for which photometry is necessarily less reliable, even
in our sub-arcsec seeing images, are discarded. We note that the IAB = 24 magnitude limit
of the spectroscopic survey, which disfavours high-redshift and particularly red objects,
might play a role in producing a higher contamination than usually observed (e.g. ∼20%
in the spectroscopic sample of Daddi et al. 2004).

The observed SEDs of objects with redshift >1.4 and BzK > −0.2 closely approaches
Coleman, Wu, and Weedman (1980) templates of late-type galaxies, in agreement with
the expectations for this color selection. The composite spectrum obtained for these high
redshift sources (Fig. 4) actually shows the typical features of a late-type star forming
galaxy.
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Figure 4. Left. Rest-frame observed SEDs of z > 1.4 galaxies selected for having BzK > −0.2.
Right. Composite spectrum of the same galaxies.
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