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Measurements and Gδ-Subsets of Domains

Harold Bennett and David Lutzer

Abstract. In this paper we study domains, Scott domains, and the existence of measurements. We use

a space created by D. K. Burke to show that there is a Scott domain P for which max(P) is a Gδ-subset

of P and yet no measurement µ on P has ker(µ) = max(P). We also correct a mistake in the literature

asserting that [0, ω1) is a space of this type. We show that if P is a Scott domain and X ⊆ max(P) is a

Gδ-subset of P, then X has a Gδ-diagonal and is weakly developable. We show that if X ⊆ max(P) is a

Gδ-subset of P, where P is a domain but perhaps not a Scott domain, then X is domain-representable,

first-countable, and is the union of dense, completely metrizable subspaces. We also show that there

is a domain P such that max(P) is the usual space of countable ordinals and is a Gδ-subset of P in the

Scott topology. Finally we show that the kernel of a measurement on a Scott domain can consistently

be a normal, separable, non-metrizable Moore space.

1 Introduction

Domains and Scott domains are special kinds of partially ordered sets (posets).1 Any

domain (P,⊑) has a set of maximal elements, denoted max(P), and these maximal

elements are often thought of as being ideal elements that are approximated by lower

elements of the poset P. Non-maximal elements of P can be thought of as giving

partial information about the maximal elements above them, with a ⊑ b meaning

that b provides information that is at least as precise as the information provided

by a. A familiar example is the “interval domain for the set of real numbers,” i.e., the

poset I whose members are all closed, bounded intervals of the set R of real numbers,

including degenerate intervals of the form [a, a] = {a}, where a ∈ R, and whose

partial order ⊑ is reverse inclusion. Clearly max(I) = {[a, a] : a ∈ R}. Thus, from

the point of view of set theory, it makes sense to identify max(I) with the set of real

numbers.

But there is more. Any domain (P,⊑) has a natural topology called the Scott

topology, and max(P) is a dense subspace of P in that topology. A topological space

X is said to be (Scott) domain representable if there is a (Scott) domain P such that

X is homeomorphic to max(P) with the relative Scott topology. Determining which

spaces are (Scott) domain-representable is known as “the representation question”.

See [4, 18] for surveys.

Sometimes a domain (P,⊑) will carry an additional structure called a measure-

ment, a concept introduced by Keye Martin in [16, 17]. A measurement is a special

kind of function µ from P to the non-negative real numbers, where µ(p) is often
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1See Section 2 for technical definitions.
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thought of as providing a numerical measure of the amount of uncertainty in the

information provided by the element p ∈ P, with µ(p) = 0 meaning that p pro-

vides perfectly precise information. For example, in the Interval Domain I for the

real numbers, the diameter function µ([a, b]) = b− a is a measurement, and a given

[a, b] locates each of the maximal elements {c} with c ∈ (a, b) to within an error of

at most ǫ = b−a. See Section 2 for the rather technical definition of a measurement.

The technical properties of a measurement µ on a domain P make it easy to prove

that ker(µ), the set of all a ∈ P with µ(a) = 0, is a subset of max(P) and is a Gδ-subset

of P (see [16, Lemma 2.4.1]). A special version of the representation question asks:

(Measurement Question) [18]: For which topological spaces X can we find a

domain (or Scott domain) (P,⊑) and a measurement µ on P so that X is home-

omorphic to ker(µ) ⊆ max(P)? A more restrictive version of this question asks

when we can find a domain (or Scott domain) P and a measurement µ on P

such that X = max(P) = ker(µ).

Martin proved ([15, Theorem 4.7]) that for domains, the two parts of the mea-

surement problem are the same: if X = ker(µ) ⊆ P for some measurement µ on

a domain P, then for some domain Q and some measurement ν on Q, we have

X = ker(ν) = max(Q). However, it is not clear whether Q will be a Scott do-

main provided P is a Scott domain. Partial solutions of the Measurement Question

are announced in [18, 19], and these partial solutions involve topological properties

that are well known in set-theoretic topology – Moore spaces, Gδ-diagonals, etc. The

authors of [18] asked:

(MMR Question): Is there a Scott domain (P,⊑) so that max(P) is a Gδ-subset

of P and yet there is no measurement µ on P with ker(µ) = max(P)?

A negative answer to the MMR Question was announced in [19], where it was

claimed that there is a Scott domain P having the usual space [0, ω1) of countable

ordinals as max(P) and having the additional property that max(P) is a Gδ-subset

of P. This would have solved the MMR Question in the negative because results an-

nounced in [18] and in [19] show that [0, ω1) cannot be ker(µ) for any measurement

on a domain. Unfortunately, we now know that [0, ω1) cannot be max(P) for any

Scott domain having max(P) a Gδ-subset of P, as the following theorem and corol-

lary show.

Theorem 1.1 Suppose that (P,⊑) is a Scott domain and that X ⊆ max(P) is a

Gδ-subset of P with the Scott topology. Then:

(i) there is a sequence 〈G(n)〉 of open covers of X such that if x ∈ Gn ∈ G(n) for each

n, then
⋂

{Gn : n ≥ 1} = {x}, so that X has a Gδ-diagonal;

(ii) there is a sequence 〈G(n)〉 of open covers of X such that if x ∈ Gn ∈ G(n), then the

collection {
⋂

{Gi : 1 ≤ i ≤ n} : n ≥ 1} is a local base at x, i.e., the space X is

weakly developable in the sense of [2] and therefore has a base of countable order

in the sense of [20];

(iii) there is a sequence 〈G(n)〉 of open covers of the space X such that if F is a centered

collection, i.e., a collection with the finite intersection property, of non-empty closed
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subsets of X, and if for each n ≥ 1 some Gn ∈ G(n) and some Fn ∈ F have

Fn ⊆ Gn, then
⋂

F 6= ∅, i.e., the space X is AF-complete in the sense of [2];

(iv) if X is completely regular, then X is Čech-complete;

(v) if X is T3 and θ-refinable, 2 then X is a complete Moore space, and if X is para-

compact, then X is completely metrizable.

Corollary 1.2 Suppose that P is a Scott domain and that X ⊆ max(P) is a Gδ-subset

of P. If the space X is regular and countably compact, then X is a compact metrizable

space.

Corollary 1.2 shows that [0, ω1) cannot have the properties claimed in [19]. Both

Theorem 1.1 and Corollary 1.2 are proved in Section 3.

The main result in Section 4 shows that a space constructed by Burke [6] gives a

negative answer to the MMR Question. Burke’s space is a locally compact Hausdorff

space with a Gδ-diagonal that is not a Moore space and is not θ-refinable. We describe

a Scott domain P with Burke’s space as max(P), and we show that max(P) is a Gδ-

subset of P. Then we invoke a theorem of Martin [16] about spaces that are kernels

of measurements to show that Burke’s space cannot be the kernel of a measurement

on P. Similar arguments show that the space Ψ of [10] is also max(P) for some Scott

domain P having max(P) a Gδ-subset of P, and therefore the conclusion in Theorem

1.1(ii) cannot be strengthened to assert that the space X must have a sharp base in

the sense of [2].

The proof of Theorem 1.1 uses the Scott domain hypothesis at several crucial

points, and it is natural to ask what can be said about the space X ⊆ max(P) in case X

is a Gδ-subset of P, where P is a domain but perhaps not a Scott-domain. Such spaces

exist. In Section 5 we show that there is a domain P such that [0, ω1) = max(P) is

a Gδ-subset of P and yet (from Corollary 1.2) there is no Scott domain Q such that

[0, ω1) ⊆ max(Q) is a Gδ-subset of Q. In Section 5 we investigate this situation and

prove the following.

Theorem 1.3 Suppose that (P,⊑) is a domain and that, in the Scott topology on P,

the set X ⊆ max(P) is a Gδ-subset of P. Then with the relative Scott topology, X is

first-countable and domain representable, and X is a union of dense Gδ-subspaces, each

of which is completely metrizable.

Our final section lists a sequence of open questions that may interest topologists

and domain theorists.

Relation to the literature Martin ([15, Theorem 4.1]) has shown that the following

assertions about a space X are equivalent:

(i) there is a domain D with X ⊆ max(D), where X is a Gδ-subset of D;

(ii) there is a domain E such that X = max(E) and max(E) is a Gδ-subset of E.

Nevertheless, to be consistent with other parts of the literature, we state many of our

results with what appears to be the more general hypothesis (i).

Chapter 5 of [16] contains many results that are related to Theorems 1.1 and 1.3,

but are different in subtle ways. For example, Martin [16, Theorem 5.7.1] shows that

2θ-refinable = submetacompact; see Section 2 for the definition.
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if P is a Scott domain and if X ⊆ max(P) is paracompact and is a Gδ-subset of P,

then X is metrizable. We obtain that result as a corollary of using the theory of weak

developments [2] to X. As another example, Martin [16, Theorem 5.7.2] asserts that

if D is a Scott domain and if X ⊆ max(D) is a Gδ-subset of D, then some subspace

Y ⊆ X is dense in X, is a Gδ-subset of X, and is completely metrizable. Theorem 1.3

is proved by very different methods under weaker hypotheses (we do not assume that

P is a Scott domain) and gives stronger conclusions.

Throughout this paper the symbols R, P, and Q denote the usual spaces of real,

irrational, and rational numbers.

2 Basic Definitions

Let (P,⊑) be a partially ordered set (poset). For any p ∈ P let

↑(y) := {z ∈ P : y ⊑ z} and ↓(y) := {x ∈ P : x ⊑ y}.

The supremum of a nonempty bounded set S in P is the least of all the upper bounds

of S, if such exists. A subset E ⊆ P is directed if it is non-empty and has the property

that if e1, e2 ∈ E, then some e3 ∈ E has e1, e2 ⊑ e3. The poset P is a directed complete

partial order (dcpo) if sup(E) ∈ P whenever E is a directed subset of P.

In any poset (P,⊑) one can define an auxiliary relation ≪ as follows: a ≪ b means

that for any directed set E with b ⊑ sup(E), there is some e ∈ E with a ⊑ e. We use

the notation ⇑(a) := {b ∈ P : a ≪ b} and ⇓(b) := {a ∈ P : a ≪ b}. The poset P is

continuous if for each b ∈ P, the set ⇓(b) is directed and has sup(⇓(b)) = b. A domain

is a continuous dcpo. A Scott domain is a domain S with the added property that any

finite bounded subset F ⊆ S has sup(F) ∈ S. Because F = ∅ is a finite bounded

subset of S, it follows that a Scott domain must have a minimum element (which is

sup(∅)). The following lemma gives an equivalent way to look at Scott domains.

Lemma 2.1 A domain (D,⊑) is a Scott domain if and only if D has a minimum

element 0D and whenever p, q ∈ P have p, q ⊑ r for some r ∈ P, then sup(p, q) exists

in D.

The requirement in Lemma 2.1 that (D,⊑) have a minimum element is a minor

restriction, provided our goal is to study max(D). If D does not already have a min-

imum element, we let D+ := D ∪ {0D}, where 0D 6∈ D, and we extend ⊑ by making

the new element 0D lie below each element of D. Then max(D+) = max(D), both as

sets and as topological spaces.

However, as the referee pointed out to us, the ability to add a minimum element

to a domain D without changing max(D) has some important consequences, because

the product of any family of (Scott) domains will be a (Scott) domain provided each

of the domains has a minimum element (see [9, Exercise I-2.18]). Therefore (Scott)

domain representability is arbitrarily productive, and the property of being repre-

sentable as a Gδ-subset in a (Scott) domain is countably productive.

One of the most important technical results about domains is the following Inter-

polation Lemma.
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Lemma 2.2 ([18]) Suppose that a ≪ c are points of a domain P. Then some b ∈ P

has a ≪ b ≪ c.

The Interpolation Lemma shows that the collection {⇑(p) : p ∈ P} is a base for

a topology on P that is called the Scott topology. A topological space X is (Scott)

domain representable if there is a (Scott) domain (P,⊑) such that X is homeomorphic

to max(P) when max(P) carries the relative Scott topology.

Let [0,∞)∗ be the set [0,∞) with the reverse order. Then [0,∞)∗ is a domain and

has a Scott topology (which is not the same as the usual topology). A measurement

[18] on a domain (P,⊑) is a function µ : P → [0,∞)∗ that satisfies:

(i) µ is continuous when both P and [0,∞)∗ carry their Scott topologies.

(ii) if µ(x) = 0 and if 〈pn〉 is a sequence of elements of ⇓(x) having

lim
n→∞

µ(pn) = 0,

then {pn : n ≥ 1} is a directed set whose supremum is x.

Let ker(µ) := {x ∈ P : µ(x) = 0}. It is easy to see that if µ is a measurement on a

domain P, then ker(µ) ⊆ max(P) and that ker(µ) will be a Gδ-subset of P [16].

There is a sequence of properties from classical set-theoretic topology that will be

important in this paper. See [2] for more details. The definitions of Gδ-diagonal,

weakly developable, and AF-complete are given as part of Theorem 1.1. A space X is

developable if there is a sequence 〈G(n)〉 of open covers of X such that if x ∈ Gn ∈
G(n), then {Gn : n ≥ 1} is a neighborhood base at x. A base B for the space X is said

to be a base of countable order (BCO) if the collection {Bn : n ≥ 1} ⊆ B is a local

base at x ∈ X whenever x ∈ Bn ∈ B and Bn+1 is a proper subset of Bn for each n.

Clearly any developable space is weakly developable, and it is proved in [2] that any

weakly developable space has a BCO and has a Gδ-diagonal. A space X is θ-refinable

(also known as submetacompact) if for each open cover U of X there is a sequence

of 〈V(n)〉 of open covers of X such that each V(n) refines U and such that for each

x ∈ X, some n = n(x) has the property that {V ∈ V(n) : x ∈ V} is finite [20].

3 Proof of Theorem 1.1

We begin with a Scott domain (P,⊑) and a space X ⊆ max(P) that is a Gδ-subset of

P in the Scott topology. Write X =
⋂

{Dn : n ≥ 1} where Dn+1 ⊆ Dn are Scott open

sets.

As shown in [2], assertion (i) of the theorem actually follows from assertion (ii).

In addition, Martin [16, Proposition 5.3.5] proves (i) under weaker hypotheses.

To prove assertion (ii), let G(n) := {⇑(p) ∩ X : p ∈ Dn}. Each G(n) is an open

cover of X ⊆ max(P). Suppose for each i ≥ 1 that x ∈ Gi = ⇑(pi)∩X ∈ G(i), where

pi ∈ Di . Then each set {p1, . . . , pn} is bounded by x so that, P being a Scott domain,

some qn ∈ P has qn = sup{p1, . . . , pn}. Then {qn : n ≥ 1} is a directed subset of P

so that sup{qn : n ≥ 1} ∈ P. Furthermore, pk ⊑ qk ⊑ sup{qn : n ≥ 1} for each k so

that pk ∈ Dk gives sup{qn : n ≥ 1} ∈ Dk. Therefore

sup{qn : n ≥ 1} ∈
⋂

{Dk : k ≥ 1} = X.

https://doi.org/10.4153/CMB-2010-104-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-104-3


198 H. Bennett and D. Lutzer

But we also know that sup{qn : n ≥ 1} ⊑ x ∈ X so that sup{qn : n ≥ 1} = x. Now

consider any relative Scott neighborhood ⇑(r) ∩ X of x. Because r ≪ x = sup{qn :

n ≥ 1} we know that r ⊑ qm for some m. But then ⇑(qm) ⊆ ⇑(r), and we have
⋂

{⇑(pi) : 1 ≤ i ≤ m} ⊆ ⇑(qm) ⊆ ⇑(r) showing that
⋂

{Gi : 1 ≤ i ≤ m} ⊆ ⇑(r)∩X

as required to prove assertion (ii).

To prove assertion (iii), notice that we can replace F with the collection F̂ of all

finite intersections of members of F. Therefore, with no loss of generality, we may

assume that F is closed under finite intersections.

Let E := {p ∈ P : for some F ∈ F, F ⊆ ⇑(p) ∩ X}. We claim that E is a directed

set. Let p1, p2 ∈ E. Choose Fi ∈ F with Fi ⊆ ⇑(pi) ∩ X for i = 1, 2. Because F

is closed under finite intersections, the set F3 = F1 ∩ F2 ∈ F. Let p ∈ F3. Then

p ∈ ⇑(p1) ∩ ⇑(p2) so pi ⊑ p for i = 1, 2. Because P is a Scott domain, some p3 ∈ P

has p3 = sup{p1, p2}. Then F3 ⊆ ⇑(p1) ∩ ⇑(p2) ⊆ ⇑(p3) so that p3 ∈ E. Hence E

is directed. Therefore, some r ∈ P has r = sup(E).

We claim that r ∈ X. By hypothesis on F, for each n ≥ 1 we may choose Fn ∈ F

and rn ∈ Dn with Fn ⊆ ⇑(rn) ∩ X. Then rn ∈ E so that rn ⊑ sup(E) = r. Because

rn ⊑ r and rn ∈ Dn we know that r ∈ Dn so that r ∈
⋂

{Dn : n ≥ 1} = X, as claimed.

We claim that r ∈
⋂

F. If not, then some F̂ ∈ F has r 6∈ F̂. Because F̂ is

closed in X, there is some s ∈ P with r ∈ ⇑(s) ∩ X ⊆ X − F̂. Then we have

s ≪ r = sup{rn : n ≥ 1} so that for some n we have s ⊑ rn. Then Fn ⊆ ⇑(rn) ∩ X ⊆
⇑(s) ∩ X ⊆ X − F̂. But then Fn, F̂ are disjoint members of the centered collection F,

and that is impossible. Therefore r ∈
⋂

F as required by (iii).

Assertion (iv) now follows directly because the AF-completeness property charac-

terizes Čech-completeness for completely regular spaces.

The first part of assertion (v) follows from assertion (ii) plus the fact that a θ-re-

finable space with a BCO must be a Moore space [20], and that a Čech-complete

Moore space is Moore-complete [1]. The second part of assertion (v) follows from

the first part plus the fact that any paracompact Moore space must be metrizable.

Then apply assertion (iii) to conclude that X is a Čech-complete metrizable space,

and hence is completely metrizable.

Corollary 3.1 Suppose (P,⊑) is a Scott domain and that X ⊆ max(P) is a Gδ-subset

of P with the Scott topology. If X is a countably compact regular space, then X is metriz-

able. In particular, the usual space [0, ω1) is not homeomorphic to max(P) for any Scott

domain P in which max(P) is a Gδ-set.

Proof Chaber [7] has proved that a countably compact T3 space with a Gδ-diagonal

must be metrizable. Now apply Theorem 1.1(i).

4 Examples

In this section we show that a space of Burke [6] can be used to give a negative answer

to the MMR Question from the introduction. One part of this proof uses the easy

part of a result announced in [18, 19]. To the best of our knowledge, no proof has

ever appeared, so we provide it here.
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Lemma 4.1 Suppose that µ : P → [0,∞)∗ is a measurement on a domain P. Then

ker(µ) is a developable T1-space.

Proof Write X = ker(µ). As noted in the introduction, a result of Martin [15] shows

ker(µ) ⊆ max(P). For any domain P, the subspace max(P) is a T1-space, so that X is

also T1.

Recall that [0,∞)∗ is the set [0,∞) with the order reversed and carries the Scott

topology in which basic neighborhoods of 0 are sets of the form [0, 1/n). For each

n ≥ 1 and each x ∈ X we know that µ(x) = 0 ∈ [0, 1/n) so that there is some

p(x, n) ∈ P with p(x, n) ≪ x and µ[⇑(p(x, n))] ⊆ [0, 1/n). Defining the points

p(x, n) recursively, we may assume that p(x, n) ≪ p(x, n + 1) ≪ x for each n. Let

G(x, n) := ⇑(p(x, n)) ∩ X. Then G(n) := {G(x, n) : x ∈ X} is an open cover of X.

To show that the sequence 〈G(n)〉 is a development for X, fix a point x in a basic

open set ⇑(q) ∩ X, and consider any choice of G(yn, n) ∈ G(n) with x ∈ G(yn, n).

We will show that for some n ≥ 1, we have G(yn, n) ⊆ ⇑(q) ∩ X. We know that

q ≪ x. Because x ∈ G(yn, n) = ⇑(p(yn, n)) ∩ X we know that p(yn, n) ≪ x. By

choice of p(yn, n) we know that lim{µ(p(yn, n)) : n ≥ 1} = 0, and from x ∈ ker(µ)

we know that µ(x) = 0. Now the definition of a measurement (see Section 2) tells

us that {p(yn, n) : n ≥ 1} is a directed set and its supremum is x. Because q ≪
x = sup{p(yn, n) : n ≥ 1} we have some n ≥ 1 with q ⊑ p(yn, n). But then

⇑(p(yn, n)) ⊆ ⇑(q) showing that G(yn, n) ⊆ ⇑(q) ∩ X, as required.

Example 4.2 There is a locally compact Hausdorff space X that has a Gδ-diagonal

and is not developable, and a Scott domain P such that X is homeomorphic to

max(P) where max(P) is a Gδ-subset of P, but there is no measurement µ : P →
[0,∞)∗ with ker(µ) = max(P).

Proof We want to thank the referee for suggestions that substantially improved the

approach to this example that we used in an earlier version of this paper. We use a

space described by Burke in [6]. We only need part of Burke’s construction, and we

change his notation somewhat. Let Z be the usual Cantor set in the unit interval. Let

A be a family of countably infinite subsets of Z that is maximal with respect to the

following two properties:

(B1) if A1, A2 are distinct members of A, then A1 ∩ A2 is finite;

(B2) each A ∈ A has a unique cluster point in R.

Burke actually had a third property is his list but noted that the third property was

needed only for a related example.

Let A = {Ai : i ∈ I}, where I is an index set that is disjoint from Z. For each

i ∈ I, let zi be the unique cluster point of Ai in R.

Burke’s space is X = I ∪ Z, with each point of Z being isolated and where a point

i ∈ I has basic neighborhoods of the form N(i, F) = {i} ∪ (Ai − F), where F is a

finite subset of Ai . As Burke proved, this space is locally compact, Hausdorff, and has

a Gδ-diagonal, but is not developable.

First we describe a new neighborhood base for the non-isolated points of X. For

any open interval (a, b) in R, let (a, b)∗ := (a, b) − { a+b
2
}. For each i ∈ I and ǫ > 0,
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let

M(i, ǫ) = {i} ∪
(

(zi − ǫ, zi + ǫ)∗ ∩ Ai

)

.

Because zi is the unique cluster point of Ai in R, and because Ai is a subset of the

compact set Z, the set Ai − (zi − ǫ, zi + ǫ) must be finite. Therefore, each set M(i, ǫ)

is open in Burke’s space. Because only a finite number of points of Ai are removed

when making Burke’s set N(i, F), it is easy to see that every set N(i, F) contains some

M(i, 1
n

). Therefore, in Burke’s space, the collection {M(i, 1
k
) : k ≥ 1} is an open

neighborhood base at i for each i ∈ I.

Let P be the collection of all nonempty compact subsets of the locally compact

space X and let ⊑ be reverse inclusion. Then max(P) = I∪Z where I = {{i} : i ∈ I}
and Z = ∪{{z} : z ∈ Z}, and for K1, K2 ∈ P we have K1 ≪ K2 if and only if

K2 ⊆ Int(K1). Because X is locally compact, general theory shows that (P,⊑) is a

Scott domain that represents X under the mapping that sends each i ∈ I to {i} and

each z ∈ Z to {z}. Thus we may identify X with max(P).

Next we show that max(P) is a Gδ-subset of P. Let D(n) := Z ∪
⋃

{⇑(M(i, 1
n

)) :

i ∈ I}. Because {z} ≪ {z} for each z ∈ Z, each {z} is isolated in P so that the set

D(n) is a Scott-open subset of P. Clearly max(P) ⊆
⋂

{D(n) : n ≥ 1}. To verify

the reverse inclusion, suppose P0 ∈
⋂

{D(n) : n ≥ 1} and P0 6∈ max(P). Then

|P0| ≥ 2 and for each n ≥ 1 there is an in ∈ I with P0 ∈ ⇑(M(in,
1
n

)). In case

P0 ∩ I 6= ∅, fix i0 ∈ P0 ∩ I. Then i0 ∈ P0 ⊆ M(in,
1
n

) gives in = i0 for each n so

that P0 ⊆
⋂

{M(i0,
1
n

) : n ≥ 1} = {i0} and that is impossible because |P0| ≥ 2.

Therefore P0 ∩ I = ∅, which gives P0 ⊆ Z. But then P0 ⊆ M(in,
1
n

) − {in} so that

P0 has diameter < 2
n

for each n and that is impossible because |P0| ≥ 2. Therefore,
⋂

{D(n) : n ≥ 1} = max(P) as required.

It remains only to show that there is no measurement µ : P → [0,∞)∗ with

ker(µ) = max(P). If such a measurement existed, then Lemma 4.1 would tell us

that Burke’s space X = max(P) is developable. But that is exactly the property that

Burke’s space does not have, so the proof of Example 4.2 is complete.

Remark 4.3 In many examples in the literature, if there is a way to define the di-

ameter of a member of a domain P in such a way that the elements of max(P) are

exactly the elements of P having diameter zero, then max(P) turns out to be the ker-

nel of a measurement. (See, for example, the diameter measurement on the interval

domain I in the introduction.) The referee pointed out that the usual distance func-

tion in R gives a diameter measure for elements of the domain P in Example 4.2,

and yet (as we show) there is no measurement µ with max(P) = ker(µ). To explain

this rather subtle point, fix any z ∈ Z and then choose zk ∈ (z − 1
k
, z + 1

k
) with

zk 6∈ {z, z1, . . . , zk−1}. This is possible because the Cantor set is dense-in-itself. Let

Fk := {z, zk}. Then Fk ∈ P and diam(Fk) < 1
k

so that diam(Fk) → 0. Because z ≪ z

we know that Fk ∈ ⇓(z). If the diameter function gave rise to a measurement on P,

then the set {Fk : k ≥ 1} would need to be directed, and that is clearly not the case.

Remark 4.4 In [11, Example 2.17], Gruenhage described a locally compact, Haus-

dorff, sub-metrizable space that is not a Moore space. Like Burke’s space, this space

is homeomorphic to max(P) for some Scott domain P, where max(P) is a Gδ-subset

of P, but it is not the kernel of any measurement on a domain.
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Remark 4.5 A property called a “sharp base” is studied in [2] and is stronger than

“weakly developable”. As proved in [2], the space Ψ of [10] does not have a sharp

base. However, a proof similar to the one given for Example 4.2 shows that Ψ is a

Gδ-subset of a Scott domain. Consequently, one cannot strengthen Theorem 1.1(ii)

to assert that if P is a Scott domain and max(P) is a Gδ-subset of P, then max(P) must

have a sharp base in the sense of [2].

Generalized ordered spaces (GO-spaces) have been an important source of exam-

ples in set-theoretic topology (e.g., the Michael line or the Sorgenfrey line), and it

is known from [8] that any GO-space constructed on R will be Scott-domain rep-

resentable. This suggests that GO-spaces on R might be a valuable source of patho-

logical examples related to the measurement problem. However, our next corollary

shows that pathological GO-spaces will not have a major role to play in that problem.

Corollary 4.6 Suppose that X is a GO-space and that X ⊆ max(P) for some Scott

domain P, where X is a Gδ-set in P. Then X is completely metrizable.

Proof Theorem 1.1(i) shows that X has a Gδ-diagonal and is therefore paracom-

pact [13], so that part (v) of the theorem forces X to be completely metrizable.

Question (x) of [16] asked whether there is a measurement on a (Scott) domain

whose kernel is normal and not metrizable. Our next result shows that the answer is

“Consistently, yes.” Probably this is known, but we have not been able to find it in the

literature.

Example 4.7 If there is a Q-set (an uncountable subspace of R in which every subset

is a relative Gδ), then there is a separable, normal, non-metrizable Moore space X, a

Scott domain D, and a measurement µ on D such that X = ker(µ) = max(D).

Sketch of Proof Let Y be a Q-set in R and let

X :=
(

Y × {0}
)

∪
(

R ×
{

1
n

: n ≥ 1
}

)

,

topologized so that each point (x, 1
n

) has its usual Euclidean neighborhoods and

so that neighborhoods of each point (y, 0) are sets of the form T(y, n) ∩ X, where

T(y, n) ⊆ R × [0,∞) is a vertical isosceles triangle with:

(i) (y, 0) is a vertex if T(y, n);

(ii) the vertex angle at (y, 0) goes from π
2
− 1

2n
to π

2
+ 1

2n
, and the height of the

triangle is 1
n

;

(iii) the intersection of T(y, n) with each horizontal line Hn := R × { 1
n
} is an open

interval on Hn.

The space X is a separable, normal, non-metrizable Moore space. To define D, let

C(y, n) be the closure of T(y, n) in X (which is the same as the closure of T(y, n)

in the Euclidean topology). Let D be the collection of all C(y, n) together with all

sets that are finite unions of sets of the form [a, b] × { 1
n
}, where a ≤ b, and all

sets of the form {(y, 0)} for y ∈ Y . Let ⊑ be reverse inclusion. Then in (D,⊑) we

have D1 ≪ D2 if and only if D2 ⊆ IntX(D1), and (D,⊑) is a Scott domain with
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max(D) homeomorphic to X under the mapping {x} → x. Let diam(D) denote the

usual Euclidean diameter of a set D ∈ D and define µ(D) = diam(D). Then µ is a

measurement on D and ker(µ) = max(D), as required.

5 What to do Without Scott

Theorem 1.1 studied the properties of a space X ⊆ max(P) in the case where P is a

Scott domain and X is a Gδ-subset of P. The proof of Theorem 1.1 used the Scott-

domain property in several simple, but apparently unavoidable, ways. This section

proves Theorem 1.3, which explores what can be said about a space X ⊆ max(P)

that is a Gδ-subset of a domain P, where P is not necessarily a Scott domain. Then

we present an example showing that there is a domain (but not a Scott domain) P in

which the space [0, ω1) = max(P) is a Gδ-subset of P. Finally, we characterize spaces

that are the kernels of a measurement on a domain.

To prove Theorem 1.3, we begin with a domain (P,⊑), where X ⊆ max(P) is a

Gδ-subset of P, and we write X =
⋂

{Dn : n ≥ 1}, where Dn+1 ⊆ Dn and each Dn is

open in the Scott topology of P.

Martin’s [16, Proposition 5.7.1] shows that the space X will be first countable.

Martin also shows that if X = max(P), then X is a Baire space. We can prove more.

The subspace max P of P is certainly domain-representable and then [3, Theorem

3.2] shows that X is also domain representable (but using some other domain).

To complete the proof of Theorem 1.3, fix any x0 ∈ X. We will show that the point

x0 belongs to a dense Gδ-subset T of X that is completely metrizable. Let E1 ⊆ D1

have the property that {⇑(p)∩X : p ∈ E1} is a maximal pairwise disjoint collection of

non-empty subsets of X and x0 ∈ E1. Suppose n ≥ 1 and En is given with x0 ∈ En. For

each p ∈ En let En+1(p) be a subset of Dn+1 ∩⇑(p) such that {⇑(q)∩X : q ∈ En+1(p)}
is a maximal pairwise disjoint collection of nonempty subsets of ⇑(p)∩X. Make sure

that the point x0 ∈ En+1(x0) and let En+1 =
⋃

{En+1(p) : p ∈ En}. Then for each

n ≥ 1 the set On :=
⋃

{⇑(p) ∩ X : p ∈ En} is a dense open set in X so that, X being

a Baire space [14], the set T =
⋂

{On : n ≥ 1} is dense in X. Also, note that x0 ∈ T.

For each n ≥ 1 let G(n) := {⇑(p) ∩ T : p ∈ En}. Each Gn is a pairwise-disjoint

relatively open cover of T. Hence each G(n) is a discrete collection in the subspace T.

We show that G :=
⋃

{G(n) : n ≥ 1} is a base for T. Let x ∈ T and suppose U is a

relatively open subset of max(P) with x ∈ U . Choose q̂ ∈ P with x ∈ ⇑(q̂) ∩ X ⊆ U .

Then q̂ ≪ x so that the Interpolation Lemma yields some q ∈ P with q̂ ≪ q ≪ x.

Then ⇑(q) ∩ T ⊆ ↑(q) ∩ T ⊆ ⇑(q̂) ∩ T ⊆ U .

Because x ∈ T, there is a unique sequence pn ∈ E(n) with x ∈ ⇑(pn). Because of

the way that E(n + 1) was constructed from E(n), and because x ∈ ⇑(pn+1) ∩ ⇑(pn),

we know that pn ≪ pn+1. Hence the set S := {pn : n ≥ 1} is directed so that some

point r ∈ P has r = sup(S). Because x is an upper bound for F, we know that r ⊑ x.

Because pn ∈ Dn and pn ⊑ sup(S) = r, we know that r ∈ Dn for each n and therefore

r ∈
⋂

{Dn : n ≥ 1} = X ⊆ max(P). Then r ⊑ x gives r = x.

At this point we have q ≪ x = sup(S) so that some pn ∈ S has q ⊑ pn. Then

x ∈ ⇑(pn)∩T ⊆ ↑(q)∩T ⊆ U . Because ⇑(pn)∩T ∈ G we see that G is a base for T.

Because each collection G(n) is a pairwise-disjoint relatively open cover of T, each

member of each G(n) is both closed and open in T. Therefore, the subspace T of X is

https://doi.org/10.4153/CMB-2010-104-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-104-3


Measurements and Gδ-Subsets of Domains 203

regular so that the Bing–Nagata–Smirnov metrization theorem now guarantees that

the subspace T is metrizable.

Because, as noted in the second paragraph of this proof, X is domain representable

and T is a Gδ-subspace of X, it follows from [3, Theorem 3.2] that T is also domain

representable. But any domain-representable metrizable space is completely metriz-

able, and this completes the proof of Theorem 1.3.

Our next example shows that there are spaces of the type studied in Theorem 1.3

that are not of the type studied in Theorem 1.1.

Example 5.1 There is a domain P such that max(P) is the usual space [0, ω1) of

countable ordinals and max(P) is a Gδ-subset of P, and there is another domain Q

such that max(Q) is [0, ω1) and max(Q) is not a Gδ-subset of Q.

Proof Let Lim be the set of limit ordinals in [0, ω1). For each λ ∈ Lim choose a

strictly increasing sequence α(n, λ) of non-limit ordinals whose supremum is λ. For

each n < ω, level n of the poset P is the set

P(n) :=
{(

[α(n, λ), λ], n
)

: λ ∈ Lim
}

∪
{(

{β}, n
)

: β ∈ [0, ω1) − Lim
}

,

and level ω of P is the set

P(ω) := {({γ}, ω) : γ < ω1}.

Let P :=
⋃

{P(n) : n ≤ ω}. For any ordered pair (u, v), let π1(u, v) = u and

π2(u, v) = v. Partially order P by the rule that p ⊑ q if and only if one of the

following happens:

(i) p = q, or

(ii) p 6= q and π1(q) ⊆ π1(p) and π2(p) < π2(q).

In other words, for distinct p, q ∈ P, ⊑ is reverse inclusion in the first coordinate

and strict increase in the second coordinate. It is straightforward to prove that (P,⊑)

is a domain with max(P) = P(ω) and that in the relative Scott topology, max(P) is a

copy of [0, ω1). One must check that p ≪ p for each p ∈ P − P(ω) while q ≪ q is

false for every q ∈ P(ω). To see that max(P) is a Gδ-subset of P, let

D(n) :=
⋃

{⇑(p) : p ∈ P(n)}.

Then D(n) is a Scott open set and max(P) ⊆
⋂

{D(n) : n ≥ 1}. To show that

max(P) =
⋂

{D(n) : n ≥ 1}, let q ∈
⋂

{D(n) : n ≥ 1}. Then π2(q) ≥ n for each

n so that π2(q) = ω, as required. We now have a domain P with max(P) = [0, ω1),

where max(P) is a Gδ-subset of P.

Next we note that the space X = [0, ω1) is locally compact and Hausdorff, and

therefore is homeomorphic to max(Q), where Q is the collection of all non-empty

compact subsets of [0, ω1) ordered by reverse inclusion. Because Q is a Scott domain,

Corollary 1.2 shows that max(Q) cannot be a Gδ-subset of Q.
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Finally, we extend a theorem from [5] to characterize regular spaces that are the

kernel of a measurement on a domain. The equivalence of (i) and (v) in the theorem

was probably what the authors of [18] had in mind when they announced that there

is “a completeness condition C such that a T1 space is developable with completeness

condition C iff it is the kernel of a measurement on a continuous dcpo”, but they did

not identify what condition C is.

Theorem 5.2 For a T3-space X, the following are equivalent:

(i) X has a development 〈G(n)〉 such that G(n+1) ⊆ G(n) and such that if Gn ∈ G(n)

has clX(Gn+1) ⊆ Gn for each n, then
⋂

{Gn : n ≥ 1} 6= ∅, i.e., X is a Rudin-

complete developable space;

(ii) X is developable and subcompact, i.e., X has a base B such that if C ⊆ B has

the property that for each C1,C2 ∈ C some C3 ∈ C has cl(C3) ⊆ C1 ∩ C2, then
⋂

C 6= ∅;

(iii) X is developable and the non-empty player has a winning strategy in the strong

Choquet game on X (see [5] for definitions);

(iv) X is developable and domain-representable;

(v) there is a domain P and a measurement µ on P such that X is homeomorphic to

ker(µ) = max(P).

Sketch of proof Statements (i), (ii), (iii), and (iv) are equivalent in the light of [5].

Lemma 4.1 shows that any space satisfying (v) must be developable so that assertion

(v) clearly implies (iv). To complete the proof, suppose X satisfies (ii). Then there is

a development 〈G(n)〉 for X with G(n) ⊆ B and G(n + 1) ⊆ G(n). Define P(ω) :=

{({x}, ω) : x ∈ X} and for n < ω let P(n) := {(G, n) : G ∈ G(n)}. Let P =
⋃

{P(n) :

1 ≤ n ≤ ω}. Partially order P by the rule that (G1, n1) ⊑ (G2, n2) if and only if either

G1 = G2 and n1 = n2 or else cl(G2) ⊆ G1 and n1 < n2. Because X is developable,

for any directed subset E ⊆ P, either E contains a maximal element or else sup(E) =
⋂

{π1(e) : e ∈ E} is a singleton set, where π1(e) denotes the first coordinate of the

ordered pair e ∈ E. Whenever (G, n) ∈ P with n < ω we have (G, n) ≪ (G, n), and

it never happens that e ≪ e where e ∈ P(ω). Consequently, (P,⊑) is a domain with

max(P) = P(ω), and the function x → ({x}, ω) is a homeomorphism from X onto

max(P). We define a function µ on P by the rule that µ(G, n) =
1
n

whenever n < ω,

and µ(({x}, ω) = 0. Once again using the fact that X is developable, we show that µ
is a measurement on P, as required.

6 Open Questions

The following questions remain open and are likely to be of interest to both topolo-

gists and domain theorists.

Question 6.1 (For metric spaces) Suppose X is completely metrizable. In a com-

ment just after [15, Example 4.3], Martin noted that for any complete metric space X,

there is a domain DX and a measurement µX on DX with X = ker(µX) = max(DX).

We ask whether there is a Scott domain P such that X is homeomorphic to max(P)

and max(P) is a Gδ-subset of P (with the Scott topology). We emphasize that, in this

question, P must be a Scott domain. In [16], Martin asked whether every complete
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metric space can be embedded as a dense Gδ-subset of a Scott domain, an apparently

easier question that also remains open. Martin [16, Proposition 5.7.2] provides an

affirmative answer to his apparently easier question in case X is a complete separable

metric space.

Question 6.2 (For Moore spaces) Is it true that for each Scott-domain representable

Moore space Y there must be a Scott domain P such that max(P) is homeomorphic

to Y and is a Gδ-subset of P? Is it true that a Scott-domain representable Moore

space must be the kernel of some measurement on some Scott domain? Theorem 5.2

above shows that a Scott-domain representable Moore space must be the kernel of a

measurement on some domain P, but the domain that we construct is not likely to

be a Scott domain. A related result is Theorem 4.12 of [18] announcing that every

Čech-complete Moore space Y is ker(µ) for some measurement µY on some domain

DY , and it is known that any Scott-domain-representable, completely regular Moore

space is Čech complete [14]. But we do not know whether the domain DY in which

Y = ker(µY ) is a Scott domain.

Question 6.3 Which spaces are max(P) for some Scott domain P, where max(P) is

a Gδ-subset of P? Our Theorems 1.1 and 1.3 give necessary conditions, and results in

[12] give necessary conditions for the Scott-domain question.

Finally, recall a classical result: if a completely regular space X is a Gδ-subset of

some compact Hausdorff space, then X is a Gδ subset of every compact Hausdorff

space in which X densely embeds. In an earlier version of this paper, we asked

whether there is a domain-theoretic analogue of that classical assertion. We asked

which spaces Y must be Gδ-subsets of every domain or Scott domain P with Y =

max(P). This question might sound natural, but it does not have a reasonable answer.

Consider a one-point space. The linearly ordered sets P = [0, ω] and Q = [0, ω1]

are both Scott domains (in their usual order) and max(P) and max(Q) are each the

one-point space. However, max(P) is a Gδ-subset of P while max(Q) is not a Gδ-

subset of Q. Also, note that in the Scott domain Q = [0, ω1], max(Q) is completely

metrizable and not a Gδ-subset of Q. This answers question (viii) of Chapter 5 of

[16].
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