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BRILL–NOETHER THEOREMS AND GLOBALLY
GENERATED VECTOR BUNDLES ON HIRZEBRUCH

SURFACES

IZZET COSKUN and JACK HUIZENGA

Abstract. In this paper, we show that the cohomology of a general stable

bundle on a Hirzebruch surface is determined by the Euler characteristic

provided that the first Chern class satisfies necessary intersection conditions.

More generally, we compute the Betti numbers of a general stable bundle.

We also show that a general stable bundle on a Hirzebruch surface has a

special resolution generalizing the Gaeta resolution on the projective plane.

As a consequence of these results, we classify Chern characters such that the

general stable bundle is globally generated.

§1. Introduction

The Brill–Noether theorem of Göttsche and Hirschowitz [GHi94] shows

that a general stable bundle on P2 has at most one nonzero cohomology

group. On a Hirzerbruch surface Fe the situation is not so simple—the

section of negative self-intersection can cause every bundle with given

numerical invariants to have interesting cohomology. In this paper, we

determine necessary and sufficient conditions on numerical invariants which

ensure that the general stable bundle on Fe has at most one nonzero

cohomology group. Essentially equivalently, we also compute the Betti

numbers of a general stable bundle.

We then show that the general stable sheaf on Fe has a special resolution

by direct sums of line bundles. These resolutions generalize the Gaeta

resolution of a general sheaf on P2, and can be viewed as giving unirational

parameterizations of moduli spaces of sheaves [Eis05, Gae51]. Thus, these

resolutions are a convenient tool for describing a general sheaf. As a

consequence of the Brill–Noether theorem and the Gaeta-type resolution, we

completely determine when a general stable bundle on a Hirzebruch surface
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2 I. COSKUN AND J. HUIZENGA

is globally generated. The case of F1 implies an analogous result for P2

which sharpens a theorem of Bertram, Goller and Johnson [BGJ16]. These

theorems play crucial roles in the construction of theta and Brill–Noether

divisors and in the study of Le Potier’s Strange Duality Conjecture. We also

anticipate they will be useful in the study of ample vector bundles on these

surfaces.

Let Fe denote the Hirzebruch surface P(OP1 ⊕OP1(e)), where e is a

nonnegative integer. The Picard group Pic(Fe) = ZE ⊕ ZF is generated by

the class of a fiber F of the projection π : Fe→ P1 and the class of the section

E with self-intersection E2 =−e. Let H denote an ample class on Fe and

let v be the Chern character of a positive rank µH -semistable sheaf. We

call v stable for brevity. Let M(v) :=Mµ-ss
H (v) be the moduli space of µH -

semistable sheaves with Chern character v. By a theorem of Walter [Wal98],

the moduli space M(v) is irreducible, and therefore it makes sense to talk

about a general sheaf of character v. If r(v) > 2, then Walter additionally

shows the general sheaf in M(v) is a vector bundle.

Our first theorem generalizes the Göttsche–Hirschowitz Theorem.

Theorem 1.1. Let v be a stable Chern character on Fe with rank r(v) >
2 and total slope

ν(v) :=
c1(v)

r(v)

satisfying ν(v) · F >−1.

If ν(v) · E >−1, then the general sheaf V ∈M(v) has at most one

nonzero cohomology group and, furthermore, H2(Fe, V) = 0. Conversely,

if χ(v) > 0, then the general sheaf in M(v) has at most one nonzero

cohomology group if and only if ν(v) · E >−1.

More precisely, we give a simple formula to compute the Betti numbers

hi(Fe, V) of a general sheaf V ∈M(v); see Theorem 3.1. The statements

in Theorem 1.1 contain the most challenging and interesting part of this

computation. By replacing v by the Serre dual character vD, we can always

reduce to the case ν(v) · F >−1, so this assumption is not really restrictive.

Under the assumptions of the theorem, the Euler characteristic completely

determines the cohomology of the general sheaf if ν(v) · E >−1. If ν(v) ·
E <−1 and χ(v) > 0, then the general sheaf has both nonzero h0 and h1.

On the other hand, if ν(v) · E <−1 and χ(v)< 0, then general sheaf has

only h1 provided that the discriminant of v is sufficiently large. We quantify

this precisely in Corollary 3.9.
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BRILL–NOETHER THEOREMS AND GAETA RESOLUTIONS 3

Theorem 1.1 has many applications. For instance, it shows that effective

theta divisors can be constructed on moduli spaces M(v) if χ(v) = 0, ν(v) ·
F >−1, and ν(v) · E >−1. In this special case, Theorem 1.1 was shown in

[CH16] by a different approach. The full version of Theorem 1.1 for arbitrary

Euler characteristic will also play a crucial role in classifying the stable

Chern characters for which the general sheaf in M(v) is globally generated.

The next theorem contains the majority of the classification; see Theorems

5.1 and 5.2 for the complete classification.

Theorem 1.2. Let e> 1, and let v be a stable Chern character on Fe.
Assume that r(v) > 1, χ(v) > r(v) + 2, ν(v) · F > 0 and ν(v) · E > 0. Then

the general sheaf in M(v) is globally generated.

As a consequence of the F1 case of Theorem 1.2, we complete an

analogous classification for P2 started by Bertram et al. [BGJ16]. We use two

techniques to prove our theorems. We make use of the stack of F -prioritary

sheaves, and we find special resolutions of the general sheaf in the spirit of

the Gaeta resolution on P2.

A torsion-free sheaf V on Fe is F -prioritary if Ext2(V, V(−F )) = 0.

The stack of F -prioritary sheaves PF (v) with Chern character v is irre-

ducible [Wal98, Proposition 2]. Furthermore, µH -semistable sheaves are F -

prioritary, so Mµ-ss
H (v)⊂ PF (v) is an open substack, which is dense if it

is nonempty. Hence, assuming µH -semistable sheaves of character v exist,

to show that the general V ∈M(v) satisfies some open property, it suffices

to exhibit one V ∈ PF (v) with that property. The advantage of working

with F -prioritary sheaves is that they are much easier to construct than

semistable sheaves. For example, one can construct F -prioritary sheaves as

certain direct sums of line bundles. We prove Theorem 1.1 by explicitly

constructing an F -prioritary sheaf with at most one nonzero cohomology

group for every character v satisfying the hypotheses of the Theorem.

Remark 1.3. In fact, µH -semistability will play essentially no role in

this paper. Instead, in the body of the article we state almost all of our

theorems for moduli stacks PF (v) where v is a character satisfying the

Bogomolov inequality ∆(v) > 0 (which is automatically satisfied if there is

a µH -semistable sheaf of character v). When the space M(v) is nonempty,

the analogous results for M(v) follow immediately.

Our second technique will be to exploit a convenient resolution of the

general sheaf in M(v). We will be able to read many cohomological
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4 I. COSKUN AND J. HUIZENGA

properties of the general sheaf from this resolution. Our main result is as

follows. See Theorem 4.2 for a stronger statement.

Theorem 1.4. Suppose e> 2, and let V ∈M(v) be a general µH-

semistable sheaf on Fe. Then there exists a line bundle L such that V has a

resolution of the form

0→ L(−E − (e+ 1)F )α→ L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ→V → 0.

We use Theorem 1.4 in order to analyze the most challenging case in the

classification of Chern characters such that the general bundle is globally

generated. We additionally anticipate resolutions of this type will be useful

in studying various questions related to generic vector bundles on Hirzebruch

surfaces.

Organization of the paper

In §2, we collect preliminary facts concerning the geometry of Hirzebruch

surfaces and moduli of sheaves. In §3, we prove a strengthened version of

Theorem 1.1 and compute the Betti numbers of a general sheaf. In §4, we

prove a strengthened version of Theorem 1.4. We then classify characters

such that the general sheaf is globally generated in §5. We close the paper

with some remarks on the open question of determining the Chern characters

of ample vector bundles.

§2. Preliminaries

In this section, we collect basic facts which we use in the rest of the paper.

2.1 Hirzebruch surfaces

We refer the reader to [Bea83], [Cos06] and [Hart77] for detailed expo-

sitions on Hirzebruch surfaces. Let e be a nonnegative integer and let Fe
denote the ruled surface P(OP1 ⊕OP1(e)). Let π : Fe→ P1 be the natural

projection. Let F be the class of a fiber and let E be the class of the section

of self-intersection −e. The intersection pairing on Fe is given by

E2 =−e, F 2 = 0, F · E = 1.

The effective cone of Fe is generated by E and F . In fact,

h0(Fe,OFe(aE + bF ))> 0

if and only if a, b> 0. Dually, the nef cone of Fe is generated by

E + eF and F . The canonical divisor is given by KFe =−2E − (e+ 2)F .
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BRILL–NOETHER THEOREMS AND GAETA RESOLUTIONS 5

By Serre duality, h2(Fe,OFe(aE + bF ))> 0 if and only if a6−2 and

b6−e− 2. The following theorem summarizes the cohomology of line

bundles on Fe (also see [Cos06, CH16, Hart77]).

Theorem 2.1. Let L=OFe(aE + bF ) be a line bundle on Fe. Then

(1) We have

χ(L) = (a+ 1)(b+ 1)− ea(a+ 1)

2
.

(2) If L · F >−1, then h2(Fe, L) = 0.

(3) If L · F 6−1, then h0(Fe, L) = 0.

(4) In particular, if L · F =−1, then L has no cohomology in any degree.

Now suppose L · F >−1. Then h2(Fe, L) = 0, so either of the numbers

h0(Fe, L) or h1(Fe, L) determine the cohomology of L. These can be

determined as follows.

(5) If L · E >−1, then H1(Fe, L) = 0, and so h0(Fe, L) = χ(L).

(6) If L · E <−1, then H0(Fe, L)∼=H0(Fe, L(−E)), and so the cohomology

of L can be determined inductively using (3) and (5).

(If L · F <−1 then the cohomology of L can be determined by Serre

duality.)

While the proof is well known, we include it since the argument is relevant

to our approach for vector bundles.

Proof. Part (1) is just Riemann–Roch. Part (3) comes from the descrip-

tion of the effective cone, and (2) follows by Serre duality. Part (4) is just a

combination of (1)–(3).

(5) Suppose a= L · F > 0 and L · E >−1, and consider the restriction

sequence

0→ L(−E)→ L→ L|E → 0.

Then H1(E, L|E) = 0, so H1(Fe, L) is a quotient of H1(Fe, L(−E)).

Repeating this process, we eventually find that H1(Fe, L) is a quotient

of H1(Fe, L(−(a+ 1)E)) =H1(Fe,OFe(−E + bF )) = 0 by (4). Therefore,

H1(Fe, L) = 0.

(6) The isomorphism H0(Fe, L)∼=H0(Fe, L(−E)) comes immediately

from the restriction sequence. When we twist L by −E, the intersection

number with E increases by e and the intersection number with F

decreases by 1. Thus there is some smallest integer m> 0 such that either
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6 I. COSKUN AND J. HUIZENGA

L(−mE) · F 6−1 or L(−mE) · E >−1, and by induction h0(Fe, L) =

h0(Fe, L(−mE)). If L(−mE) · F 6−1, we have h0(Fe, L) = 0 by (3).

On the other hand, if L(−mE) · F >−1 and L(−mE) · E >−1, then we

have h0(Fe, L) = χ(L(−mE)) by (5).

Remark 2.2. In particular, the line bundles

OFe(−F ), OFe(−2E − (e+ 1)F ), and OFe(−E + bF ) (b ∈ Z)

all have no cohomology in any degree.

2.2 Numerical invariants and semistability

We refer the reader to [CH15, HuL10, LeP97] for more details on moduli

spaces of vector bundles on surfaces. Let X be a surface and let H be an

ample divisor on X. For a sheaf V (or Chern character v) of positive rank

we respectively define the H-slope, total slope, and discriminant:

µH(V) =
c1(V) ·H
r(V)H2

, ν(v) =
c1(V)

r(V)
, ∆(V) =

1

2
ν(V)2 − ch2(V)

r(V)
.

The discriminant has the following important properties:

(1) If L is a line bundle then ∆(L) = 0.

(2) If V is torsion-free andW is a nonzero vector bundle, then ∆(V ⊗W) =

∆(V) + ∆(W). In particular, ∆(V ⊗ L) = ∆(V) for any line bundle L.

If we put P (ν) = χ(OX) + 1
2ν · (ν −KX), then the Riemann–Roch for-

mula reads

χ(V) = r(V)(P (ν(V))−∆(V)).

In the special case of Fe, if V has rank r and total slope ν(V) = (k/r)E +

(l/r)F , then the term P (ν(V)) becomes

P (ν(V)) =

(
k

r
+ 1

) (
l

r
+ 1

)
− ek

2r

(
k

r
+ 1

)
.

We find the following easy consequence of Hirzebruch–Riemann–Roch

useful.

Lemma 2.3. Let X be a smooth projective surface with canonical class

KX . Let V be a torsion-free sheaf of rank r on X and let L be a line bundle

on X. Then

χ(V ⊗ L) = χ(V) + L · c1(V) + r(χ(L)− χ(OX)).
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A torsion-free sheaf V on X is µH -semistable if whenever W ⊂V is a

nonzero subsheaf we have µH(W) 6 µH(V). Ordinary H-Gieseker semista-

bility implies µH -semistability, but all the theorems in this paper will hold

for the weaker µH -semistability. The Bogomolov inequality implies that

∆(V) > 0 for any µH -semistable sheaf.

2.3 Prioritary sheaves

While our results are perhaps the most interesting in the context of

semistable sheaves, stronger results can be proved by working with the easier

notion of prioritary sheaves.

Definition 2.4. Let D be a divisor on a smooth surface X. A torsion-

free sheaf V is called D-prioritary if Ext2(V, V(−D)) = 0.

We write PD(v) (or PX,D(v) ifX is not clear) for the stack ofD-prioritary

sheaves on X.

In this paper, we primarily consider F -prioritary sheaves on Fe, where F

is the class of a fiber. If H is any ample class on Fe and V is a torsion-free

µH -semistable sheaf, then V is automatically F -prioritary. Indeed, suppose

V is µH -semistable. By Serre duality

Ext2(V, V(−F )) = Hom(V, V(KFe + F ))∗.

Since KFe + F is anti-effective, we have (KFe + F ) ·H < 0. There-

fore, µH(V)> µH(V(KFe + F )), and Hom(V, V(KFe + F )) = 0 by µH -

semistability. Therefore, V is F -prioritary. It follows from openness of

stability that the stackMµ-ss
H (v) is an open substack of PF (v). Furthermore,

if there are µH -semistable sheaves of character v, then it is dense by the

following theorem of Walter [Wal98].

Theorem 2.5. Let π :X → P1 be a geometrically ruled surface with fiber

class F , and let v ∈K(X) have positive rank. Then the stack PF (v) is

irreducible. Furthermore, if r(v) > 2 and PF (v) is nonempty, then a general

V ∈ PF (v) is a vector bundle.

In particular, to show that a general µH -semistable sheaf on Fe of

character v satisfies some open property, it is sufficient to produce an F -

prioritary sheaf with that property.

Every vector bundle on a rational curve is a direct sum of line bundles⊕r
i=1 OP1(ai). The vector bundle is balanced if |ai − aj |6 1 for all i, j. The

next proposition explains the importance of the prioritary condition.
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8 I. COSKUN AND J. HUIZENGA

Proposition 2.6. Let C be a curve on a surface X and let Fs/S be a

complete family of C-prioritary sheaves which are locally free on C. Then

the restricted family Fs|C/S is complete.

Therefore, if C is a rational curve, then Fs|C is balanced for all s in an

open dense subset of S.

Proof. The Kodaira–Spencer map of the restricted family

TsS→ Ext1(Fs|C , Fs|C)

factors as a composition

TsS→ Ext1(Fs, Fs)→ Ext1C(Fs|C , Fs|C).

The first map is surjective since the family F is a complete family. We have

an identification

Ext1(Fs, Fs|C) = H1(X, F∗s ⊗Fs|C)

= H1(C, F∗s |C ⊗Fs|C)

= Ext1C(Fs|C , Fs|C)

since Fs is locally free along C. Hence, the second map in the factorization

appears in the long exact sequence obtained by applying Hom(Fs, Fs ⊗−)

to

0→OX(−C)→OX →OC → 0.

By the long exact sequence of cohomology

Ext1(Fs, Fs)→ Ext1(Fs, Fs|C)→ Ext2(Fs, Fs(−C)) = 0

we conclude that the Kodaira–Spencer map is surjective, and Fs|C/S is

complete.

In any complete family of vector bundles on P1 parameterized by an

irreducible base, the general bundle is balanced. The second statement

follows.

One advantage of working with prioritary sheaves is that they are well

behaved under elementary modifications. The following result is well known

but we include the proof for completeness and lack of a single streamlined

reference.
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BRILL–NOETHER THEOREMS AND GAETA RESOLUTIONS 9

Lemma 2.7. Let L be a line bundle on a smooth surface X. Let V be

a torsion-free sheaf on X, and let V ′ be a general elementary modification

of V at a general point p ∈X, defined as the kernel of a general surjection

φ : V →Op:
0→V ′→V φ→Op→ 0.

(1) If V is L-prioritary, then V ′ is L-prioritary.

(2) The sheaves V and V ′ have the same rank and c1, and

χ(V ′) = χ(V)− 1

∆(V ′) = ∆(V) +
1

r
.

(3) We have H2(X, V)∼=H2(X, V ′).
(4) If at least one of H0(X, V) or H1(X, V) is zero, then at least one of

H0(X, V ′) or H1(X, V ′) is zero. In particular, if H2(X, V) = 0 and V
has at most one nonzero cohomology group, then H2(X, V ′) = 0 and V ′
has at most one nonzero cohomology group.

Proof. (1) Clearly V ′ is torsion-free since V is. We have Ext2(V, V(−L)) =

0 since V is L-prioritary. We would like to show that Ext2(V ′, V ′(−L)) = 0.

Applying Ext(−, V ′(−L)) to the sequence, we obtain a surjection

Ext2(V, V ′(−L))→ Ext2(V ′, V ′(−L))→ 0.

Hence, it suffices to show that Ext2(V, V ′(−L)) = 0. Applying Ext(V,−) to

the sequence twisted by −L, we obtain

Ext1(V,Op)→ Ext2(V, V ′(−L))→ Ext2(V, V(−L)).

We have Ext2(V, V(−L)) = 0 by the assumption that V is L-prioritary and

Ext1(V,Op) = 0 because V is locally free at the general point p. We conclude

that V ′ is L-prioritary.

(2) The first equality follows from the exact sequence, and Riemann–Roch

gives the second.

(3) This follows immediately from the long exact sequence in cohomology.

(4) Consider the long exact sequence in cohomology

0→H0(X, V ′)→H0(X, V)→H0(X,Op)→H1(X, V ′)→H1(X, V)→ 0.

If H0(X, V) = 0, then H0(X, V ′) = 0. Suppose H0(X, V) 6= 0 and

H1(X, V) = 0. Then by the choice of φ : V →Op, the map H0(X, V)→
H0(X,Op) = C is surjective. It follows that H1(X, V ′) = 0.
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10 I. COSKUN AND J. HUIZENGA

2.4 Exceptional collections

We refer the reader to [CH16] for more details on the following discussion.

We use exceptional collections of sheaves on Fe as basic building blocks for

constructing sheaves with useful properties.

Definition 2.8. A coherent sheaf E is called exceptional if Exti(E , E) =

0 for i> 1 and Hom(E , E) = C. An ordered collection of exceptional objects

E1, . . . , Em is an exceptional collection if Exti(Et, Es) = 0 for s < t and all i.

The exceptional collection is strong if in addition Exti(Es, Et) = 0 for s < t

and i 6= 0.

Example 2.9. On Fe, the line bundles

OFe(−E − (e+ 1)F ),OFe(−E − eF ),OFe(−F ),OFe

give a strong exceptional collection (see [CH16, Example 3.2]).

In [CH16], the majority of the following result was proved.

Theorem 2.10. Let E1, . . . , Em, F1, . . . , Fn be a strong exceptional

collection of vector bundles on a surface X, partitioned into two blocks,

and let L be a line bundle on X. Assume that

(1) The sheaf Hom(Ei, Fj) is globally generated for all i, j,

(2) Ext1(Ei, Fj(−L)) = 0 for all i, j, and

(3) Ext2(Fi, Fj(−L)) = 0 for all i, j.

Suppose a1, . . . , am and b1, . . . , bn are nonnegative integers such that∑
bjr(Fj)−

∑
air(Ei)> 0, and let

U ⊂Hom

 m⊕
i=1

Eaii ,
n⊕
j=1

Fbjj


be the open subset parameterizing injective sheaf maps with torsion-free

cokernel. For φ ∈ U , let Vφ be the cokernel:

0→
m⊕
i=1

Eaii
φ→

n⊕
j=1

Fbjj →Vφ→ 0.

Then U is nonempty, and the family Vφ/U is a complete family of L-

prioritary sheaves.
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Proof. If r(Vφ) =
∑
bjr(Fj)−

∑
air(Ei) > 2, then this is [CH16, Propo-

sition 3.6]. When r(Vφ) = 1, everything follows as in the r(Vφ) > 2 case,

except we must verify that Vφ is still torsion-free. The rank of φ only

drops in codimension 2, so any torsion subsheaf T ⊂ Vφ has 0-dimensional

support. If T 6= 0 and M is any line bundle, then H0(X, T ⊗M) 6= 0 and

hence H0(X, Vφ ⊗M) 6= 0. However, if M is sufficiently anti-ample, then

tensoring the resolution of Vφ by M shows H0(X, Vφ ⊗M) = 0. Therefore,

T = 0.

2.5 Globally generated vector bundles

We now recall some properties of globally generated sheaves for use in

§5. A coherent sheaf V on a projective variety X over a field k is globally

generated if the evaluation map

H0(X, V)⊗k OX →V

is surjective. The following lemma is immediate.

Lemma 2.11. Any quotient of a globally generated sheaf is globally

generated.

If V is globally generated, then there is an obvious restriction on c1(V).

Lemma 2.12. Let V be a globally generated vector bundle on X. Then

for every curve C ⊂X, we have

C · c1(V) > 0.

Proof. The standard short exact sequence

0→V(−C)→V →V|C → 0

implies that V|C is a quotient of V. Hence, by Lemma 2.11, V|C is

globally generated. Since a globally generated vector bundle on a curve

has nonnegative degree, we conclude that C · c1(V) > 0.

We warn that while many properties of sheaves that we consider in

this paper are open properties, the property of being globally generated

is not in general open. However, in a family V/S of sheaves with no higher

cohomology, the locus of globally generated sheaves is clearly open. The next

example shows that in an arbitrary family the locus of globally generated

sheaves can fail to be open.
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12 I. COSKUN AND J. HUIZENGA

Example 2.13. On P2, the locus in M(v) of globally generated

semistable sheaves is not generally open, and even if it is nonempty, it need

not be dense. For example, for any d> 1 the bundle V

0→OP2(−d)→Hom(OP2(−d),OP2)∗ ⊗OP2 →V → 0

given by the cokernel of the coevaluation map is globally generated and

semistable [LeP97, Lemma 9.2.3]. Let v = ch V. By the Brill–Noether

theorem of Göttsche and Hirschowitz [GHi94], a general sheaf in M(v) has

only one nonzero cohomology group.

• If d= 1 or 2, then the bundle V is exceptional, and M(v) = {[V]} is a

point.

• If d= 3, then χ(v) = r(v), the moduli space M(v) is positive-dimensional,

and the general sheaf in M(v) has r(v) sections but is not globally

generated.

• If d> 4, then χ(v) = 3d <
(
d+2
2

)
− 1 = r(v) and the general sheaf does not

even have r(v) sections, so has no hope of being globally generated.

Thus, sheaves with “extra” sections can be globally generated even if the

general sheaf is not.

§3. The Brill–Noether theorem

In this section, we prove the Brill–Noether theorem for vector bundles on

Hirzebruch surfaces and compute the Betti numbers of a general sheaf. The

next result summarizes the various results in this section; it is instructive

to compare the statement with the line bundle case, Theorem 2.1.

Theorem 3.1. Let v ∈K(Fe) be a Chern character with positive rank

r = r(v) and ∆(v) > 0. Then the stack PF (v) is nonempty and irreducible.

Let V ∈ PF (v) be a general sheaf.

(1) If we write ν(v) = (k/r)E + (l/r)F , then

χ(v) = r(P (ν(v))−∆(v))

= r

((
k

r
+ 1

) (
l

r
+ 1

)
− ek

2r

(
k

r
+ 1

)
−∆(v)

)
(2) If ν(v) · F >−1, then h2(Fe, V) = 0.

(3) If ν(v) · F 6−1, then h0(Fe, V) = 0.
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(4) In particular, if ν(v) · F =−1, then h1(Fe, V) =−χ(v) and all other

cohomology vanishes.

Now suppose ν(v) · F >−1. Then H2(Fe, V) = 0, so either of the

numbers h0(Fe, V) or h1(Fe, V) determine the Betti numbers of V.

These can be determined as follows.

(5) If ν(v) · E >−1, then V has at most one nonzero cohomology

group. Thus if χ(v) > 0, then h0(Fe, V) = χ(v), and if χ(v) 6 0, then

h1(Fe, V) =−χ(v).

(6) If ν(v) · E <−1, then H0(Fe, V)∼=H0(Fe, V(−E)), and so the Betti

numbers of V can be determined inductively using (3) and (5).

(If ν(v) · F <−1 and r(v) > 2, then the cohomology of V can be determined

by Serre duality.)

Remark 3.2. In particular, if H is an arbitrary ample divisor on Fe and

there are µH -semistable sheaves of character v, then Theorem 3.1 allows us

to compute the Betti numbers of a general sheaf V ∈Mµ-ss
H (v).

Statement (1) of the theorem is just Riemann–Roch, reproduced here for

the reader’s convenience. The locus of sheaves V ∈ PF (v) satisfying each

of the statements (2)–(5) of the theorem is open in the stack PF (v), so

it suffices to produce a single sheaf V ∈ PF (v) with the given cohomology.

We construct such sheaves by using direct sums of line bundles as basic

building blocks (§3.1) and applying elementary modifications to them (§3.2).

Statement (6) follows easily from the observation that for a general V ∈
PF (v) the restriction V|E is balanced (see Corollary 3.6).

3.1 Prioritary direct sums of line bundles

We first show that for any rank r > 1 and slope ν = (k/r)E + (l/r)F ,

there is a prioritary direct sum of line bundles with ∆ 6 0. We identify

N1(Fe)Q ∼= Q2 with the (k/r, l/r)-plane. The particular line bundles we use

depend on (k/r, l/r). The next lemma shows that if this point is in a certain

triangular region, then we can find such a direct sum of line bundles.

Lemma 3.3. Let a, b, c> 0 be nonnegative integers, and let

W =OFe(−E − (e+ 1)F )a ⊕OFe(−F )b ⊕OcFE
.

(1) The bundle W is F -prioritary and E-prioritary, and W has no higher

cohomology.

(2) We have ∆(W) 6 0.
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(3) Let r > 1 and represent a total slope (k/r)E + (l/r)F ∈N1(Fe)Q by the

point (k/r, l/r) ∈Q2. If (k/r, l/r) is in the convex region with vertices

(−1,−e− 1), (0,−1), (0, 0),

then it is the slope of a rank r bundle W as above.

Proof. (1) The vector space Ext2(W,W(−F )) is a direct sum of vector

spaces of the form H2(Fe,OFe(αE + βF )) where α>−1, and these are zero.

Therefore, W is F -prioritary. Similarly, the vector space Ext2(W,W(−E))

is a direct sum of vector spaces of the form H2(Fe,OFe(αE + βF )) where

β >−e− 1, and these are again zero. Therefore, W is E-prioritary. The

statement on cohomology follows at once from Theorem 2.1.

(2) We compute

ch(W) =

(
a+ b+ c,−aE − (a(e+ 1) + b)F,

a(e+ 2)

2

)
.

Then

2r(W)2∆(W) = ch1(W)2 − 2r(W) ch2(W)

= −a2e+ 2a(a(e+ 1) + b)− (a+ b+ c)a(e+ 2)

= −a(be+ ce+ 2c).

Therefore, ∆(W) 6 0.

(3) The slope (k/r, l/r) is in the convex region spanned by (−1,−e− 1),

(0,−1) and (0, 0) if and only if the vector (k, l, r) is in the cone spanned

by (−1,−e− 1, 1), (0,−1, 1), and (0, 0, 1). This happens if and only if the

linear system  −1 0 0
−e− 1 −1 0

1 1 1

ab
c

=

kl
r


has a solution (a, b, c) ∈Q3

>0. But the matrix is in SL3(Z), so actually

(a, b, c) ∈ Z3
>0. The corresponding bundleW has rank r and slope (k/r, l/r).

By an analogous construction we can further handle slopes lying in a

larger quadrilateral region. This quadrilateral has the advantage that its

shifts by line bundles tile the whole (k/r, l/r)-plane.
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Corollary 3.4. Suppose r > 1 and the point (k/r, l/r) lies in the

parallelogram Q bounded by the four vertices

(−1,−e), (0, 0), (0,−1) and (−1,−e− 1).

Then there is a rank r direct sum W of copies of the line bundles

OFe(−E − eF ), OFe , OFe(−F ), and OFe(−E − (e+ 1)F )

such that

(1) ν(W) = (k/r)E + (l/r)F ,

(2) W is F - and E-prioritary, and

(3) ∆(W) 6 0.

Proof. The quadrilateral region is split into a lower triangle T1 and

an upper triangle T2 by the line segment from (−1,−e− 1) to (0, 0). If

(k/r, l/r) is in T1, then everything follows from Lemma 3.3.

On the other hand, if (k/r, l/r) lies in T2, consider direct sums of the

form

W =OaFe
⊕OFe(−E − eF )b ⊕OFe(−E − (e+ 1)F )c.

Notice that

(W(E + (e+ 1)F ))∗ =OFe(−E − (e+ 1)F )a ⊕OFe(−F )b ⊕OcFe

is of the same form as the line bundles considered in Lemma 3.3. Since

tensoring by line bundles and taking duals preserves discriminants and

prioritariness, it follows that the integers a, b, c can be chosen so that W
has the required properties.

3.2 Elementary modifications

When combined with elementary modifications, Corollary 3.4 has many

consequences, which we now investigate. The proof of the next corollary

is fundamental to all the results which follow and makes crucial use of

Lemma 2.7.

Corollary 3.5. Let v ∈K(Fe) be a character of positive rank with

∆(v) > 0. Then PF (v) is nonempty.

Proof. Since integer translates of the region Q in Corollary 3.4 tile

N1(Fe)Q, we may find a line bundle L such that ν(v(−L)) lies in Q. Then
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Corollary 3.4 produces an F -prioritary sheafW of nonpositive discriminant

with r(W(L)) = r(v) and ν(W(L)) = ν(v). Then since ∆(v) > 0, the integer

m= χ(W(L))− χ(v) is nonnegative, since

m= χ(W(L))− χ(v) = r(v)(∆(v)−∆(W(L))).

Thus by Lemma 2.7, if we perform m general elementary modifications to

W(L), the resulting sheaf V is F -prioritary and has ch V = v.

By essentially the same proof, we can deduce that a general V ∈ PF (v)

splits as a balanced direct sum on the exceptional section E.

Corollary 3.6. Let v ∈K(Fe) be a character of positive rank with

∆(v) > 0. Then the general V ∈ PF (v) is E-prioritary, and furthermore V|E
is a balanced direct sum of line bundles.

Proof. In the proof of Corollary 3.5, the bundle W is E-prioritary,

and hence so is W(L). Then the sheaf V is also E-prioritary by Lemma

2.7. Furthermore, W|E is clearly balanced, and hence so is W(L)|E and

V|E . (Alternately, the balancedness of V|E follows from the general result

Proposition 2.6.)

When further information about v is known, the possibilities for the

twisting line bundle L such that v(−L) lies in Q are restricted. This fact

allows us to deduce further results about sheaves of character v.

Corollary 3.7. Let v ∈K(Fe) be a character of positive rank with

∆(v) > 0. Let V ∈ PF (v) be general.

(1) If ν(v) · F >−1, then h2(Fe, V) = 0.

(2) If ν(v) · F 6−1, then h0(Fe, V) = 0.

(3) In particular, if ν(v) · F =−1, then h1(Fe, V) =−χ(v) and all other

cohomology vanishes.

(4) Suppose ν(v) · F >−1 and ν(v) · E >−1. Then V has at most one

nonzero cohomology group.

Proof. (1) In the notation of the proof of Corollary 3.5, since ν(v) · F >
−1 we may assume the line bundle L is of the form OFe(aE + bF ) with

a> 0 and b ∈ Z. Then the line bundles appearing inW(L) (which are twists

by L of the line bundles in the statement of Corollary 3.4) all clearly have

no h2. Then V also has no h2 by Lemma 2.7.
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(2) In this case, we may assume the line bundle L is of the form OFe(aE +

bF ) with a6−1 and b ∈ Z. The line bundles appearing in W(L) all have

no h0. Then V is a subsheaf of W(L), so also has no h0.

(3) This immediately follows from (1) and (2).

(4) This time we may assume the line bundle L is nef. Then by

Theorem 2.1, the line bundles appearing in W(L) all have no higher

cohomology. By Lemma 2.7, performing general elementary modifications

onW(L) results in a bundle V with at most one nonzero cohomology group.

We can combine the last two corollaries to compute the Betti numbers

of a general sheaf in the remaining cases. Together with the other results in

this subsection, this completes the proof of Theorem 3.1.

Proposition 3.8. Let v ∈K(Fe) be a character of positive rank with

∆(v) > 0, ν(v) · F >−1 and ν(v) · E <−1. Let V ∈ PF (v) be general. Then

H0(Fe, V)∼=H0(Fe, V(−E)), and the Betti numbers of V can be determined

inductively.

Proof. Since V|E is balanced by Corollary 3.6 and ν(v) · E <−1, we

conclude that H0(E, V|E) = 0. Then the restriction sequence

0→V(−E)→V →V|E → 0

implies H0(Fe, V)∼=H0(Fe, V(−E)).

It remains to explain how to compute the Betti numbers of V inductively.

Twisting V by −E has the effect of increasing ν(v) · E by e and decreasing

ν(v) · F by 1. Hence there is a smallest integer m> 1 such that either

ν(v(−mE)) · E >−1 or ν(v(−mE)) · F 6−1, and by induction we find

h0(Fe, V) = h0(Fe, V(−mE)).

If ν(v(−mE)) · F 6−1, Corollary 3.7 gives h0(Fe, V) = h2(Fe, V) = 0,

and so h1(Fe, V) =−χ(v).

On the other hand if ν(v(−mE)) · F >−1, then ν(v(−mE)) · E >−1.

Corollary 3.7 gives h0(Fe, V) = max{χ(v(−mE)), 0} and h2(Fe, V) = 0, and

h1(Fe, V) is determined by Riemann–Roch. Note that in this case h1(Fe, V)

is always nonzero. Indeed, since m> 1, we find ν(v(−E)) · F >−1. By

Corollary 3.7, we have h2(Fe, V(−E)) = 0. Then H1(Fe, V)→H1(Fe, V|E)

is surjective, and h1(Fe, V|E)> 0 since ν(v) · E <−1.

3.3 The Brill–Noether theorem

We call a character v ∈K(Fe) of positive rank special if the general

sheaf V ∈ PF (v) has more than one nonzero cohomology group, and
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nonspecial otherwise. It is useful for applications to convert the statement

of Theorem 3.1 to a classification of the nonspecial characters. Again we

concentrate on the case ν(v) · F >−1 and rely on Serre duality otherwise.

Corollary 3.9. Let v ∈K(Fe) be a character with positive rank and

∆(v) > 0, and suppose ν(v) · F >−1. Then v is nonspecial if and only if

one of the following holds.

(1) We have ν(v) · F =−1.

(2) We have ν(v) · F >−1 and ν(v) · E >−1.

(3) If ν(v) · F >−1 and ν(v) · E <−1, let m be the smallest positive

integer such that either ν(v(−mE)) · F 6−1 or ν(v(−mE)) · E >−1.

(a) If ν(v(−mE)) · F 6−1, then v is nonspecial.

(b) If ν(v(−mE)) · F >−1, then v is nonspecial if and only if

χ(v(−mE)) 6 0.

Proof. Theorem 3.1 shows v is nonspecial if we are in case (1) or (2). In

case (3), the proof of Proposition 3.8 shows v is nonspecial if and only if

the listed conditions are satisfied.

It is worth pointing out that when χ(v) > 0, then case (3) in Corollary 3.9

does not occur, so that the classification takes a particularly simple form.

Corollary 3.10. Let v ∈K(Fe) be a character with positive rank and

∆(v) > 0, and suppose ν(v) · F >−1 and χ(v) > 0. Then v is nonspecial if

and only if one of the following holds.

(1) We have ν(v) · F =−1.

(2) We have ν(v) · F >−1 and ν(v) · E >−1.

Proof. Let V ∈ PF (v) be general. Assume ν(v) · F >−1 and ν(v) · E <

−1; we must show v is special. Since χ(v) > 0, it will suffice to show

h1(Fe, V) is nonzero.

The inequality ν(v) · E <−1 gives h1(E, V|E) 6= 0, so if h2(Fe, V(−E)) =

0, then the surjection H1(Fe, V)→H1(E, V|E) shows h1(Fe, V) 6= 0. Now if

ν(v) · F > 0, then ν(v(−E)) · F >−1 and h2(Fe, V(−E)) = 0 follows from

Theorem 3.1, completing the proof in this case.

If instead −1< ν(v) · F < 0, then the assumptions χ(v) > 0, and ∆(v) >
0 together imply ν(v) · E >−1, contradicting our assumption. Indeed, write
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ν(v) = (k/r)E + (l/r)F . By the Riemann–Roch formula,

χ(v) = r

((
k

r
+ 1

) (
l

r
+ 1

)
− ek

2r

(
k

r
+ 1

)
−∆(v)

)
= r

((
k

r
+ 1

) (
l

r
+ 1− ek

2r

)
−∆(v)

)
.

Then ν(v) · F = k/r, so our assumptions ν(v) · F >−1, ∆(v) > 0, and

χ(v) > 0 imply l/r >−1 + ek/2r. Hence,

ν(v) · E =
l

r
− ek

r
>−1 +

ek

2r
>−1

since k/r = ν(v) · F < 0. Thus this case never arises.

§4. Gaeta-type resolutions

In this section, we study resolutions of sheaves on Fe analogous to the

Gaeta resolution of general sheaves on P2. Families of such resolutions give

unirational parameterizations of moduli spaces of sheaves, and so give an

important tool for studying general sheaves.

Definition 4.1. Let L be a line bundle on Fe. An L-Gaeta-type

resolution of a sheaf V on Fe is a resolution of V of the form

0→ L(−E − (e+ 1)F )α→ L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ→V → 0

where α, β, γ, δ are nonnegative integers. We say a sheaf V has a Gaeta-type

resolution if it admits an L-Gaeta-type resolution for some line bundle L.

Our main result in this section constructs Gaeta-type resolutions of

general prioritary sheaves V ∈ PF (v) on Fe under mild assumptions on v.

Theorem 4.2. Let v ∈K(Fe) be a Chern character of positive rank, and

assume
∆(v) > 1/4 if e= 0
∆(v) > 1/8 if e= 1
∆(v) > 0 if e> 2.

Let V ∈ PF (v) be a general prioritary sheaf. Then V admits a Gaeta-type

resolution.

In particular, if there are µH-semistable sheaves of character v, the same

result holds for a general V ∈Mµ-ss
H (v).
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First we observe that if a sheaf V admits an L-Gaeta-type resolution,

then the exponents in the resolution are determined by v = ch V, and they

are easily computable.

Lemma 4.3. Suppose V is a sheaf on Fe with an L-Gaeta-type resolution

0→ L(−E − (e+ 1)F )α→ L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ→V → 0.

Then the exponents α, β, γ, δ are the integers

α = −χ(V(−L− E − F ))

β = −χ(V(−L− E))

γ = −χ(V(−L− F ))

δ = χ(V(−L))

which depend only on v = ch V. In particular, L must be a line bundle such

that the inequalities

(†)

χ(v(−L)) > 0
χ(v(−L− E)) 6 0
χ(v(−L− F )) 6 0

χ(v(−L− E − F )) 6 0

are satisfied.

Proof. For example, to establish the equality α=−χ(V(−L− E − F ))

we tensor the resolution of V by OFe(−L− E − F ) and use the additivity

of the Euler characteristic and Riemann–Roch for line bundles to find

χ(V(−L− E − F )) = βχ(OFe(−2E − (e+ 1)F ))

+ γχ(OFe(−E − 2F ))

+ δχ(OFe(−E − F ))

− αχ(OFe(−2E − (e+ 2)F ))

= −α

The other equalities are proved in the same way.

Conversely, if a line bundle L can be found such that the numerical

inequalities (†) are satisfied, then the next result shows that general sheaves

admit L-Gaeta-type resolutions. Thus the problem of constructing Gaeta-

type resolutions is reduced to the numerical problem of finding a line bundle

L satisfying the inequalities (†).
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Proposition 4.4. Suppose v ∈K(Fe) is a Chern character of positive

rank and there is a line bundle L such that the inequalities (†) are satisfied.

Then PF (v) is nonempty and a general V ∈ PF (v) admits an L-Gaeta-type

resolution.

Proof. Define positive integers α, β, γ, δ as in the statement of Lemma 4.3

and define

A= L(−E − (e+ 1)F )α B = L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ.

Then any complex A
φ→B sitting in degrees −1 and 0 has Chern character

v. Indeed, K(Fe)⊗Q has a basis given by the four line bundles

−L− E − F,−L− E,−L− F,−L.

If w is the character of the complex A
φ→B, then by the choice of the

integers α, β, γ, δ we find that v −w is orthogonal to each of these four

line bundles under the Euler pairing (u, u′) = χ(u⊗ u′). Since the Euler

pairing is nondegenerate, v = w. In particular, the rank of the complex

r(B)− r(A) = r(v) is positive.

Let U ⊂Hom(A, B) be the open subset parameterizing injective sheaf

maps φ with torsion-free cokernel Vφ. We check the hypotheses (1)–(3) of

Theorem 2.10. Note that each of the line bundles

Hom(L(−E − (e+ 1)F ), L(−E − eF )) = OFe(F )

Hom(L(−E − (e+ 1)F ), L(−F )) = OFe(E + eF )

Hom(L(−E − (e+ 1)F ), L) = OFe(E + (e+ 1)F )

are globally generated. The vanishings Ext1(A, B(−F )) = 0 and

Ext2(B, B(−F )) both follow immediately from Theorem 2.1. We already

saw r(B)− r(A)> 0. Thus the hypotheses of Theorem 2.10 are satisfied,

and Vφ/U is a nonempty complete family of F -prioritary sheaves which

admit L-Gaeta-type resolutions. Since PF (v) is irreducible, this completes

the proof.

Finally we show that under the assumptions on ∆(v) in Theorem 4.2 it

is possible to find a suitable line bundle L. Together with Proposition 4.4,

the next result completes the proof of Theorem 4.2.
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Lemma 4.5. Let v ∈K(Fe) be a Chern character of positive rank, and

assume
∆(v) > 1/4 if e= 0
∆(v) > 1/8 if e= 1
∆(v) > 0 if e> 2.

Then there exists a line bundle L such that the inequalities (†) hold.

Proof. For simplicity we first assume ∆(v)> 0, and handle the case

∆(v) = 0 (if e> 2) later. Consider the curve Q : χ(v(−La,b)) = 0 in the

(a, b)-plane, where La,b is the variable line bundle

La,b = ν(v)− 1
2KX + aE + bF (a, b ∈ R)

“centered” at ν(v)− 1
2KX . Then by Riemann–Roch,

χ(v(−La,b))
r(v)

= (1− (a+ 1))

(
1−

(
b+ 1 +

e

2

))
− e(−(a+ 1))(−(a+ 1) + 1)

2
−∆(v),

so Q is the hyperbola

∆(v) = a
(
b− 1

2ae
)

with asymptotes

`1 : a= 0 and `2 : b= 1
2ae

meeting at the origin. Since ∆(v)> 0, the right branch Q1 (resp. left branch

Q2) of Q lies right of `1 and above `2 (resp. left of `1 and below `2). The

function χ(v(−La,b)) is negative for any (a, b) on `1, so it is negative for all

points lying between the two branches and positive for all points which are

either below Q2 or above Q1.

Those (a, b) ∈ R2 such that La,b is integral form a shift Λ⊂ R2 of the

standard integral lattice Z2 ⊂ R2. Thus to construct the line bundle L we

only need to find a point (a, b) ∈ Λ such that (a, b) lies below Q2 and the

points (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1) lie between Q2 and Q1. It is easy

to find a point (a, b) ∈ Λ such that (a, b) lies below Q2 and (a+ 1, b) and

(a, b+ 1) are both above Q2: start from an arbitrary point (a, b) ∈ Λ below

Q2 and repeatedly increment a and/or b by 1 until increasing either will

cross Q2. Let (a, b) ∈ Λ be any point below Q2 such that (a+ 1, b) and

(a, b+ 1) are both above Q2. The point (a+ 1, b) still lies below `2, and the

point (a, b+ 1) still lies left of `1, from which we conclude that the points
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(a+ 1, b) and (a, b+ 1) both lie between Q2 and Q1. For this choice of (a, b)

we claim that additionally (a+ 1, b+ 1) is between Q2 and Q1.

Since Q2 can be described as the graph of a function b= f(a), the fact

that (a+ 1, b) is above Q2 implies (a+ 1, b+ 1) is above Q2. It remains to

show that (a+ 1, b+ 1) is below Q1. If e> 2, then since (a, b) is below `2
and `2 has slope e/2 > 1, we find that (a+ 1, b+ 1) is below `2 and hence

(a+ 1, b+ 1) is below Q1.

On the other hand, for e= 0 a simple computation shows that the

translate of Q2 by the vector (1, 1) is disjoint from Q1 if ∆(v)> 1/4

and tangent to Q1 if ∆(v) = 1/4. Thus assuming ∆(v) > 1/4, the point

(a+ 1, b+ 1) is on or below Q1. An identical computation shows that an

analogous result holds when e= 1 and ∆(v) > 1/8.

If e> 2 and ∆(v) = 0, the hyperbola Q degenerates to the union of lines

`1 ∪ `2, and a similar argument works. Thus a suitable line bundle L can be

found in each case.

Remark 4.6. The stronger inequalities on ∆(v) needed in case e=

0 or e= 1 are in general necessary. For an easy example, suppose e= 0,

ν(v) = 1
2E + 1

2F (so r(v) is even), and assume 0<∆(v)< 1/4, which can

certainly be arranged if r(v) is sufficiently large. The shifted lattice Λ⊂ R2

is Z2 + (12 ,
1
2). The hyperbola Q becomes ab= ∆(v), so the points (a, b) ∈ Λ

such that χ(V(−La,b))> 0 are exactly the points of Λ in the first and third

quadrants. No choice (a, b) making the inequalities (†) hold exists, so no

sheaf of character v admits a Gaeta-type resolution.

§5. Globally generated bundles

Throughout this section we let v ∈K(Fe) be a character of positive

rank such that ∆(v) > 0 and ν(v) is nef. In this section we classify those

characters v such that the general sheaf V ∈ PF (v) is globally generated.

We say that v is globally generated if a general sheaf V ∈ PF (v) is. There

is no loss of generality in assuming ν(v) is nef. Indeed, if r(v) > 2 then the

general sheaf V ∈ PF (v) is a vector bundle, and if it is globally generated

then c1(v) is nef by Lemma 2.12. In the rank 1 case, if L is a line bundle and

Z ⊂X is a general collection of n points, then L⊗ IZ can only be globally

generated if L is, and therefore L is again nef by Lemma 2.12.

Since ν(v) is nef, it follows from Theorem 3.1 that a general V ∈ PF (v) is

nonspecial. While the substack of PF (v) of globally generated sheaves is not

necessarily open, the substack of PF (v) of globally generated sheaves with

no higher cohomology is open. Thus, a character v is globally generated if
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and only if there exists a sheaf V ∈ PF (v) which is globally generated and

has no higher cohomology. As usual, if v is globally generated and there are

µH -semistable sheaves of character v, then the general V ∈Mµ-ss
H (v) is also

globally generated.

The classification of globally generated Chern characters on Fe falls

into three main cases. First, if ν(v) · F = 0, then we see that v can only

be globally generated if it is pulled back from P1. This imposes strong

restrictions on v. When ν(v) · F > 0, it is convenient to discuss two separate

cases depending on the sign of χ(v(−F )). Note that since ν(v) is nef,

we have ν(v(−F )) · F > 0 and ν(v(−F )) · E >−1. Thus by Theorem 3.1,

the cohomology of V(−F ) is determined by its Euler characteristic. When

χ(v(−F )) > 0, a general sheaf V of character v has H1(Fe, V(−F )) = 0

and it is easy to prove global generation by restricting to a fiber. On

the other hand when χ(v(−F ))< 0, any sheaf V of character v has

H1(Fe, V(−F )) 6= 0 and the restriction to a fiber is not so useful. In this

case we construct globally generated vector bundles by first constructing a

suitable “Lazarsfeld–Mukai” type bundle

0→M→Oχ(v)Fe
→V → 0.

Our Gaeta-type resolutions provide a key tool in analyzing the bundle M.

We now state the full classification theorems. The classification is slightly

different depending on if e= 0, e= 1, or e> 2. To make the statements as

clean as possible we state the e= 0 case separately.

Theorem 5.1. Suppose e> 1, and let v ∈K(Fe) be a Chern character

of positive rank such that ∆(v) > 0 and ν(v) is nef. Then v is globally

generated if and only if one of the following holds.

(1) We have ν(v) · F = 0, and there are integers a, m> 0 such that

v = (r(v)−m) chOFe(aF ) +m chOFe((a+ 1)F ).

(2) We have ν(v) · F > 0 and χ(v(−F )) > 0.

(3) We have ν(v) · F > 0, χ(v(−F ))< 0, and χ(v) > r(v) + 2.

(4) We have e= 1, ν(v) · F > 0, χ(v(−F ))< 0, χ(v) = r(v) + 1, and

v = (r(v) + 1) chOF1 − chOF1(−2E − 2F ).

The classification changes slightly in the case of P1 × P1 since F and E

are the fiber classes for the two rulings.
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Theorem 5.2. Let v ∈K(P1 × P1) be a Chern character of positive rank

such that ∆(v) > 0 and ν(v) is nef. Let F1, F2 be fibers in opposite rulings.

Then v is globally generated if and only if one of the following holds.

(1) We have ν(v) · Fi = 0 for some i ∈ {1, 2}, and there are integers a, m>
0 such that

v = (r(v)−m) chOP1×P1(aFi) +m chOP1×P1((a+ 1)Fi).

(2) We have ν(v) · Fi > 0 for i= 1, 2, but χ(v(−Fj)) > 0 for some j ∈
{1, 2}.

(3) We have ν(v) · Fi > 0 and χ(v(−Fi))< 0 for i= 1, 2, and χ(v) >
r(v) + 2.

We note that an analogous result for P2 follows from the classification

of globally generated characters on F1. Let H ⊂ P2 be the class of a

line. We say a character v ∈K(P2) is globally generated if a general H-

prioritary sheaf is globally generated. By Hirschowitz–Laszlo [HiL93] and

Göttsche–Hirschowitz [GHi94], the stack PP2,H(v) is irreducible and a

general V ∈ PP2,H(v) has only one nonzero cohomology group. This result

completes the classification of globally generated characters on P2 begun in

Bertram et al. [BGJ16].

Corollary 5.3. Let v ∈K(P2) be a Chern character of positive rank

such that ∆(v) > 0 and µ(v) > 0. Then v is globally generated if and only

if one of the following holds.

(1) We have µ(v) = 0 and v = r(v) chOP2.

(2) We have µ(v)> 0 and χ(v(−1)) > 0.

(3) We have µ(v)> 0, χ(v(−1))< 0, and χ(v) > r(v) + 2.

(4) We have µ(v)> 0, χ(v(−1))< 0, χ(v) = r(v) + 1, and

v = (r(v) + 1) chOP2 − chOP2(−2).

Proof. Let π : F1→ P2 be the blowdown map, and let w = π∗(v) ∈K(F1)

and r = r(v) = r(w). The result is clear if r = 1, since then the pullback of

a general sheaf in PP2,H(v) is a general sheaf in PF1,F (v), and clearly v is

globally generated if and only if w is. So suppose r > 2.

The main technical difficulty is to compare the notions of F -prioritary

sheaves on F1 and H-prioritary sheaves on P2. We have c1(w) · E = 0 and

∆(w) = ∆(v) > 0, so by Corollary 3.6 a general W ∈PF1,F (w) restricts to
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a trivial bundle on E: W|E ∼=OrE . Furthermore, since W is general it is

actually (E + F )-prioritary. This can be shown by an argument similar to

the proof of Lemma 3.3: since c1(w) · E = 0, we can construct a direct sum

of line bundles

W ′ =OF1(mE +mF )a ⊕OF1((m+ 1)E + (m+ 1)F )b

having the same rank and c1 as w. Then we compute

2r2∆(W ′) =−ab6 0.

Since ∆(w) > 0, we can obtain a sheaf of character w from W ′ by repeated

elementary modifications. Since W ′ is clearly (E + F )-prioritary, so is the

general W ∈PF1,F (w) by Lemma 2.7.

Furthermore, (E + F )-prioritary vector bundles on F1 are automatically

F -prioritary. Indeed, if W is an (E + F )-prioritary vector bundle, then the

sequence

0→W(−E − F )→W(−F )→W(−F )|E → 0

yields

Ext2(W,W(−E − F ))→ Ext2(W,W(−F ))→ Ext2(W,W(−F )|E).

The first group vanishes by assumption, and the last vanishes since it is the

H2 of a sheaf supported on a curve (as W is locally free). Therefore, W is

F -prioritary.

Now let P ′ ⊂ PF1,F (w) be the open dense substack parameterizing

(E + F )-prioritary vector bundles with restrictionW|E ∼=OrE , and let P ′′ ⊂
PP2,H(v) be the open dense substack parameterizing vector bundles. If

W ∈P ′, then π∗W is locally free and π∗π∗W ∼=W by Walter [Wal98,

Lemma 6]. Furthermore, we have an isomorphism Ext2(W,W(−E − F ))∼=
Ext2(π∗W, π∗W(−H)), which shows that π∗W is H-prioritary. Thus there is

an induced map π∗ : P ′→P ′′. On the other hand, if V ∈ P ′′ then π∗π
∗V ∼= V

since V is a vector bundle and, furthermore, π∗V is (E + F )-prioritary.

Therefore, π∗V ∈ P ′ and pullback gives an inverse map π∗ : P ′′→P ′.
Under the correspondence between P ′ and P ′′, globally generated bundles

correspond to globally generated bundles. We conclude that v is globally

generated if and only if w is globally generated, and the result follows from

Theorem 5.1.

Note that Corollary 5.3 can also be proved more directly by mimicking

the proof of Theorem 5.1. We discuss each of the three main cases (1)–(3)

of the classification in its own subsection.
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5.1 Pullbacks

We begin the proof of the classification by analyzing the case ν(v) · F = 0.

In this case a globally generated bundle must be a pullback from P1, which

imposes strong restrictions on the character.

Proposition 5.4. Suppose ν(v) · F = 0. Then v is globally generated if

and only if v is of the form

v = (r(v)−m) chOFe(aF ) +m chOFe((a+ 1)F )

for some integers a, m> 0.

Proof. (⇐) The bundles

V =OFe(aF )r−m ⊕OFe((a+ 1)F )m

are F -prioritary, globally generated, and have no higher cohomology, so their

Chern characters are globally generated.

(⇒) Suppose V ∈ PF (v) is general and globally generated. The result

is clear if r(v) = 1, so suppose r(v) > 2. Then V is a vector bundle. The

restriction V|F to any fiber F ∼= P1 of π : Fe→ P1 has degree 0. If any

factor of V|F has negative degree, then V|F is not globally generated, a

contradiction. Therefore, V|F ∼=Or(v)F is trivial on each fiber. Consider the

exact sequence

0−→V(−E)−→V −→V|E −→ 0

and apply π∗. Since V(−E)|F ∼=OF (−1)r(v) for any fiber F , we conclude

that π∗V(−E) =R1π∗V(−E) = 0 and π∗V ∼= π∗(V|E). Hence, by [Wal98,

Lemma 5], V ∼= π∗(π∗(V|E)). Since V|E is balanced by Corollary 3.6, it

follows that

V ∼=OFe(aF )r(v)−m ⊕OFe((a+ 1)F )m

for some integers m> 0 and a ∈ Z. As V is globally generated, a> 0.

5.2 Restriction to a fiber

The case where χ(v(−F )) > 0 and ν(v) · F > 0 is the simplest to analyze.

Proposition 5.5. Suppose χ(v(−F )) > 0 and ν(v) · F > 0. Then v is

globally generated.

Proof. First suppose r(v) > 2, so that the general V ∈ PF (v) is a vector

bundle. Since ν(v) · F > 0, the bundle V restricts to a globally generated

vector bundle on every fiber F of the projection π : Fe→ P1 by [Wal98,
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Lemmas 3 and 4]. Let V be such a bundle which also has no higher

cohomology. Let p ∈ Fe be any point, and let Fp := π−1(π(p)) be the fiber

through p. Since χ(v(−F )) > 0, as explained in the introduction to this

section, we know that H1(Fe, V(−F )) = 0. Then the restriction sequence

0→V(−F )→V →V|Fp → 0

shows that H0(Fe, V)→H0(Fp, V|Fp) is surjective. Since V|Fp is globally

generated, this implies that V is globally generated at every point of Fp.

Therefore, V is globally generated, and so is v.

If r(v) = 1, suppose the general sheaf of character v is of the form L⊗ IZ ,

where L is a nef line bundle and Z ⊂X is a collection of n general points.

For p ∈ Fe we have an exact sequence of one of the following two forms,

depending on whether or not the fiber Fp contains a point of Z:

0→ L(−F )⊗ IZ → L⊗ IZ → L|Fp → 0

0→ L(−F )⊗ IZ′ → L⊗ IZ → L|Fp(−1)→ 0.

Here Z ′ ⊂ Z consists of n− 1 points, with the nth point of Z lying on Fp.

Note that both L(−F )⊗ IZ and L(−F )⊗ IZ′ have no higher cohomology,

and L|Fp and L|Fp(−1) are both globally generated. Therefore, L⊗ IZ is

globally generated except possibly at points in Z. So suppose p ∈ Z. In this

case, we can construct two curves in Fe:

(1) There is a curve C of class L that contains Z and intersects Fp
transversely.

(2) Since χ(L(−F )⊗ IZ′)> 0, there is a curve D of class L(−F ) which

contains Z ′ and does not contain p. (Note that the points in Z are

general, so impose the expected number of conditions on sections of

L(−F ).)

Then the curves C and D + F give two sections of L which contain Z and

intersect transversely at p. Therefore, L⊗ IZ is globally generated at p.

Remark 5.6. When e= 0, we find by symmetry that results analogous

to Propositions 5.4 and 5.5 hold for the opposite ruling E. So, going forward,

we may assume χ(v(−E))< 0 and ν(v) · E > 0 when e= 0.

5.3 Lazarsfeld–Mukai bundles

It remains to classify globally generated characters v with χ(v(−F ))< 0

and ν(v) · F > 0. Throughout this section, we put

m = χ(v) ch(OFe)− v.
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Thus, if v is globally generated, then m is the character of the Lazarsfeld–

Mukai bundle

0→M→Oχ(v)Fe
→V → 0

which is the kernel of the canonical evaluation map. The next lemma is the

main tool we use in this case.

Lemma 5.7. Suppose χ(v(−F ))< 0. Then v is globally generated if and

only if there is a vector bundle M of character m such that

(1) M has no cohomology,

(2) h1(Fe,M(−F )) = 0, and

(3) M∗ is globally generated.

Proof. (⇒) Suppose v is globally generated. Then there is a globally

generated (torsion-free) sheaf V ∈ PF (v) which has no higher cohomology.

Furthermore, since χ(V(−F ))< 0 we can assume V(−F ) only has h1. Then

the kernel M of the canonical evaluation map

0→M→Oχ(v)Fe
→V → 0

has the required properties.

(⇐) Conversely, suppose there is a vector bundleM of character m with

properties (1)–(3). Let V be a sheaf defined as the cokernel of a general map

φ :M→Oχ(v)Fe
. Since r(v) > 1 and M∗ is globally generated, the map φ is

injective and V is torsion-free (see [Hui16, Proposition 2.6], and the proof

of Theorem 2.10). The sequence

0→M φ→Oχ(v)Fe
→V → 0

shows that V is globally generated, and V has no higher cohomology since

M and OFe have no higher cohomology.

Finally, we must check that V is F -prioritary. But Ext2(V, V(−F )) is a

quotient of a direct sum of copies of

Ext2(V,OFe(−F ))∼= Hom(OFe(−F ), V(KFe))
∗ ∼=H0(Fe, V(KFe + F ))∗.

There is an injection V(KFe + F )→V(−F ) since −F − (KFe + F )

= 2E + eF is effective, and H0(Fe, V(−F )) = 0 since we are

assuming H1(Fe,M(−F )) = 0. Therefore, H0(Fe, V(KFe + F )) = 0 and

Ext2(V, V(−F )) = 0.
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The remainder of the classification of globally generated characters v with

χ(v) 6 r(v) + 1 follows quickly; there is only one such character that was

not already studied in the previous subsections.

Corollary 5.8. Suppose χ(v(−F ))< 0, ν(v) · F > 0, and χ(v) 6
r(v) + 1. If e= 0, then further assume χ(v(−E))< 0 and ν(v) · E > 0.

Then v is globally generated if and only if e= 1 and

v = (r(v) + 1) chOF1 − chOF1(−2E − 2F ).

Proof. (⇒) Suppose v is globally generated, and let V be a globally

generated sheaf of character v with no higher cohomology. Then χ(v) =

h0(Fe, V), so χ(v) > r(v). If χ(v) = r(v) then we must have V ∼=Or(v)Fe
, but

then ν(v) · F = 0. So, going forward we may assume χ(v) = r(v) + 1. By

Lemma 5.7, the kernel M of a general evaluation map

0→M→Oχ(V)Fe
→V → 0

is a line bundle with no cohomology such that H1(Fe,M(−F )) = 0 andM∗
is globally generated. Suppose M=OFe(−aE − bF ). Since M∗ is globally

generated, we have a> 0 and b> ae. Since ν(V) · F > 0, we further have

a > 0. If a= 1, then χ(M(−F )) = χ(OFe(−F )) = 0 and so χ(V(−F )) = 0, a

contradiction. Therefore, a> 2 and so b> 2e. Then

H2(Fe,M)∼=H0(Fe,M∗(KFe)) =H0(Fe,OFe((a− 2)E + (b− e− 2)F )),

and since M has no cohomology we must have b < e+ 2. But b> 2e and

b < e+ 2 together imply e ∈ {0, 1}. If e= 0, then since a> 2 we find by

symmetry that we must also have b> 2. But then M has h2, so there is no

suitable M. If e= 1, then the only possibility is a= b= 2.

(⇐) Conversely, for any integer r > 1 the cokernel V of a general injection

0→OF1(−2E − 2F )→Or+1
F1
→V → 0

is a globally generated torsion-free sheaf with no higher cohomology, and v

satisfies the necessary hypotheses.

Finally, we construct bundles M with the necessary properties in the

remaining cases. We write mD for the Serre dual character m∗(KX). The

next lemma will allow us to apply our theory of Gaeta-type resolutions to

study bundles of character m.

https://doi.org/10.1017/nmj.2018.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.17


BRILL–NOETHER THEOREMS AND GAETA RESOLUTIONS 31

Lemma 5.9. Suppose χ(v(−F ))< 0, ν(v) · F < 0, and χ(v) > r(v). If

e= 0, then further suppose χ(v(−E))< 0 and ν(v) · E < 0. The character

mD satisfies

χ(mD) = 0

χ(mD(−F )) < 0

χ(mD(−E)) 6 0

and, if e> 2, then furthermore

χ(mD(−E − F ))< 0.

Proof. By Serre duality it is equivalent to show

χ(m) = 0

χ(m(F )) < 0

χ(m(E)) 6 0

χ(m(E + F )) < 0 (if e> 2).

The first statement is clear. For the second, we use Lemma 2.3 to compute

χ(m(F )) = χ(v)χ(OFe(F ))− χ(v(F ))

= 2χ(v)− (χ(v) + c1(v) · F + r(v)(2− 1))

= χ(v)− r(v)− c1(v) · F

= χ(v(−F ))

< 0.

If e= 0, then the third inequality follows by symmetry. If instead e> 1, then

χ(m(E)) = χ(v)χ(OFe(E))− χ(v(E))

= χ(v)(2− e)− (χ(v) + c1(v) · E + r(v)(2− e− 1))

= (χ(v)− r(v))(1− e)− c1(v) · E

6 0

since χ(v) > r(v) and c1(v) is nef.
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Finally, we similarly compute

χ(m(E + F )) = χ(v)χ(OFe(E + F ))− χ(v(E + F ))

= χ(v)(4− e)− (χ(v) + c1(v) · (E + F ) + r(v)(4− e− 1))

= (χ(v)− r(v))(3− e)− c1(v) · (E + F ).

Since χ(v) > r(v) and c1(v) is nef with c1(v) · F > 0, it follows that

χ(m(E + F ))< 0 if e> 3. Suppose e= 2. Then the above expression reduces

to

χ(m(E + F )) = χ(v)− r(v)− c1(v) · (E + F ) = χ(v(−E − F )).

Let V ∈ PF (v) be general. Then V(−F ) only has h1, and V(−F )|E splits as

a direct sum of line bundles of degree >−1. Then the restriction sequence

0→V(−E − F )→V(−F )→V(−F )|E → 0

shows that the only nonzero cohomology of V(−E − F ) is also

h1(Fe, V(−E − F )) 6= 0, and therefore χ(v(−E − F ))< 0 as required.

Together with the other results in this section, the next result completes

the classification and proves Theorems 5.1 and 5.2.

Proposition 5.10. Suppose χ(v(−F ))< 0, ν(v) · F > 0, and χ(v) >
r(v) + 2. If e= 0, further assume χ(v(−E))< 0 and ν(v) · E > 0. Then v

is globally generated.

Proof. First assume χ(mD(−E − F ))< 0. Then by Lemma 5.9, OFe is a

line bundle satisfying the inequalities (†) for the character mD. Therefore,

by Proposition 4.4, the stack PF (mD) is nonempty and a general MD ∈
PF (mD) admits a resolution of the form

0→OFe(−E − (e+ 1)F )α→OFe(−E − eF )β ⊕OFe(−F )γ →MD→ 0;

there are no copies of OFe in the resolution since χ(mD) = 0. Since χ(v) >
r(v) + 2, we have r(MD) > 2 and therefore, by Theorem 2.5,MD is a vector

bundle. Clearly MD has no cohomology, so its Serre dual M also has no

cohomology. The bundle M fits in a sequence

0 →M→OFe(−E − 2F )β ⊕OFe(−2E − (e+ 1)F )γ

→ OFe(−E − F )α→ 0,
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from which it immediately follows that h1(Fe,M(−F )) = 0. The dual M∗
has a resolution

0→OFe(E + F )α→OFe(E + 2F )β ⊕OFe(2E + (e+ 1)F )γ →M∗→ 0.

The line bundles OFe(E + 2F ) and OFe(2E + (e+ 1)F ) are each globally

generated at all points p ∈ Fe with p /∈ E, and therefore M∗ is globally

generated away from E.

To see that M∗ is globally generated at all points on E, observe that

c1(M∗) = c1(v) is nef, so in particular c1(M∗) · E > 0. The resolution of

M∗ shows that h1(Fe,M∗(−E)) = 0. If M∗|E splits as a balanced direct

sum of line bundles, then M∗|E is globally generated and the restriction

sequence

0→M∗(−E)→M∗→M∗|E → 0

shows thatM∗ is globally generated on E. By Proposition 2.6, to seeM∗|E
is balanced (for a general M∗) it is enough to show MD (and hence M∗)
is E-prioritary. To see Ext2(MD,MD(−E)) = 0, it is enough to verify

Ext2(MD,OFe(−2E − eF )) = Ext2(MD,OFe(−E − F )) = 0. Equivalently

by Serre duality, we need

Hom(OFe(−2E − eF ),MD(KFE
)) =H0(Fe,MD(−2F )) = 0

and

Hom(OFe(−E − F ),MD(KFe)) =H0(Fe,MD(−E − (e+ 1)F )) = 0.

Both vanishings follow immediately from the resolution of MD. Therefore,

M∗ is globally generated, and Lemma 5.7 completes the proof in case

χ(mD(−E − F ))< 0.

Finally suppose χ(mD(−E − F )) > 0. By Lemma 5.9, we must have e ∈
{0, 1}. Define integers

α = −χ(mD(−E − F ))

β = −χ(mD(−E))

γ = −χ(mD(−F )).

By Lemma, 5.9, we have α6 0, β > 0, and γ > 0. Then the direct sum of

line bundles

MD :=OFe(−E − (e+ 1)F )−α ⊕OFe(−E − eF )β ⊕OFe(−F )γ

https://doi.org/10.1017/nmj.2018.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.17


34 I. COSKUN AND J. HUIZENGA

has ch(MD) = mD by an argument analogous to the first part of the proof

of Proposition 4.4. Its Serre dual is the bundle

M=OFe(−E − F )−α ⊕OFe(−E − 2F )β ⊕OFe(−2E − (e+ 1)F )γ .

Then M has no cohomology, h1(Fe,M(−F )) = 0, and M∗ is globally

generated (since e6 1). By Lemma 5.7, v is globally generated.

5.4 Notes on ampleness

We close the paper with some remarks on the question that initially led

us to study globally generated vector bundles. Let X be a smooth surface.

Recall that a vector bundle V on X is ample if the line bundle OPV(1) is

ample.

Problem 5.11. Classify the Chern characters of ample vector bundles

on X.

On P2 and Fe, ample line bundles are globally generated. In contrast,

examples of Gieseker show that higher rank ample vector bundles need not

have any sections. For example, a bundle V defined by a general resolution

of the form

0→OP2(−d)2→OP2(−1)4→V → 0

is ample provided d� 0 (see [Laz04, Example 6.3.17] or [Gie71]). However,

if a vector bundle V is ample, then Symk V has no higher cohomology and

is globally generated for sufficiently large k. By Riemann–Roch this implies

the necessary inequality (see also [FL83])

(∗) ν(V)2

2
>

∆(V)

r(V) + 1
.

Furthermore, ν(V) needs to be ample and its restriction to any curve needs

to be ample. On Fe, this implies that ν(V) · E > 1 and ν(V) · F > 1. If ν(V) ·
F = 1, the restriction of the bundle to every fiber must be OP1(1)r, and

hence V(−E) is pulled back from P1. One can ask whether the inequality

(∗) suffices to show a general V is ample if ν(V) is sufficiently ample. For the

Gieseker example above, the inequality (∗) implies that if V is ample, then

d> 7. The authors do not know the optimal value of d for V to be ample

even in this case.

By the next simple observation, our characterization of globally generated

characters on Fe yields sufficient conditions for a character to be the
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character of an ample bundle. However, analogues of Gieseker’s example

(see [Laz04, Theorem 6.3.65]) show that these conditions are certainly not

necessary.

Lemma 5.12. Let X be a projective variety with an ample divisor H.

Suppose V is a vector bundle on X such that V(−H) is globally generated.

Then V is ample.

Proof. As V(−H) is a quotient of OnX , we find that V is the quotient of

an ample bundle.

On Fe, we take H = E + (e+ 1)F and deduce the following result.

Corollary 5.13. Suppose e> 2, and let v ∈K(Fe) be a Chern charac-

ter such that r(v) > 2, ∆(v) > 0, ν(v) · F > 1, and ν(v) · E > 1. Then the

general V ∈ PF (v) is ample whenever any of the following conditions holds.

(1) We have ν(v) · F = 1, and there are integers a, m> 0 such that

v = (r(v)−m) chOFe(E + (e+ a+ 1)F )

+m chOFe(E + (e+ a+ 2)F ).

(2) We have ν(v) · F > 1 and χ(v(−E − (e+ 2)F )) > 0.

(3) We have ν(v) · F > 1, χ(v(−E − (e+ 2)F ))< 0, and χ(v(−E − (e+

1)F )) > r(v) + 2.

We leave the analogous statements for P1 × P1, F1, and P2 to the reader.

Completing the classification of characters of ample vector bundles remains

a very interesting open question for any of these surfaces.
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