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Abstract

We define and investigate the notion of a decomposable hypergraph, showing that such a hypergraph
always is conformal, that is, can be viewed as the class of maximal cliques of a graph. We further show
that the clique hypergraph of a graph is decomposable if and only if the graph is triangulated and
characterise such graphs in terms of a combinatorial identity.
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Introduction

There are a number of areas in mathematics in which one needs to consider the
combinatorial propeties of a non-void class C of pairwise incomparable subsets of
a finite set C. In the theory of games, Vorob’ev (1967), the subsets are coalitions;
in a measure theoretic problem considered by Kellerer (1964) and also Vorob’ev
(1962), the subsets correspond to prescribed marginals; in the general theory of
contingency tables, discussed by Haberman (1974), the subsets define the permis-
sible interactions, in graph theory, the subsets are the maximal cliques of a graph
with vertex set C; whilst in the theory of Markov fields over graphs, see Suomela
(1976) and Vorob’ev (1963) the subsets also correspond to maximal cliques of a
graph. Certain problems of interset in these fields have led to the definition of a
family of such classes € which, following Haberman, we call decomposable
classes, and the main aim of this paper is to unify and extend the combinatorial
results known concerning these classes.
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(21 Decomposable graphs and hypergraphs 13

Let us examine in more detail the problems which arise in the fields mentioned.

Problem 1. Let {(X,,%.): y € C} be a set of measure spaces indexed by C;
that is, for each y € C, X, is a non-empty set and G)Cy is a o-field of subsets of X, .
For each subset ¢ C C write (X, X_,) for the product measure space
®,cc( Xy, X,), and put (X, X) = (X, X). We will take as given a class C of
subsets of C, and for each ¢ € C, a probability measure p. on (X, X ), such that
the system {p: ¢ € C} satisfies the following consistency condition: if d Ca N b
for a, b € C, then the images p, ;= p,° m;y and p, , = p, o m, Y of p, and p,
under the canonical projections 7, ,: X, —» X, and 7, ,: X, > X,, respectively,
coincide. An obvious way to get such a system is to take a measure p on (X, %)
and put u_ = po 7! where m,: X - X, is the canonical projection. In this case
the measure p is said to be an extension of the system {p: ¢ € C}.

The problem considered by Vorob’ev (1962) and Kellerer (1964) is the follow-
ing: for which classes C of subsets of C does every consistent system {p.: ¢ € C}
admit an extension? It is not hard to show that for G, = {{1,2},{2,3}}, every
consistent system of measures does admit an extension, whilst for C, =
{{1,2},{2,3}, {3, 1}}, this is not the case.

Problem 2. In this case we let X denote the finite set of categories associated
with a response y from a set C of responses. The product set X =1, .. X,
indexes the combinations of categories of responses, and we can consider |C|-
dimensional contingency tables {n(x): x € X} over X. A hierarchical log-linear
model for such a contingency table is uniquely specified by the (generating) class
C of pairwise incomparable subsets of C, whose marginals {n_: ¢ € €} constitute
the minimal sufficient statistics for the model; see Haberman (1974) for back-
ground and further details.

A problem considered by Haberman (1974) is the following: for which classes C
does there exist an explicit formula for the maximum likelihood estimator m, of
m = E{n}, under the model defined by ©? For example, an explicit formula exists
for C; = {{1,2},{2,3},{3,4)}}, but not for C, = {{1,2},{2,3}, (3,4}, {4,1}}.

Problem 3. Let C = (C, E(C)) be a simple graph with vertex set C and edge set
E(C), and suppose (continuing the notation of Problem 1) that for each y € C we
have a measure space (X, ?X,y ). An X-valued random field over C consists of a
random variable £ € — X defined over some probability space (2, A, P), and we
write § = (§,: vy € C). For each ¢ C C we let §: Q - X_ be the c-marginal
random field and let P, be the distribution P o £ of £, on (X, %X ).

The random field £ is said to be C-Markov if for any three pairwise disjoint
subsets a, b and d of C with d separating a from b, we have &, and §, conditionally

https://doi.org/10.1017/51446788700027300 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027300

14 S. L. Lauritzen, T. P. Speed and K. Vijayan 3]

independent given £,. A question of great interest, particularly for those who wish
to simulate such Markov random fields, is the following: for which graphs C does
there exist a closed-form expression for the distribution P = P o £7! of any X-valued
C-Markov random field £? 1t is not hard to show that this problem can be reduced
to a discussion of the interrelations between the distributions {P,: ¢ € C.} of the
random fields {¢.: ¢ € C}, where C is the hypergraph of all (maximal) cliques
of the graph C; see Suomela (1976) and Vorob’ev (1963) for further details.

We remark at this point that there does exist a simple expression for the
distribution P when we are considering C, below, but not for C;.

Cs G

FIGURE 1 FIGURE 2

For further information on the relation between these problems and the work
which follows, we refer to Speed (1978). (Note that the formula displayed on page
303 of this reference is wrong and should involve a conditional probability
distribution.)

A pair (C, @) of the type described above is a hypergraph in the sense of Berge
(1973), as long as the union of all the members of € coincides with C, indeed a
hypergraph in which no edge is contained in any other edge. Any such
hypergraph may be associated with a graph, its 2-section, and we will discuss the
relation between the decomposability of C and properties of this graph. We find,
for example, that the family of all decomposable classes C may be identified with
the family of graphs called triangulated by Berge (1973), page 368, rigid circuit
(Dirac, 1961) or chordal graphs (Gavril, 1972), a class of graphs apparently first
investigated by Hajnal and Suranyi (1958). In our list of references we cite many
other papers which discuss this class of graphs. The majority refer to their role in
describing systems of linear equations which can be solved by elimination in an
efficient manner, see for example Parter (1961), Rose (1970, 1972), and the
associated computation problems (Gavril (1975), Lueker (1975), Ohtsuki (1976),
Ohtsuki et al. (1976), Rose er al. (1975)), whilst others give further graph-theo-
retic results (Berge (1967), Fulkerson and Gross (1965), Gavril (1972, 1974),
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Lekkerkerker and Boland (1972)). An exposition of much of the work just
referred to can be found in Chapter 4 of Golumbic (1980).

We turn now to an outline of the contents of this paper. In Section 2 we
organize the main set-theoretic facts concerning decomposability and in the
process prove the equivalence between Haberman’s definition and that of Vorob’ev
and Kellerer. Also included is a brief discussion of algorithms for checking
decomposability. Apart from the definition of decomposability, the material in
this section is independent of the rest of the paper. Our main work begins in
Section 3 where we consider the 2-section of any decomposable hypergraph,
showing that it is conformal and thereby reducing the discussion to graph theory.
A further simplification allows us to consider only connected graphs. In Section 4
we explore the properties of complete articulation sets, and also give a general
graph-theoretic analogue of an index defined by Haberman (1974). After obtain-
ing some properties of this index, we are in a position to draw these ideas together
and prove the equivalence of the following properties of a connected graph: (D)
the associated clique hypergraph is decomposable; (I) the index satisfies an
extremal condition; and (T) the graph is triangulated, that is, no subset of the
vertex set generates a cycle Z, with n > 3.

Our set-theoretic notation is fairly rigorously restricted to the following:
elements of base sets are denoted by a, 8, y and §; sets of elements, that is,
subsets of base sets by a, b, c, e, f and g; and classes of such sets by &, B, €, &
and ¥. Furthermore the unions of all the sets in the classes, that is, the base sets,
are denoted by 4, B, C, E and F, the corresponding upper-case roman letter: that
is, A = U{a: a € @}. The letter d will be reserved for special use. It will
frequently be necessary to sub- or superscript the foregoing symbols with asterisks,
primes and so on. Whilst we use the usual notation € U D, & N B and &\ P for
unions, intersections and differences of classes, we will abbreviate @ N b and
A N B by ab and 4B when referring to sets. We write | A | for the cardinality of A
and denote the empty set by @&. Finally we emphasise that all graphs in this paper
are undirected, with no loops and multiple edges; more formally we will speak of
a graph G = (V(G), E(G)) consisting of a set V(G) = G of vertices, and a set
E(G) of unordered pairs of elements of G termed edges. All objects in this paper:
sets, graphs, hypergraphs and so on are finite.

2. Decomposable hypergraphs

In this section we give an account of the main set-theoretic properties of
decomposable hypergraphs. The results are an integration of those of Haberman
(1974), Chapter 4, whose terminology we follow, the set-theoretic parts of Kellerer
(1964), and of Vorob’ev (1962).
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All of the hypergraphs which we consider in this paper will be a class of
pairwise incomparable subsets of a (finite) set, and as such a class is called a
generating class by Haberman (1974), we will call such a hypergraph a generating
class hypergraph. More formally

DEFINITION 1. A generating class (abbrev. g.c.) hypergraph is a pair (C, C)
consisting of a finite set C together with a class C of pairwise incomparable
subsets of C whose union coincides with C.

Where no confusion can result we will denote (C, ) more simply by € (since
U E = C this should cause no problems). For two g.c. hypergraphs (4, &) and
(B, ®) we write (4, &) < (B, D) if A C B, and if for every a € & there exists
b € P with a C b. It is easy to see that this relation is a partial order, and if we
denote by I the family of all g.c. hypergraphs, we have the lattice operations V
and N defined as follows:

(4,@) V (B, %) =(C,0C),
where C = 4 U B and C is the class of maximal elements of & U %. Further
(4,@)N(B,B) =(E, &),

where E = A N B and & is the class of maximal elements of {ab; a € @, b € B}.
We observe that

LEMMA 1. With the lattice operations defined above, the partially ordered set
(X, <) is a distributive lattice with zero (2, {3 }).

The proof is elementary and omitted.

With this preliminary observation, we return to the basic definition of the
paper. It is convenient for a later purpose to formulate it somewhat more
generally than in Haberman (1974).

DEFINITION 2. The g.c. hypergraph € is said to be decomposed into {C: i € I}
relative to d C C if C= V{C;: i €I}, and if for every pair i, j of distinct
elements of I we have C; A\ C, = {d}.

COROLLARY 1. If C is decomposed into {C,: i € I} relative to d, then for any
ordering i\, i,,...,i, of I (m =|I|), we have

e=(---((e,ve,)ve )v-)ve,

ip?

each join being a decomposition relative to d.
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Proor. This is an immediate consequence of the associativity of the join V and
of the distributivity (Lemma 1) of A over V.

Thus we can suppose where convenient, that our decompositions are sequences
of decompositions into two pieces. The simplest kind of g.c. hypergraphs are
those of the form (¢, {c}), and following Haberman (1974) we give:

DEFINITION 3. A g.c. hypergraph C is said to be decomposable if either |C|= 1,
or if there exists a decomposition €= @ V B of € relative to some d C C, with
@ V B both decomposable and |@|<|C}|, |B|<|C]|.

It is readily seen that this definition implies that the class of decomposable g.c.
hypergraph is exactly the smallest class of g.c. hypergraphs that contains the
simplest ones, that is, those with |€|= 1, and is closed under joins that are
decompositions.

By restricting the base set C of a hypergraph (C, ) to a proper subset E C C,
and taking the maximal elements of {cE: ¢ € C}, we obtain the g.c. subhyper-
graph CE of © generated by E, see Berge (1973), page 390. The family of all
decomposable g.c. hypergraphs is closed under this operation, as the next lemma
shows.

LEMMA 2. Let (C, ©) be a decomposable g.c. hypergraph. Then for any E C C the
g.c. subhypergraph (E, C%) is also decomposable.

PrOOF. The proof is by induction on |C|. If | C|= 1, the result is certainly true,
whilst a decomposable g.c. hypergraph € with |C|> 1 is (by definition) decom-
posable as C = @ V B relative to some d C C, with @ and B both decomposable
and (@|<|C|, |B|<[C|. It is easy to see that Cf is then decomposed into
@1E Vv BEE relative to dE, and so the inductive step can be proven, and the result
follows.

In proving the equivalence of different set-theoretic formulations of decom-
posability, it is convenient to abstract the following notion, see Vorob’ev (1962).

DEFINITION 4. An edge ¢* € Cis called extremal in € if € may be decomposed
into {¢*} V (C\{c*}) relative to d* = c* N UC\{c*}; equivalently if there
exists c** € C\{c*} such that cc* C c**c* for every ¢ € C\{c*}.

COROLLARY 2. If ¢* is an extremal edge of the decomposable g.c. hypergraph C,
then C\{c*)} is again decomposable.
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PrOOF. We will see that C\{c*} is just the restriction C* of C to E =
C\(c*\d*) = (C\c*) U d*, and the result will follow from Lemma 2. But this is
clear, since none of the edges of C\{c*} intersect ¢*\ d* in other than the empty
set, and so they all remain pairwise incomparable, whilst d* C ¢**.

LEMMA 3. Let C be a decomposable g.c. hypergraph with | C|= 2. Then there exist
at least two extremal edges of C.

REMARK. With a different (but equivalent) form of decomposability, Vorob’ev
(1962) proved this result as a lemma in Section 1.51.

PROOF. Again the proof is by induction on |C|. All hypergraphs with two
incomparable edges are decomposable, and in this case both edges are trivially
extremal.

Let C be a decomposable g.c. hypergraph with |@|> 2 edges, and suppose the
assertion of the lemma is true for all decomposable g.c. hypergraphs with fewer
edges. By definition C may be decomposed into @ V B relative to some d C C,
with & and % both decomposable and having fewer edges than C. At least one of
them must have two or more edges, say &. Then if we write d = a*b*, the
inductive hypothesis implies that & contains an extremal edge, a’ say, distinct
from a*, and we will see that a’ is extremal in C. For if b € 9, then

a'b=a’(a’b) C a’'d= a’a*b* C a’a* Ca'a”,
where a” € @\ {a’} is such that a’a C a’a” for all a € @\ {a’} (see Definition 4).
Since the same result is true with b in the above line of inclusions replaced by any
a € @\{a’}, we have proved that a’ is extremal in C. If |B|>2, a similar
argument proves the existence of an element b’ € % distinct from b* which is
extremal in ©, whilst if |3 |= 1 the edge b* is itself extremal in C. In either case
we have found at least two extremal edges of © and the inductive step is proved.

We now have the preliminary results necessary for our first theorem. Part of
this theorem is an algorithm which we formulate separately as follows. (i) For a
g.c. hypergraph € we choose and fix an edge ¢ € C. (ii) If | C|= n we let ¢, be any
extremal edge of © other that ¢, if such exists; otherwise we put ¢, = c. (iii) If
Cps---5Cpyy have been determined, 1 < m < n, we let c,, be any extremal edge of
C\{¢,s---+Cmry} if such exists, otherwise we put ¢,, = ¢. This defines a sequence
of edges of C.

THEOREM 1. The following are equivalent for a g.c. hypergraph C with n edges.

(a) C is decomposable.
(b) The algorithm described above has ¢,, # ¢, 1 <m <n,c, =c.

https://doi.org/10.1017/51446788700027300 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027300

(8l Decomposable graphs and hypergraphs 19

(c) There exists an ordering of Cas {c,, ¢,,...,c,} such that forallm = 1,2,...,n
there exists m* << m such that for all | <m, c,c,, C c,.C,,.

REMARK. The equivalence between (a) and (b) above was essentially proved by
Haberman (1974), and links his approach with that of Vorob’ev (1962), whilst (c)
is the form preferred by Kellerer (1964), see Satz 3.5.

ProOOF. (a) implies (b). This implication follows by successively applying
Lemma 3 and Corollary 2, each time choosing an extremal element other then ¢,

untilm = 1.
(b) implies (c). If ¢ is not chosen until m = 1, we know that for all m,
1 <m<n, c, is extremal in C\{c,,...,¢,+,} = {¢}, ¢,...,C,,}. By definition

this means that {c,} N {c,,...,c,,_1} = {d,,}, that is, that ¢,c,, Cd,, for ali
I < m, and also that d,, = c,,.c,, for some m* < m.
(c) implies (a). It is always true that {c|, c,} is decomposable. Suppose we have

proved that for some m between 2 and n in the ordering given by (¢), {¢,,....c,,_}
is decomposable. Then there is a decomposition {c,,...,c,} = {c¢,} V
{cy5...,Cp—,} relative to c,,.c,, into decomposable hypergraphs, and so {c|,. ..,c,,}

is decomposable. Continuing until m = n we prove that C is decomposable.

We close this section with some remarks concerning algorithms to check
decomposability. The procedure given prior to Theorem 1 certainly gives an
algorithm which works, but this one is not particularly convenient in practice as it
requires searching for an extremal edge, a task which involves repeatedly comput-
ing and comparing many edge intersections. (A hypergraph would normally be
stored in a computer as an incidence matrix with rows corresponding to edges
and columns corresponding to the elements of the base set.)

An alternative algorithm was originally introduced by Goodman in the context
of contingency tables, see Bishop et al. (1975), Goodman (1971), and Jensen
(1978), pages 49-50. To motivate this algorithm we note that for any extremal
edge ¢* of a g.c. hypergraph C, the elements of c*\d*, where d* = c* N
U(C\{c*}) [= c*c** for some ¢** € C\{c*}] belong to precisely one edge of C,
namely the extremal edge c*. The converse to this observation: “an edge contain-
ing elements belonging to no other edge is extremal” is false in general, but is is
near enough to true for a simple algorithm checking decomposability to exist. An
example which rules out the possible converse is C = {{1,2}, {2,3,4},{4,5}}, in
which 3 belongs only to the non-extremal edge {2, 3,4}. However, such elements
are always associated with a decomposition which may, in turn be associated with
a restriction (see the proof of Corollary 1). We formulate the idea as follows:
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PROPOSITION 1. Let h be a subset of an edge c* of a g.c. hypergraph Q consisting
of elements belonging to precisely one edge of C. Put d=c*\h, C= {d} V
(C\{c*}) and C = UQC. Then C may be decomposed into {c*} \ C relative to d,
and C€ = C.

PrOOF. It is easy to see that {c*} V C=¢C,andifc € C\{c*}, cc* C d, whilst
c¢*d =d. As in the proof of Corollary 1, distinct elements of C\{c*} remain
incomparable when restricted to ¢, because they do not intersect # = ¢\C.

COROLLARY 3. If C is decomposable, then so also is C.

Thus we may check € for decomposability by searching for one [or more]
element[s] belonging to exactly one edge of € and suppressing that element [those
elements], in the sense that we form € as above. We then repeat the procedure. If
€ is decomposable, this will continue until no elements are left, whilst it cannot do
so if € is not decomposable.

This concludes our general set-theoretic discussion of decomposability.

3. Conformal hypergraphs

The aim of this section is to reduce the study of decomposable g.c. hypergraphs
to the study of certain connected graphs. We do this by discussing the graph
known as the 2-section of a g.c. hypergraph (C, C), here denoted by Cg, which,
following Berge (1973), page 396, is defined to be the graph which has vertex set
C, and as edges the set of all unordered pairs {a, 8} for which there exists an
element ¢ € Cwith {a, B8} C c.

For a general subclass € < © we need to consider the 2-section Ay of the
hypergraph (A4, &), and ask about its relation to the subgraph of C; generated by,
Berge (1973), page 7, equivalently, induced by, Harary (1969), page 11, 4 C C,
here denoted by (A). In general {( 4) need not coincide with A g, but there is an
important special case in which it does so.

LEMMA 4. If we have a decomposition C =V ¢, C, relative to d C C, then the
subgraphs {C,) of the 2-section C, generated by the subsets C; = U C, coincide with
the 2-sections C, .

PROOF. By Corollary 1 we only have to prove the result for pairwise decomposi-
tions C= @ V B. It is clear that the vertices of (A) and A, coincide, and it is
equally clear that if a and a’ are adjacent in A g, that is, if {a, @’} C a for some
a € @, then a and a’ are adjacent in Cg and hence in (4 ).
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On the other hand, if {a, a’} is an edge in (A), then {a, a’} C ¢ for some
¢ € C. If ¢ € @, then we have shown that {a, &’} is an edge of A 4, whilst ¢ € B,
then {a,a’} = AB C d, and so {a, «’} is still an edge of A .

With this lemma proved we can turn to the main result of this section. Recall
that a cliqgue in a simple graph is a maximal complete subgraph Harary (1969),
page 20, although some writers including Berge (1973) do not require maximality,
and hence speak of maximal cliques. Further, a g.c. hypergraph € is called
conformal, Berge (1973), if the class of all cliques of the 2-section Cp of C
coincides with C.

PROPOSITION 2. Let the g.c. hypergraph C be decomposed into {C,: i € I} relative
to d C C. Then C is conformal if and only if for all i € I, C, is conformal.

PROOF. As before it is enough to consider pairwise decompositions C = @ V .
Suppose that @ and 9 are conformal and let ¢ be a clique in C. We first note that
we must have ¢ C 4 or ¢ C B for if this was not the case and a € ¢\ B, 8 € c\ 4
there must be a ¢’ € C with {a, B} C ¢’. But ¢’ € € implies ¢’ ERQU D and
¢ € @implies B € 4, ¢’ € B implies @ € B, in both cases a contradiction. But if
cC A, cis a clique in 4 by Lemma 4 and thus ¢ € & by assumption. The
maximality of ¢ implies ¢ € C. Similarly, if ¢ C B we get ¢ € C, which was to be
proved.

Conversely suppose that C is conformal and let a be a clique in Ag = (A4). We
just have to show that there is an a’ € @ such that a C a’ (the maximality of a
will then imply a = a’). By Lemma 4, @ is a complete subset of C and by the
conformality of C, thereisac ECsuchthata Cc. If c €EB,a=acCAB=d
and there is thusan a’ € € such that a’ D a. If ¢ € @, we can use ¢ as a’.

The following result is essentially part (4°) of Theorem 2.2 of Vorob’ev and is
Theorem 5 of Anderson (1974).

COROLLARY 4. Every decomposable g.c. hypergraph is conformal.

PROOF. Since the 2-section of a hypergraph € with |C|= 1 is a complete graph,
any such hypergraph is conformal. The corollary then follows directly from the
definition and Proposition 2.

As a consequence of this proposition we need only discuss those decomposable

hypergraphs C which consist of the class of all cliques of a graph C. We will write
Cc for the hypergraph of all maximal cliques of the graph C. The following
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discussion shows how we can, without loss of generality, restrict ourselves even
further to consider only connected graphs.

For any pair a, b of edges of a hypergraph (C, ) with 2-section C write a = ¢
if there exists a sequence a = ¢, ¢,,...,c,, = b of edges such that ¢, _,c, #* &,
1 < k < m. This is easily seen to be an equivalence relation on € and we denote
by {C,: t € T} the equivalence classes of C under = . Put C, = U(, and let C,
denote the 2-section of the hypergraph (C,, C,), ¢t € T. In these terms we have:

LEMMA 5. The connected components of C, are precisely the graphs {C,:t € T}.

PROOF. We begin by noting that each graph C, is connected. If a, 8 € C, with
a € a and B € b say, then there should exist a chain @ = ¢, ¢5,...,¢,, = b with
Cp16 # D, 1 <k<m. Choosing A, Ec,_c,, 1 <k<m we see that a =
AL Aj.uA,, A, = Bisachain in C, thus proving that C, is connected.

If « and B are connected in C, there exists a chain a = A}, A,,...,A, = B such
that {A,_,A\;} C ¢, €C, 1 <k <n. But this means that ¢, = c, and so there
exists 1 € T with {a, 8} C C,. Thus the C, are connected components of C, and
since U,_,.C, = C, U, €, = C (union of classes), we have described all of the

€T ™t teT )
connected components and the proof is complete.

Our next lemma shows that the non-trivial decompositions of clique hyper-
graphs are associated with complete articulation sets, where a subset d C C of a
connected graph C = (C, E(QC)) is called an articulation set if {(C\d ) is discon-
nected, Berge (1973), page 8, and complete means here that all vertices in d are
adjacent.

LEMMA 6. Let C = @ V B be a decomposition of the clique hypergraph C of the
connected graph C relative to d C C. Then every path from A\ B to B must contain
an element of d.

PROOF. Now suppose that a E A\Band BE B. If a = vy, ¥}5-.-,Y, = Bisa
connecting path, then for each i, 1 < i < m, there exists ¢; € Cwith {y,_,,v;,} C c..
Since a € A\ B we must have ¢, € @, and so k = min(i: ¢; € B) must satisfy
l1<k<m. Butthenc,  EQ@andsovy,_, €c¢,_c, Cd.

COROLLARY 5. Any cycle in C which intersects both B\ A and A\ B must contain
two non-consecutive elements of d.

PROOF. Let the cycle contain « € A\ B and 8 € B\ A. By arguing as above in
(say) the clockwise direction, we get an element 8, € d, and by arguing in the
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counter clockwise direction we find an element 8, € d. These elements cannot be
consecutive in the cycle for « and 8 separate them.

COROLLARY 6. The graphs A3 = ( A) and By = ( B) are connected subgraphs of
C with clique hypergraphs @ and B, respectively.

PROOF. Let a, a’ be distinct elements of A. Since C is connected there is a path
in C between a and a’, and we will see that any such path of shortest length must
lie entirely within A. For if this was not the case, it would have to meet B\ 4 and
so pass through d twice. But then the two elements of d could be joined (within 4)
thereby shortening the path. Thus A is a connected subset. The remaining
assertions are consequences of the foregoing Lemma 4 and Proposition 2.

We close this section with some remarks on the relation between our notion of
decomposition applied to the clique hypergraph of a connected graph, and to the
separation into pieces of such a graph relative to a complete articulation set
(Berge (1973), page 329). Let d be a complete articulation set of a connected
graph C, that is, d is complete and (C\d) is disconnected, and suppose that
{C\d) has connected components {E;: i € I}. Then the pieces of C relative to d
are the subgraphs {C;: i € I} where C; = (E; U d), i € I. Finally, let C and {C;:
i € I} be the clique hypergraphs corresponding to C and {C;: i € I} respectively.

PROPOSITION 3. €= V({C: i € I} is a decomposition relative to d.

PRrOOF. This is a straightforward checking of definitions and so is omitted.

4. The index

We have seen that any decomposable hypergraph C gives rise to a graph Cg, its
2-section, whose class of cliques is C. Further, we have seen how we may restrict
ourselves to those hypergraphs which derive in this way from connected graphs.
Thus we may begin afresh by supposing given a connected graph C = (C, E(C))
and denoting its class of cliques by € = C.. We also use the notation C\ s for the
subgraph (C\s) generated by C\ s wheres C C.

The main purpose of this section is to define an index associated with the
complete subsets of C and derive some of its basic properties. Such an index was
defined in quite a different way by Haberman (1974), page 174, where it was
called the adjusted replication number.
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DEFINITION 5. For any complete subset d, let 85(C\d) denote the number of
pieces of C relative to 4 in which d is not a clique. Let

W(d) =1 - Bi(C\d).

The notation B is intended to suggest a modification of the number of connected
components B, (= Oth Betti number) of a graph (= l-complex), see Harary
(1969).

LEMMA 7. The index v has the following properties:
v(d) =1 ifdisaclique,
v(d) =0 ifdis not an articulation set and not a clique,
v(d) <0 implies that d is an articulation set.

PRrOOF. If d is a clique, it will be a clique in all the pieces of C relative to 4 and
v(d)=1—-B(C\d)=1-0=1.

If d is not a clique, nor an articulation set then B(C\d) = 1 and thus »(d) = 0.
If »(d) <0, By(C\d) = 2, and d must be an articulation set.

Our major result in this section relates our index across decompositions. More
precisely, let the clique hypergraph € of a connected graph be decomposed into
C,, i € I, relative to d* C C and let »; denote the indices associated with (C,).
Letalsor(d) =0ifd g C,.

LemMMA 8. For any complete subset d C C we have, with the notation above:

S v(d) ifd # d*,
_ier
v(d) = S u(d*) —|I|+1 ifd=d*.
iel

PrROOF. We readily see that we can restrict ourselves to the case with |[I|= 2,
that is, C= @V B, A\ B = {d*}. We then consider four cases: i) d = d*, ii)
d G d*, ii)d D d* iv)d ¢ d* andd 2 d*.

i) d = d*. If d* is removed from A we get pieces A,,..., A, Ap ... ALy,
with A,,...,A, containing d* as a clique and A, ,,,...,A ,, Dot as a clique.
Similarly we get pieces B, . .. ,Bp, B,,H,. .. ,Bp+q.

But the pieces of C obtained by removing d must be the same since B, is always
separated from 4, by d* according to Lemma 6.
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Thus we have
v(d*)=1—k—p, v(d*)=1—k, vy(d*)=1-p,

whereby we see that our formula holds.

il) dC d*. Let the pieces of A and B relative to d be AL,
ALA - A B Bp,BpH, .. Bp+q, as before.

Exactly one A-piece and one B-piece contains points of d*\ d. Because if there
were more, these pieces would be connected via d*\ d when d was removed, thus
contradicting the notion of a piece; d* is not a clique in such a piece since
d G d*, with d* complete. So, let those pieces be A, ,, and B, ;. The pieces of
C relative to d are then

Acs i UBL AL LA A Ags,n By BB, B,

Since no two of these can be connected via d*\d they are therefore only
connected via d, again by Lemma 6. Thus

v(d)=1-m, VB(d):l_qa
v(d)=1~[(m—1)+ (g— 1)+ 1] =2(d) + vy(d).

iti) d D d*. Then we must either have d C 4 or d C B. Suppose d C A. Let
A, ALA LA, be the pieces of A relative to d.

Let B},... ,B;, B]’,"Jr bre e ,B;+q be the pieces of B relative to d* . Then the pieces
of C relative to d must be

A, (BYU),...,(BY, Ud),

since d M B = d*. But d must be a clique of all the B-pieces, because no vertices
in B\ d* are adjacent to those in d \ d* by Lemma 6. Thus »(d) = 1 — m = »,(d)
and d ¢ B implies vz(d) = 0, that is, that the formula is correct.

iv) d 2 d* and d* 2 d. Again, let us assume d C 4, that is, d ¢ B. Let A, be
the A-piece relative to d containing d*\d # @. Then the pieces of C relative to d
are

AgUB,A,,...,A,,
where Ay,...,A, are the A-pieces relative to d. Note that d is a clique in A, U B
if and only if it is in A,, since no vertices in B are adjacent to vertices in
d\d* #* &. Thus »(d) = v,(d) and since vz(d) = 0, the proof is complete.

COROLLARY 7. For any connected graph C with the class of cliques C,

> v(d)=1

all complete
subsets d

https://doi.org/10.1017/51446788700027300 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027300

26 S. L. Lauritzen, T. P. Speed and K. Vijayan [15]

ProOF. By induction on |C]. If |€|= 1 the result is clearly true. Suppose that C
is a connected graph with [C|> 1 and that the assertion is true for all connected
graphs with fewer than | C| cliques. Then either »(d) = 0 for all 4, in which case
the result is true because »(c) = 1 for all ¢ € C by Lemma 7, or there is a d* with
v(d*) < 0. But then d* is an articulation set by Lemma 7 and C can be
decomposed into €, i € I relative to d*, where C, are the clique hypergraphs of
the pieces (Proposition 3).

Clearly, | C;|<| C| so the inductive hypothesis and the preceding lemma gives us

Sr(d)= 2 (@) + Su@) 111+

d#d* "iel iel

=2 (%vi(d)) — [+ =1~ 1] +1=1.

iel

Decomposable graphs

In this section we draw together the notions introduced in the previous two and
show that graphs C whose clique hypergraphs G are decomposable have other
interesting properties. We use the notation Z, for the graph known as the n-cycle
Harary (1969), page 13.

THEOREM 2. The following properties of a connected graph C are equivalent:
(D) The clique hypergraph C . is decomposable.

MHZ,vd)=1

(T) No subset s C C generates a cyclic subgraph {s)~ Z, with n > 3.

REMARKS. Vorob’ev (1962) derived condition (T) in his discussion of this topic
[Theorem 2,2}, see also Kellerer (1964), Satz 3.2, and we note that such graphs are
called triangulated by Berge (1973). An easy reformulation of (T) is (T’): every
polygon in C of length k = 4 has a chord. Graphs with these properties were
apparently first studied by Hajnal and Suranyi (1958).

ProoF. (D) implies (I). This is an easy induction on |C| using the (Index).
Lemma 8. The conclusion is clearly true for | C|= 1, and so we take a decomposa-
ble clique hypergraph € = C. with |C|> 1, supposing that the conclusion is true
for all decomposable clique hypergraphs with fewer than |C| edges. Then there
must exist a decomposition € = @V B relative to a subset d* C C, of € into
decomposable hypergraphs. By Lemma 5 and Corollary 6, @ and B are both the
clique hypergraphs of connected graphs with fewer elements than €. If (I) is true
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for @ and for 9B, as it must be by the inductive hypothesis, it remain true for C by
using Lemma 8, since
2v(a) = 2 (VA(d) + vp(d)) + vy(d*) + vp(d*) — 1
d d-d*
=1+1-1=1.

(D) implies (T). Again the proof is by induction on |C|. If |C|=1, the
corresponding graph is complete and (T) always holds. Suppose now |C|> 1 and
that the assertion is true for all connected graphs with fewer than |C| cliques. If
(1) holds for C and |C|> 1 there must be a d* with »(d*) < 0 since »(¢) = 1 for
all ¢ € Cby Lemma 7. As in Corollary 7 we deduce that there is a decomposition
of € into €, i €I, relative to d* and with |C;|<|C|. Using the inductive
hypothesis, Lemma 8 and Corollary 7, we deduce that C; satisfy (T). That C
satisfies (T) now follows from Corollaries 1 and 6.

(T) implies (D). The final implication is also proved by induction on |C|. As
before it is easy to see that the conclusion desired is true when |C|= 1 and so we
make the now familiar inductive hypothesis. Then with |C|> 1 there is either (i) a
decomposition C= @V % of C relative to some d C C, or (ii) there is no such
decomposition. Since property (T) is preserved upon passing to generated sub-
graphs, we note that in case (i) A and B must satisfy (T). But then the inductive
hypothesis implies that & and % are both decomposable, and so we conclude that
Cis decomposable.

Our proof will be complete when we show that case (ii) cannot arise. To prove
this, let ) be the set of intersections of distinct cliques and let d be an element in
%) which is maximal in % under set inclusion. We shall show that 4 is an
articulation set and hence by Proposition 2 defines a decomposition. Suppose
C\ d is connected, Since d € 9 there are a, b € € such that ab = d, a\d # &,
b\d # @ and a\d is connected to b\ d outside d. Amongst the pairs a € a\ d
and B € b\ d, select a pair, a*, B*, say, for which the shortest connecting path is
of shortest length. Then

o = Yo, YooYy = B*
is of length m = 2, and because it is a shortest path, v, &€ a for i > 0.

Let us note that vy, cannot be adjacent in C to every 8§ € d = ab. For if this was
the case, {v,, d*} U d would be a complete subset of C and so contained in a
clique ¢ € C\{a, b} whence we would have % 3 ac D d U {a*}, contradicting
the maximality of d. Thus there exists 8* € d = ab with {v,, 6*} & E(C).

Now let k = min{j: {y;, 8%} € E(C)}. By the foregoing, ;=2 and since
B* = v,, is adjacent to 6%, j < m. Then a* = vy, v;,...,Y,-1, ¥, 8%, a* is a cycle
of length j +2 >4 in C. It has no chords, since the path from o* to 8* has
shortest length. But this contradicts (T) and so C\d must be connected. The
proof is now complete.
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