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On the units of a modular

group ring II

K.R. Pearson

Let i? be a ring of nonzero characterist ic and l e t G be a

f ini te group with subgroup H . I t i s shown that H is a

normal subgroup of the group of units of the group ring RG i f

and only i f H i s contained in the centre of G or R i s the

field with 2 elements, G is the symmetric group on 3

le t t e r s and H i s normal in G .

Let R be a ring of nonzero characteris t ic and with identi ty 1 , le t

G be a f in i te group with a subgroup E . We examine when {lfe | h € H} ,

which we again denote by H , is a normal subgroup of the group {RG)* of

units of the group ring RG , and prove the following theorem. (Z

denotes the ring of rat ional integers modulo n and S and A denote

the symmetric and alternating groups on 3 l e t t e r s . )

THEOREM. Let R be a ring of nonzero characteristic and let G be a

finite group with a subgroup H . Then H is a normal subgroup of the

group of units of the group ring RG if and only if H is contained in

the centre of G or R - Z , G - S and H - S or A .

This extends Theorem 1 of [4] in two direct ions. In the f i r s t place

R was res t r ic ted there to Z : the present theorem now gives a complete
n

characterization of those group rings RG with R of nonzero character-

istic which satisfy the Condition III stated in [4]. Secondly, in [4] only

the case H = G was considered. Although Theorem 1 of [4] is a special
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case of the present theorem, the proof given here makes essent ia l use of i t
and does not subsume i t .

The removal of the res t r ic t ion H = G was suggested by Eldridge [2]

where i t i s proved that i f G i s a locally f in i te p-group and H i s a

subgroup of G , then H i s normal in (Z G)* i f and only i f H i s

contained in the centre of G .

1. Outline of the proof

If E is contained in the centre, of G then U is contained in the

centre of RG and clearly B < (RG)* . Also it is shown in Lemma 7 of [4]

that S, <1 (Zp£ ) * » a n d i"t f°ll°ws easily from this result that

A < (Z S ) * . This takes care of the sufficiency part of the theorem.

We now consider the necessity part, and first show that it is

sufficient to prove the theorem in the case where R - Z for some prime

p . To do this let us assume the result when R - Z and consider an

arbitrary ring R of nonzero characteristic n with H < (RG)* . If R

is the prime subring of R then: H o [RQGJ * . Also if p is a prime

dividing n the natural homomorphism from Z to Z extends to a

homomorphism from Z G to Z G . Since Z G is finite, it follows from

Theorem 3 of [4] that H < [z G) * . Thus either H is contained in the

p

centre of G or p = 2 , G - S_ and H = £_ or 4 , . This means that

e i ther H i s contained in the centre of G , and we are finished, or

n = 2 and we can take A c U c G = S . The following lemma gives the

required r e su l t .

LEMMA 1. Let R be a ring of characteristic 2* with k > 1 . 1 /

A <=H CG = S and U < (RG)* then R - Z~ .

P r o o f . L e t S - < a , 2> | a = b = 1 , £>a = ab > . S u p p o s e , i f

fe—1 2
possible, that k > 1 . Then if x - 2 we have x = 0 = 2x and so
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(l+xa)b(l+xx) = b + xab + xab ,

which is not in B . Hence k = 1 . If 6 = (l+a) [b+b2) , then 62 = 0 .

Thus if y Z R , 1 + yd is its own inverse. But

(l+t/e)b(l+t/9) = (l+i/2)2> + y2b2 + [y2+y] [ab+ab2] ,

which is in B only if y = 0 or 1 . Therefore B - Z as required.

Accordingly in what follows we always assume that B < [z G] * . We

show that either B is contained in the centre of G or p = 2 , G - S

and B - S or A- . Because (z #) * is a subgroup of (Z G) * we know

that B < [Z B)* and can apply Theorem 1 of [4] to see that either B is

abelian or p = 2 and B - S . When p does not divide \G\ the result

is proved in §2. When p divides \G\ the result is proved in §3 and §4

for the cases p i 3 and p = 2 respectively.

One simple fact we use frequently is that B is normal in any sub-

group of (Z G]* . In particular B is normal in G and, if L is any

subgroup of G containing B , B < [Z L) * .

Z. The semisimple case

LEMMA 2. If p does not divide \G\ then B is contained in the

centre of G .

Proof. Suppose, i f possible, that B is not contained in the centre

of G . Z G i s semisimple and there must exist a central idempotent e

in Z G such that Be is not contained in the centre of (Z G)e andp <• p >

[Z G]e - Mn[GF(pk)) for son* n > 2 , k 2 1 . Let

8 : [(Z G)e]* •* Gh[n, pk) be an isomorphism. Now Be < [[z G)e]* and

p yf \Be\ . But p divides |SL(«, pfc) | ( [ / ] , Theorem U.ll) and therefore

SL(n, p ) i s not contained in (Be)Q . Nor can (Be)Q be contained in
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the centre of Gh[n, p ) , for otherwise (fle)6 would be in the centre of

Mn(GF[p )) , by [ J ] , Theorem !*.8, and then He would be in the centre of

(Z G]e . I t follows from Theorem 1+.9 of [/] that n = 2 , k = 1 and

p = 2 or 3 .

If p = 2 then (fle)6 cGL(2, 2) - S^ . Since 2 J \Ge\ , Ge must

be abelian and He i s in the centre of Ge and therefore of \Z G]e ,

which is a contradiction.

Thus p = 3 • But the only normal subgroup of GL(2, 3) which has

order not divis ible by 3 and which is not contained in the centre of

GL(2, 3) i s isomorphic to the quaternion group of order 8 . But

H t (Zfi)* and p | |fl| so that H (and therefore He ) must be abelian

([43, Theorem l ) , and we again have a contradiction.

3. p divides \G\ and p > 3

Here H is abelian ([4], Theorem l) .

LEMMA 3. If p divides \G\ and p - 3 then H is contained in

the oentve of G .

Proof. Firstly if k € G has order a power of p we show that k

is in the centralizer of H . For let h € H . Since H is abelian we

may assume that k ^ H . Because (l+kr = 1 + 1c for all n , X,+ k

is nilpotent and 1 + (l+k) is a unit. Thus there exists h' £ H with

(2+k)h = h'(2+k) . We can equate the terms in H to get h' = h and then

kh = hk as required.

Now suppose that p \ \H\ . If g € G we can write g = g g where

s t

g. = g has order a power of p and g^ - Q has order relatively prime

to p . Then L = H(g > is a subgroup of G and p does not divide its

order. Since H <* (Z L) * it follows from Lemma 2 that g2 centralizes

H . Thus g centralizes H .

Accordingly we may assume that p divides \H\ . In this case there
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exists x d H of order p . If g £ G , h € H and n 2 1 , then

t( l -x)g] = (l-x)(l-0X# J . . . (1-g xg )g .

Since H <' G and H is abelian it follows that (l-x)g is nilpotent.

Thus there exists h' € H such that [l+(l-x)g]h = ft'[l+(l-x)#] . Again

we can assume that g ^ H . A comparison of the terms in H gives h' = h

and then, since p 2 3 , the other terms yield gh = hg .

4. p = 2 and [c| even

Here e i t h e r H i s abel ian or H - £_ ( [ 4 ] , Theorem l ) .

LEMMA 4 . Suppose p = 2 and | c | i s even. J / x € G foas order

2 with s 2 2 ifaerc x is in ihe centrdlizer of H .

Proof. If x € fl then H must be abelian (as 5 has no element of

order k J and so x centralizes H . Thus we can assume that x j: # .

Since (x+x ) = 0 , 1 + x + x is a uni t . Then i f h d H there

exists h' € H with [l+x+x )h = h' (l+x+x" ] . If we compare the terms

in H we have h' = h and the other terms then give h xh = x~ . But

then h is in the normalizer of <x> and so (l+x)h is nilpotent which

means that there exists h" (. H with [l+{l+x)h]h = h"[l+(l+x)h] . If we

compare the terms outside of H we get h" = xhx and so

h + h = xhx~ + xhx~\ . Now either h = h or h = xhx~ or

h = xhx ^ , and we get xh = hx in each case.

LEMMA 5. If p = 2 , \G\ is even and H - S , then G = H .

Proof. We f i r s t show t h a t i f z c e n t r a l i z e s H then 3 = 1 . For

then H(z) = H*<z> so t ha t ZAH<z >) i s isomorphic t o the group r i n g

of H over the r i n g Zp<3 > . Then, by Lemma 1 , 2 = 1 .

Now l e t g € G . We can wr i t e g = S ^ o w h e r e 9± h a s o d d order

and g2 has order 2 S (s 2 0) . We l e t

fl = {a'b0 | 0 5 i < l , 0 2 j 2 2} with a2 = 1 = fc3 and fca = ab2 . I t
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i s easy t o see t h a t (b > < [z G) * and so (b) < [z [<b >(g >)] * and i t

fol lows from Lemma 2 t h a t g b = bg . Also d-,^-, ^ H Bn^- has order 2

s o t h a t 9-,a3i = ^ f ° r some 3 and t h e n \b~^g^\a = a\b~^g \ . Th i s

means that b~ g central izes H and hence g. £ H . If s 2 2 , <?.

centralizes U (Lemma k) which is a contradiction. Accordingly we can

assume that g^ has order 2 . I f x = g.ag = g2ag then x has order

2 and g^g^ ~ a • I f x = a > ffp c e n t r a l i z e s a • If x ? a and i f

W i s the element of order 2 in S dis t inct from x and a then

g wg- must equal u and <?„ centralizes w . Since g~ does not

2
central ize // we must have gj) # &̂  and so g'pfe = b g^ . Then i f a

i s an element of order 2 in H which gv, central izes, [l+o+g ) = 1

yet

[l+o+g2)b [l+&-g2] = b + ab + cb2 + g2b + g^2

which i s not i n H un less g £ H . Thus g € H as r equ i r ed .

LEMMA 6. If p = 2 , |c | i s euen a«d # i s abelian, then either

contained in the centre of G or H - A and G = S .

Proof. Suppose g 6 G\# and h £ H . We can write g = g^2 and

?i = h-.hr) where g and h have odd order and g^ and ?!„ have order a

power of 2 . Because H i s abelian, (l+^g)^ i s nilpotent and so there

exis ts h' € H with

A comparison of the terras in H yields h1 = h^ and gives

o
w h i c h w e g e t ^2^ = ^ 2 " I f X i s t h e

product of a l l the Sylow subgroups of H of odd order then K i s a

character is t ic subgroup of H and so X o [Z2
G) * • Since £
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odd order and 'K < (z i) * it follows from Lemma 2 that g and h

commute. Thus it follows from Lemma k that g and h commute unless g~

has order 2 and gj1-, * ̂ i^? '

Accordingly we examine what happens if there exist x i H of odd

order and z € G\H- of order 2 with xz t zx . If y = (l+2)x(l+s) then

2
Y = 0 so that 6 = 1 + y is a unit of order 2 , which means that 6x6
is in H again. Because H is abelian and normal in G we have

i
zx

3 2 3 2 2 2 3 2 2 3
8x6 = x + x + zxzx + zx z + xzx z + xsx + zx + 3X + x zx + x 3 + x z .

The terms not in H must cancel out and this gives x = 1 and

z.x3 = or .zx z for a l l i and j . A calculation then yields

xz = zx . (Note that x z = zx is impossible as x has odd order.)

We now assume that the centralizer of H is not the whole of G . I t

follows from the above that there exist b £ H of order 3 and a £ G\H
2

of order 2 with ba = db

We f i rs t show that H = <b > . For suppose that b € #\<J>> . If

ab + b±a then ab^ = b^a and b^ = 1 . But then if 6 = (l+a)b(l+a) ,

o
6 = 0 and (l+9)fc.(l+8) is again in H , which leads to a contradiction.

Hence ab = b a . Now if ty = (l+a) [b+b ) , 4> = 0 and so

[l+b i|))2 = 1 . Thus there exists h' 6 H with [l+b ty)b = h' [l+b ty) .

The terms not in H give h' = b and then the terms in < b > give a

contradiction.

Suppose now that g Z G is not in the centralizer of H . As before

we can write g = g.gn where a, has odd order and a. has order 2 ,
1 Z 1 £

2 t-
and we have shown that b^g = b g~ . Suppose if possible that ag f H .

If X = (l+a)bg (l+a) then X = 0 , and so there exists a € H with

(1+X)2> = c(l+X) . If we compare the terms in H we get a = b and then
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the other terms show that g a = bag^ . Since g^a = [agJ]' i s also not

in H we can interchange g~ and a and get ag^ = bg^a , which yields

b = 1 and is a contradiction. Thus ag^ € H and g^ € aH . Now g

commutes with g (each is a power of g ) , g commutes with b and

•a € gr
2<i> so that £ commutes with a . Also g-.a = 3 <y~ a £ gB ± H .

Suppose i f possible that g £ H . If n = (.1+a) [b+b2] then ng = ff n

and (g^n)2 = 0 , so there exists d t H with (l+^njfc = ^ ( l+^n) . A

comparison of the terms in H gives d = b and then the other terms yield

b = 1 " which is a contradiction. Hence ' g € H and <y £ ^ H = aH . If

ff • denotes the central izer of H we see that aH c off . Thus H = H

and G = H u aH as required.
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