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On the units of a modular
group ring I
K.R. Pearson

Let R be a ring of nonzero characteristic and let G be a
finite group with subgroup H . It is shown that K is a
normal subgroup of the group of units of the group ring RG if
and only if H 1is contained in the centre of G or R is the
field with 2 elements, (¢ is the symmetric group on 3

letters and H is normal in G .

Let R be a ring of nonzero characteristic and with identity 1 , let
G be a finite group with a subgroup H . We examine when {1h I h €H} ,
which we again denote by H , is a normal subgroup of the group (RG)* of

units of the group ring KRG , and prove the following theorem. [Zn

denotes the ring of rational integers modulo »n and 53 and A3 denote

the symmetric and alternating groups on 3 letters.)

THEOREM. Let R be a ring of nonzero characteristic and let G be a
finite group with a subgroup H . Then H is a normal subgroup of the
group of wnits of the group ring RG if and only if H is contained in

the centre of G or R = 22 , G= 53 and H = S3 or A3 .

This extends Theorem 1 of (4] in two directions. In the first place

R was restricted there to Zn ; the present theorem now gives a complete

characterization of those group rings RG with R of nonzero character-
istic which satisfy the Condition III stated in [4]. Secondly, in [4] only
the case H = G was considered. Although Theorem 1 of [4] is a special
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case of the present theorem, the proof given here makes essential use of it

and does not subsume it.

The removeal of the restriction H = G was suggested by Eldridge [2]
where it is proved that if G is a locally finite p-group and H 1is a
subgroup of G , then H is normal in (ZpG)* if and only if H 1is

contained in the centre of G .

1. Outline of the proof

If H 1is contained in the centre of G then H 1is contained in the
centre of RG and clearly H 4 (RG)* . Also it is shown in Lemma T of [4]

that 53 < (Z233]* , and it follows easily from this result that

A3 Q (2253]* - This takes care of the sufficiency part of the theorem.

We now consider the necessity part, and first show that it is

sufficient to prove the theorem in the case where R = Zp for some prime

p . To do this let us assume the result when R = Zp and consider an

arbitrary ring R of nonzero characteristic # with H < (RG)* . 1If Ro
is the prime subring of R then. H 9 [ROG)* . Also if p is a prime
dividing 7 the natural homomorphism from Zn to Zp extends to a
homomorphism from ZnG to ZpG . Since ZnG is finite, it follows from
Theorem 3 of [4] that H < (2 G)* . Thus either H 1is contained in the
centre of G or p=2, G = S3 and H = S3 or A3 . This means that
either H 1is contained in the centre of (¢ , and we are finished, or

k

n =2 and we can take A, CHC G=35

3 The following lemma gives the

3"

required result.

LEMMA 1. Let R be a ring of characteristic e with k21, If

A, CSHCG=5, and H 2 (RG)* then R =1, .

3 3

Proof. Let S, = {a, b | a® = b3 = 1, ba = ) . Suppose, if

possible, that k > 1 . Then if =z = 2k-1 we have z2 =0 =22 and so
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(1+xa)2 =1 . But
(1+za)b(1+za) = b + xab + zab® ,

which is not in H . Hence k=1. If 6= (l+a)(b+b2) ,» then 0° = 0.

Thus if y € R, 1+ y6 1is its own inverse. But

(1450)b(14y0) = (1492)b + y2° + (y%+y) (ab+ab?) ,

which is in A only if y 0 or 1 . Therefore R =2 as required.

2
Accordingly in what follows we always assume that H ¢ (ZpG)* . We
show that either H is contained in the centre of ¢ or p=2, G=S§

3

and H = S3 or A3 . Because (ZPH]* is a subgroup of (ZpG)* we know
that H 9 (ZPH)* and can apply Theorem 1 of [4] to see that either H is

gbelian or p=2 and H =S When p does not divide |G| the result

3 -
is proved in §2. When p divides |G| the result is proved in §3 and §4

for the cases p =2 3 and p = 2 respectively.

One simple fact we use frequently is that A 1is normal in any sub-
group of (ZpG)* . In particular H 1is normal in G and, if L is any

subgroup of G containing H , H 9 [ZPL)* .

2. The semisimple case

LEMMA 2. If p does not divide |G| then H is contained in the
centre of G .

Proof. Suppose, if possible, that H is not contained in the centre

of G . 2_G 1is semisimple and there must exist a central idempotent e

p
in ZpG such that He is not contained in the centre of [ZpG)e and

(ZpG)e = Mn[GF(pk)) for some n22, k=21. Let
6 : [(ZpG]e]* + GL(n, pk] be an isomorphism. Now He < [[ZpG]e)* and

pl |#e| . But p divides |[SL(n, pk)| ([1], Theorem 4.11) and therefore

sL(n, pk] is not contained in (He)6 . Nor can (He)6 bve contained in
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the centre of GL(n, pk) » for otherwise (He)® would be in the centre of
Mn(GF(pk)] , by [1], Theorem 4.8, and then He would be in the centre of
[ZpG]e . It follows from Theorem 4.9 of [1]J that n=2, k=1 and
p=2 or 3.

If p=2 then (He)d cGL(2, 2) = S, . Since 2 | |Ge| , Ge must

be agbelian and He is in the centre of Ge and therefore of (ZpG)e s
which is a contradiction.

Thus p = 3 . But the only normal subgroup of GL(2, 3) which has
order not divisible by 3 and which is not contained in the centre of
GL(2, 3) is isomorphic to the quaternion group of order 8 . But
Ha [ZpH)* and p | |H| so that H (and therefore He ) must be abelian

([4], Theorem 1), and we again have a contradiction.

3. p divides |¢| and p=3
Here H is abelian ([4], Theorem 1).

LEMMA 3. If p divides |G| and p = 3 then H is contained in
the centre of G .

Proof. Firstly if k € G has order a power of p we show that X
is in the centralizer of H . For let h € H . Since H is abelian ve

n n
may assume that k ¢ # . Because (1+k)P =1+ 4 forall n , 1L+R

is nilpotent and 1 + (1+k) is a unit. Thus there exists h' € H with
(2+4k)h = h'(2+k) . We can equate the terms in # to get A' =h and then
kh = hk as required.
R 8 t

Now suppose that p 1 IHl . If g € G we can write g =g g Where
g, = gs has order a power of p and g, = gt has order relatively prime
to p. Then L = H(gz) is a subgroup of G and p does not divide its
order. Since H 9 (ZPL]* it follows from Lemma 2 that 95 centralizes
H . Thus g centralizes H .

Accordingly we may assume that p divides |H| . In this case there
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exists x € H of order p . If g €G, h €H and n =1, then

[(1-2)g])" = (1—x)(l-gxg-l) e (1—gn_1xgl_n]gn .

Since H <G and H is abelian it follows that (l-x)g is nilpotent.
Thus there exists %4' € H such that [1+(1~-x)glh = h'[1+(1-z)g] . Again
we can assume that g k H . A comparison of the terms in H gives h' =4

and then, since p = 3 , the other terms yield gh = hg .

4. p=2 and |G| even

Here either H is abelian or H = S3 ([4], Theorem 1).

LEMMA 4. Suppose p =2 and |G| is even. If x € G has order
2° with 822 then z 4is in the centralizer of H.

Proof. If 2 € H then H must be abelian (as S, has no element of

3
order A ) and so x centralizes H . Thus we can assume that & § H .
s
. -1,2 -1 . . :
Since f(atz )° =0, 1+x+=x is a unit. Then if h € H there

exists h' € H with [1+x+x-l)h = h'(l+x+x-l) . If we compare the terms
- +

in H we have h' = h and the other terms then give A lxh =zt . But

then h is in the normalizer of (x) and so (l+x)k is nilpotent which

means that there exists h" € # with [1+(1+x)h]h = R"[1+(1+x)R] . If we

compare the terms outside of H we get h" = zhzt and so

2 or h = xhx_l or

ho+h® =izl + i th . Now either h =h
h = zha *h , and we get xh = hx in each case.

LEMMA 5. If p=2, |G| is evenand H=5_, then G=H .

3,
Proof. We first show that if 2z centralizes H then 2z =1 . For

then H{) =H %X {(z) so that Z2(H(z)) is isomorphic to the group ring

of H over the ring Zz(z) . 'Then, by Lemma 1, 2z =1 .
Now let g € G . We can write g = 919, where 9, has odd order
and g, has order 2° (s 20) . Ve let

B={ab |0sis<1,0=g=<2} with a°>=1=5b> and ba=ab° . It
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is easy to see that (b) < (2,0)* end so (b) 4 [22(<b)<gl))]* and it

1

follows from Lemma 2 that g,b = bgl . Also glag1 € H and has order 2

so that glagil = a?  for some J and then [b—jgl]a = a[b-jgll . This
means that b-jg:L centralizes H and hence g, €H . If 522, g,
centralizes H (Lemma L) which is a contradiction. Accordingly we can
assume that 95 has order 2 . If x = gzag2 = gzag;l then & has order
2 and g,%g, = a - If x=a, g5 centralizes a . If x # a and if
w 1is the element of order 2 in H distincet from & and a then

ggwg;l must equal w and g, centralizes w . Since g, does not

centralize H we must have geb # b92 and so gzb = b292 . Then if ¢

is an element of order 2 in H which 95 centralizes, (1+c+g2)2 =1

yet
2 2
(1tetg )b (1tetg,) = b + cb + b + g p + g b
2 2 2 2
which is not in HA unless 92 €H . Thus g € H as required.

LEMMA 6. If p=2, |G| is even and H <is abelian, then either
H 1is contained in the centre of G or H = A3 and G = S3 .

Proof. Suppose g € G\H and % € H . We can write g = 9,9, end
h o= hlh2 where g, and hl have odd order and g, and h2 have order a
power of 2 . Because H is gbelian, (l+h2)g is nilpotent and so there
exists h' € H with

— 1
[i+ (2+h,)g]n, = ' [1+ (2+n,)g]

A comparison of the terms in H yields k' = h2 and gives

,gh2 + hegh2 = hzg + hgg , from which we get h2g = gh2 . If K is the

product of all the Sylow subgroups of H of odd order then X is a
characteristic subgroup of # and so K 9 (ZQG)* . SBince L = K(gl) has
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odd order and K 4 (ZzL]* it follows from Lemma 2 that g, and hl

commute. Thus it follows from Lemma 4 that g and % commite unless g5

has order 2 and ggh # h

Accordingly we examine what happens if there exist x € H of odd
order and 2 € G\H. of order 2 with xz # zx . If vy = (1+2)x(1+z) then
Y2 =0 sothat 8§ =1+ 7Y is a unit of order 2 , which means that &x8
is in H again. Because H is abelian and normal in G we have

a2’z xﬂ 2x'z for all i and J . A calculation then yields

3 2 3 2 2 2 2 2
Sx6 = x + x° + zxax + 2x73 + x3x 2 + xaxT + zx + zx3 +xe2x +txaz+ x3z .

3

The terms not in H must cancel out and this gives x~ = 1 and
2 2 2 .. .
X3 = z3x . (Note that x 2 = 2x  is impossible as x has odd order.)
We now assume that the centralizer of H is not the whole of G . It

follows from the above that there exist b € H of order 3 and a € G
of order 2 with ba = ab2

We first show that H# = (b) . For suppose that bl € H\®) . 1If

abl # bla then abl = bia and bi =1 . But then if 6 = (1+a)b(1l+a) ,

62 =0 and (l+9)bl(l+6) is again in H , which leads to & contradiction.

Hence ab. = b.a . Now if ¥ = (1+a)(b+b2) . we = 0 and so

(1+b11p)2 =1 . Thus there exists h' € H with (1+blw]b = h’(1+blw] .
The terms not in H give h' = b_l and then the terms in (b)) give a
contradiction.

Suppose now that g € G 1is not in the centralizer of H . As before
we can write g = 9,95 where 9, has odd order and 95 has order 2 ,

and we have shown that b2g = b2g2 . Suppose if possible that ag, tH.

If A= (l+a)b92(l+a) then Az = 0 , and so there exists ¢ € H with

(1+A)b = e(1+A) . If we compare the terms in H we get ¢ = b and then
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the other terms show that g,a = bag2 . Since g,a = (agz)rl is also not
in H we can in%erchange 95 and a and get a92 = bg2a , which yields

2

b™ =1 and is a contradiction. Thus ag, € H and g, € ai . Now 9

commutes with 95 (each is a power of g ), 9, commutes with b and

‘a € go¢b) so that g, commutes with a . Also g,a = g[g;la € gH +H .

Suppose if possible that gl f H. If n= (1+a)(b+b2) then ngl = gln

and (gln)2'= 0 , so there exists d € H with [l+gln]b = d(l+gln) . A

comparison of the térms 'in ¥ gives d =D and then the other terms yield

b =1 which is a contradiction. Hence ‘g, €H and g €gH =ail . If

Hi-'dendtes the centralizer of H we see that aHl C ad . Thus Hl =H

and G = H v ad as required.
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