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INTEGRAL NORMAL BASES IN GALOIS EXTENSIONS
OF LOCAL FIELDS

S. ULLOM

Introduction

Throughout this paper F denotes a field complete with respect to a
discrete valuation, kr the residue field of F, K/F a finite Galois extension
with Galois group G = G(K/F)t. The ring of integers Ox of K contains the
(unique) prime ideal $; the collection of ideals " for all integers = are
ambiguous ideals i.e. G-modules. E. Noether [3] showed K/F tamely ramified
implies Ox has an Og-normal basis, i.e. is isomorphic as an O,G-module to
0;G itself, OzG the group ring of G over the ring Oy.

Define subgroups of G

G, = {6€G| Yac€0g, da — acsPitl}, i >0
and

Gt = {6eG| VYaeK*, cajacl + B}, i > 1.

Then G,*2G¥,2G4*s i >0, with G¥,; = Gys* written G,y if the residue
field extension kx/kr is separable [2, p. 35]. We show (Theorem 3) that an
ambiguous ideal ¥ of K has an Op-normal basis iff the trace

Sk/x, A = AN K,

where K, is the fixed field of the subgroup Gf. This result is obtained from
the Galois module structure of A ®, F (resp. A X, kr) where K/F is tamely

ramified (resp. totally and wildly ramified).
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1. Tamely Ramified Extensions

The following proposition generalizes a result given by Fréhlich [2, p.
22] for rings of integers.

ProrosiTiON 1. An ambiguous ideal A of K is OpG-projective iff A has an
O p-normal basis.

Proof. It suffices to consider A O G-projective. For any fractional ideal
A of K we have AF = K. Further

UAF = A R,,F,
where G acts on the righthand side of the above equation by
o(a®b) = (0a) ®b, 0€G, acA, bEF.

All isomorphisms are of OrG-modules. By the normal basis theorem for
fields

K= FG = 0,6 ®,,F.

Since Oy is a complete local domain, we may apply Swan’s theorem [5,
Corollary 6. 4, p. 567] to conclude

A = 0,G.

DeriNiTiON. The extension K/F is tamely ramified if the characteristic of
kr does not divide e(pOx =P p the prime ideal of F) and the extension

kxlkr is separable. We say the extension is wildly ramified if it is not tamely
ramified.

THEOREM 1.  The extension K|F is tamely ramified iff every ambiguous ideal
of K has an Op-normal basis.

Proof. If K/F is tamely ramified, then every ambiguous ideal of K is
OyG-projective [6, Prop. 1. 3], and hence by Prop. 1 every ambiguous ideal
of K has an Op-normal basis.

Conversely, if every ambiguous ideal of K has an Oz-normal basis, then
in particular Ok has a normal basis; it follows that Sg,rOx = O and so K/F
is tamely ramified.

2. Wildly Ramified Extensions
The field K has a normalized valuation
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v: KX—>Z

with the property v(a + 8) = Infu(a), v(8) with equality if v(a)# v(g8), and v
extends to K by v(0) =+ o, For an extension K/F define the integers
F(KIF) =lkg : k), e(K|F)= v(zp), =p a prime element of F; finally the
different

DK|F) = Pm&sd,

ProposiTiON 2. Given the extension K|F with K, the fixed field of G%. If
f(KIK) >1, then m(K|K,) > 2e(K/K,) — 1.

Proof. We use induction on #n, [K: K= p". Of course the character-
istic of kp is p. Set w =1, Then

[K: K= f(KIK)) = p, e(KIK,)=1.

Since the non-trivial residue field extension is inseparable, m(K/K,) > 1.
Assume for all Galois extensions K/F with [K: K]1=p" and f(K/K,)>1
that m(K/K,) > 2¢(K/K,) — 1.

Consider K/K, Galois of order p™*!, n>1, f(K/K,)>1. There exists a
subfield K’, KD K'DK, with [K: K']1=p" and K'/K, Galois. By the tower
formula for the different

1) m(K/K,) = m(K/K') + e(K/K")m(K'| K,).

If the subgroup HcG fixes K, then [2, p. 35]

(2) Hf = HNGY = H.
Also
2p—1 if e(K'|K,) =
. KK > (p—1) 1 e(K'|K)) = p
1 if f(K'[K,) = p.

Suppose f(K/K') >1. Then by (2) we may apply the induction hypo-
thesis to K/K’. So by (1)

m(K|K;) > 2e(K/K') — 1 + e(K|K')m(K'|K,)
> 2¢(K/K,) —1 by (3).

If f(K/IK’) =1, then

[K: K] = e(KIK') = e(K/K})
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and
[K': K]l = f(K'|K,) = f(KIK)).
Here m(K/K') > 2(e(K/K’) — 1) and so we have the inequality
m(K/K,) > 3e(K/K,) — 2.
CoroLLARY. Given extension K|F. If for an ambiguous ideal A =P° of
K we have Sg/x, A = ANK,, then f(KIK,) =1, s=1 mod e(K/K,) and G, = {1}.

Proof. By [6]* we have for m = m(K/K,), etc.,

[m + s)fe]l =1+ [(s — L)/e],

where [x] denotes the greatest integer less than or equal to z. If f>1,
then by Prop. 2

[(2e =1+ s)/e]l <1+ [(s—1)e],

which is impossible. Hence f =1, i.e., the residue field extension Fkx/kr is

separable. The remainder of the Corollary follows from [6, Theorem 2. 1].
q. e. d.

Cardinality of a finite set S is Card S and R’ is the product of ¢ copies

of a ring R. For a G-module M, M¢ denotes the group of fixed points

under the action of G. When f(K/K) =1, G¥%, = Gi+,*, 20, and we

write G4

ProrosiTioN 3.  Given the extension K/K, with f(K/K,) =1 and G, = {1}.
Then the dimension of (B/pP)°r (p = BNK,) as a vector space over k = kg, is ome.

Proof. The result is obviously true for G, = {1}, so take G, # {1}. Use
the notation that for @, f£0x, a = g means a« = g mod PB'*¢, where ¢=Card G;
also characteristic of k is p. Choose a prime element = of K. Since G,={1},
for ¢ #1

(4) or = n(l + alo), ¢€G,, alo)€0g, v(als) = 1.

For 1=i<e—1, i =9n, p-+n, we have by (4) and the binomial expan-
sion for ¢~ 1

* In [6] there is an a priori assumption of separability of residue field extensions; the
results needed in this paper from [6] are seen immediately not to require this assumption.
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(5) ot — i =7t (na(o)?* + -+« + alo)?)

= 7¥+2°(nf(0)?°) + higher order terms
where a(s) = flo)r. Thus for 1<i<e—1

v — %) =i + p°
and for 1<i<e

ot —nt=0 iff { =e.
Thus the dimension of (B/pP)°: is at least one. It remains to show given

7re0x with 1 <9(r)<e, that there exists ¢&G, such that o7 =7. Since
[K: K,] = ¢(K|K,), the elements z, - - -, 2 are an Og,-basis of ¥ and hence

e
their images in P/pB are a k-basis. We may write 7= X aai, a, =0 or
1=1

unit of Og,. For some o+1 set

u = Inf v(alex® — ).
1<i<e—1

Set

b
80) = X a, (on — 1), v < oo <y, if b>1,
=

where the summation is over all 1< i <e—1 with v(g(or’ — =) = u; set
v;=p%n;, p+n, Notec¢>-:+>¢ if 5>1. From (5)

(o) = z“h(B(e)) + higher order terms (5(1) = p(1) = 0)

where the polynomial
b C
hX) = Xa, n; X"
p=

Denote by #(X) the image of the polynomial %(X) in the polynomial ring
E[X].

Assume VoeG,, o7 =7; then VoG, v(d(s)) > u + 1 since u < e. Hence
VoG, v(h(f9) = 1. In general we have the homomorphism of G, into the
additive group of O/B given by ¢— f(¢) when ¢=G, and f(o) is the image
of 6)e0k in Ok/B. The kernel is G, which is trivial by hypothesis. For
another prime element = of K, the j(¢) are determined up to multiplication
by a unit of O/B, but we are interested only in the number of distinct
B(6), s€G,. The condition VeeG,, v(h(fs))) =1, becomes in the field O/

(6) h(B(a) =0 VoG,
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For any choice of prime element = of K the polynomial #(X) has degree
less than or equal to e¢/p but has e(distinct) roots by (6). This is impossible
since %(X) is not the zero element of k[X]; so there exists ¢=G, such that

ar =7.
For completeness we include a proof of the following well-known pro-
position; see e.g. [1, §3, Exercise 13] for a partial statement.

ProposiTiON 4.  Let R be a discrete valuation ring with residue field k = Rfp
of characteristic p >0. Let G be a finite p-group and M an RG-module which is
R-projective and of R-rank Card G. The following are equivalent:

(1) dim (MjpM)¢ =1 (dim = vector space dimension over k).
(i) M= RG as RG-modules.

Proof. (i) implies (i) is clear, so we consider only (i) implies (ii). Let
W be a kG-module with dim W finite, I the two-sided nilpotent ideal which
is the kernel of the augmentation homomorphism

e kG—Ek, eXao) =X a, ack.

From now on we will assume dim W/IW to be one. Define the map ¢ as

the composite

e =
kG > k—>W/[IW.
We have the diagram of kG-modules with exact row

kG
¢ l¢
O—>IW — W —>W/[IW —> 0.

There exists a kG-linear map ¢ : kG — W with ¢4 = ¢ since kG is projective
over itself. Use I nilpotent to show # surjective. Further if dimkG = dim W,
6 is also injective and therefore an isomorphism.

Thus if we set My M =W, we have My M= kG. Use M is R-projective
and the standard argument with Nakayama’s lemma to show M = RG.

g. e. d.

Putting together Propositions 3 and 4 and noting P is O, -projective,

we have proved the following theorem.
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THEOREM 2. Given the extension K/K, with f(K/K,) =1 and G, = {1}. Then
the ambiguous ideal B of K has an Og -normal basis.

3. Arbitrary Extensions
Given a commutative ring R with 1 and finite group G. An RG-module

M is relatively RG-projective* if there exists an R-endomorphism ¢ of M
with Sg(¢) = 1y, i.e.

GEZGa(gﬁ(o“m)) =m VmeM.

ProposrTioN 5. Given an extension K|F, H a subgroup of the Galois group
G with fixed field L. Suppose LIF 1is tamely ramified. If an ambiguous ideal A
of K 1is relatively OpH-projective, then it is OpG-projective.

Proof. By hypothesis there exists an O -endomorphism ¢ of % with
Su(¢p) = 1y. L/F tamely ramified implies there exists =0, with S,,(8) = 1.
Denote also by g the endomorphism of % given by multiplication by g.
Then for the Og-endomorphism ¢. of U a short computation shows
Se(¢p.8) = la. So A is relatively OzG-projective. On the other hand, A is
Og-projective and thus OyG-projective [4, Prop. 2. 3, p. 702].

We can now prove the main result.

THEOREM 3.  An ambiguous ideal A of the extension K over F has an Op-
normal basis iff Sg/x, % = AN K,.

Proof. If % has a normal basis, then it is easy to see that Sg/x,% = AN K,.
Conversely, assume Sg,x,% = ANK,. Take G+ {1}, otherwise we are done
by Theorem 1. By the Corollary to Prop. 2, f(K/K) =1, A=P' =P as
Ox,G;-modules. By Theorem 2 B = Ox,G,. Since K,/F is tamely ramified,

we apply Prop. 5 to conclude U is OyG-projective. Then Prop. 1 shows
A = 0,G.
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