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Admissibility for a Class of
Quasiregular Representations

Bradley N. Currey

Abstract. Given a semidirect product G = N ⋊ H where N is nilpotent, connected, simply connected

and normal in G and where H is a vector group for which ad(h) is completely reducible and R-split, let

τ denote the quasiregular representation of G in L2(N). An elementψ ∈ L2(N) is said to be admissible

if the wavelet transform f 7→ 〈 f , τ (·)ψ〉 defines an isometry from L2(N) into L2(G). In this paper we

give an explicit construction of admissible vectors in the case where G is not unimodular and the sta-

bilizers in H of its action on bN are almost everywhere trivial. In this situation we prove orthogonality

relations and we construct an explicit decomposition of L2(G) into G-invariant, multiplicity-free sub-

spaces each of which is the image of a wavelet transform . We also show that, with the assumption of

(almost-everywhere) trivial stabilizers, non-unimodularity is necessary for the existence of admissible

vectors.

Introduction

For the most general notion of continuous wavelet transform, we start with a sep-
arable, locally compact topological group G, and a unitary representation τ of G

acting in the Hilbert space Hτ . Given a vector ψ ∈ Hτ , we have a linear map-

ping Wψ from Hτ into the space of bounded continuous functions on G defined by
Wψ( f ) = 〈 f , τ ( · )ψ〉. In the event that Wψ actually defines an isometry of Hτ into
L2(G), then we say that Wψ is a continuous wavelet transform, and that ψ is admis-

sible for τ . When G has Type I reduced dual, the two extreme cases — where τ is
irreducible or where τ is the regular representation — are well understood [8, 11].
Most closely related to discrete wavelets is the case where G is a semidirect product
G = N ⋊ H with N normal and where τ is the quasiregular representation of G

in L2(N). The simplest example of this case is the “ax + b” group G = R ⋊ R∗
+,

where the quasiregular representation of G in L2(R) certainly does have admissible
vectors, since it is the direct sum of two (square-integrable) irreducible representa-
tions. General semidirect products of the form G = Rn

⋊ H, where H is a closed

subgroup of GL(n,R), are studied in [13, 22]. There H is said to be admissible if the
corresponding quasiregular representation has an admissible vector, and an (almost)
characterization of all admissible H is proved.

It is natural then to consider the continuous wavelet transform for the quasiregu-
lar representation of G = N⋊H when Rn is replaced by a locally compact, connected,
unimodular group N . The paper [12] lays out the general theory under the assump-

tion that both of the following conditions hold: (i) for a.e. λ belonging to the dual
N̂, the stabilizer Hλ in H is compact, and (ii) N̂ has a co-null subset consisting of
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finitely many open orbits. There are a number of important situations in which these
assumptions hold (see for example [10]). Assumption (i) is certainly a natural one;

in the case where N = Rn, it is shown relatively easily in [13] that (i) is in fact a
necessary condition for admissibility. The necessity of (i) in the case where N is not
abelian remains an open question however, and seems to be quite difficult even in
simple examples. On the other hand, easy examples and the general results of [13]

show that (ii) is not necessary.

In this paper we consider the class of G = N ⋊ H satisfying the following condi-

tions:

(i) N is any connected, simply connected nilpotent Lie group,

(ii) H is a vector group acting on N in such a way that the Lie algebra ad(h) is
completely reducible and R-split.

The group G is exponential, meaning that the exponential map defined on its Lie

algebra g is a bijection onto G. The orbit method applies both to N and G, and
the relationship between coadjoint orbits in the linear dual n∗ of n, and coadjoint
orbits of G in g∗ is well understood. A great deal is also known about the spectral
decomposition of the quasiregular representation in this context [14, 17]. In this

paper we clarify the relationship between explicit orbital parametrizations in n∗ and
g∗ as well. In Section 1 we recall the method of stratification by which the collective
orbit structure can be described, applying this method both to n∗ and to g∗. With
carefully chosen bases for n and g, this procedure yields subsets Λ

◦ of n∗ and Λ of g∗,

which parametrize a.e. the duals N̂ and Ĝ respectively, and such that if p : g∗ → n∗

is the restriction map, then p(Λ) is explicitly described as a subset of Λ
◦. The action

of H on N̂ is realized a.e. as an action of H on Λ
◦, and the Fourier transform of a

function in L2(N) has domain Λ
◦ by means of Pukanzsky’s explicit version of the

Plancherel formula. Thus the issues surrounding conditions (i) and (ii) above — the
“size” of the stabilizers in H and the collective structure of the H-orbits in N̂ — can
be addressed in concrete terms.

In Section 1 we show that there is a Zariski open subset Λ
1 of Λ

◦ and a single
vector subgroup H0 of H such that H0 = Hλ holds for all λ ∈ Λ

1. Thus, in light
of the preceding constructions, condition (i) is simplified: it just says that H0 = (1).

Nevertheless, it is still an open question as to whether this is necessary for the exis-
tence of τ -admissible vectors. Therefore, for the purposes of this paper we make the
assumption that condition (i) holds, and hence that H0 = (1). With this assump-
tion in place, we describe the action of H on Λ

1 and obtain an explicit cross-section

Σ ⊂ Λ
1 for the H-orbits in Λ

1. It is shown that p |Λ is a bijection onto Σ. A de-
composition of τ is described in terms of an explicit measure on Σ. The observation
is made that if N is not abelian, then the irreducible decomposition of τ has infinite
multiplicity. In fact we construct an explicit, direct-sum decomposition of L2(N) into

τ -invariant subspaces L2(N)β that are pairwise isomorphic and multiplicity-free. In
the case where N = Rn, one has L2(N)β = L2(N).

By virtue of the results [13, Theorem 1.8] and [11, Theorem 0.2], we expect the
existence of admissible vectors to be tied to the non-unimodularity of G, and this is
shown to be precisely the case. Note that in this context, both H and N are unimodu-
lar, so G is non-unimodular if and only if the H-action on N is non-unimodular. First
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we prove a Caldéron condition for the admissibility with respect to the subrepresen-
tations τβ of τ acting in L2(N)β . The construction of τβ-admissible vectors is now

relatively easy when G is non-unimodular, and we use this construction, together
with the relationship between Σ and Λ described above, to prove the following.

Theorem Let G = N ⋊ H where N is a connected, simply connected nilpotent Lie

group and H is a vector group such that the Lie algebra ad(h) is R-split and completely

reducible. Assume furthermore that for a.e. λ ∈ N̂, the stabilizer Hλ is trivial. Let τ be

the quasiregular representation of G in L2(N). Then τ has an admissible vector if and

only if G is not unimodular.

Finally, in the case where admissible vectors exist, we generalize the methods
of [18] to show that the wavelet transform yields an explicit direct-sum decompo-

sition of the regular representation of G into pairwise isomorphic, multiplicity-free
subrepresentations, each of which is isomorphic with τβ .

1 Orbital Parameters in n∗ and in g∗

We begin by setting some notation. Let g be a Lie algebra over R of the form g = n⊕h,
where n is nilpotent, n ⊃ [g, g], and where h is an abelian subalgebra of g with
ad(h) completely reducible and R-split. Let G = N ⋊ H be the connected, simply

connected Lie group with Lie algebra g. Let g∗ (resp., n∗) be the linear dual of g

(resp., n), and let p : g∗ → n∗ be the restriction mapping. For a subalgebra s of g let
s⊥ = {ℓ ∈ g∗ | ℓ|s = 0}.We denote the coadjoint action of G on g∗ multiplicatively,
as well as the coadjoint action of N on n∗ and the “restricted coadjoint action” of G

on n∗. For any subset t of g, if f is a linear functional defined on [g, t], then set

t f
= {Z ∈ g | f [Z,T] = 0 holds for every T ∈ t}.

If t is an ideal in g, then t f is a subalgebra of g. Recall that for any ℓ ∈ g∗, the Lie
algebra g(ℓ) of its stabilizer G(ℓ) in G is gℓ, and similarly for f ∈ n∗, the Lie algebra
of its stabilizer N( f ) in N is n( f ) = n f ∩ n.

Next we summarize some results concerning the classification and parametriza-

tion of coadjoint orbits [6, 7]. Let g be any completely solvable Lie algebra, and
choose any Jordan–Hölder sequence (0) = g0 ⊂ g1 ⊂ · · · ⊂ gn = g, with ordered
basis {Z1,Z2, . . . ,Zn} so that Z j ∈ g j − g j−1. Let δ j be the character of G such that
Ad(s)Z j = δ j(s)Z j mod g j−1, and let dδ j denote its differential.

(1) To each ℓ ∈ g∗ there is associated an index set e(ℓ) ⊂ {1, 2, . . . , n}, defined
by e(ℓ) = {1 ≤ j ≤ n | g j 6⊂ g j−1 + g(ℓ)}. For a subset e of {1, 2, . . . , n}, the set
Ωe = {ℓ ∈ g∗ | e(ℓ) = e} is G-invariant. The Ωe are determined by polynomials as
follows: to each index set e one associates the skew-symmetric matrix

Me(ℓ) =
[
ℓ[Zi ,Z j]

]
i, j∈e

.

Setting Qe(ℓ) = det Me(ℓ), one finds that there is a total ordering ≺ on the set E =

{e | Ωe 6= ∅} such that Ωe = {ℓ ∈ g∗ | Qe ′(ℓ) = 0 for all e ′ ≺ e, and Qe(ℓ) 6= 0}.
We refer to the collection of non-empty Ωe as the coarse stratification of g∗, and to
its elements as coarse layers.
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(2) Let e ∈ E; then |e| is even, and we set d = |e|/2. To each ℓ ∈ Ωe there is
associated a “polarizing sequence” of subalgebras

g = p0(ℓ) ⊃ p1(ℓ) ⊃ · · · ⊃ pd(ℓ) = p(ℓ),

and an index sequence pair i(ℓ) = {i1 < i2 < · · · < id} and j(ℓ) = { j1, j2, . . . , jd},

having values in e(ℓ), defined by the recursive equations:

ik = min{1 ≤ j ≤ n | g j ∩ pk−1(ℓ) 6⊂ pk−1(ℓ)ℓ},

pk(ℓ) =
(

pk−1(ℓ) ∩ gik

)ℓ
∩ pk−1(ℓ), jk = min{1 ≤ j ≤ n | g j ∩ pk−1(ℓ) 6⊂ pk(ℓ)}.

For each k, ik < jk, and e(ℓ) is the disjoint union of the values of i(ℓ) and j(ℓ). Note
that since i(ℓ) must be increasing, it is determined by e(ℓ) and j(ℓ). For any splitting
of e into such a sequence pair (i, j) we set Ωe,j = {ℓ ∈ Ωe | j(ℓ) = j}. These sets
are also algebraic and G-invariant, and we refer to the collection of non-empty Ωe,j

as the fine stratification of g∗. For 1 ≤ k ≤ d, if we set

Me,k(ℓ) =
[
ℓ[Zi ,Z j]

]
i, j∈{i1 , j1,i2, j2,...,ik, jk}

,

let Pfe,k(ℓ) denote the Pfaffian of Me,k(ℓ), and let Pe,j(ℓ) = Pfe,1(ℓ)Pfe,2(ℓ) · · ·Pfe,d(ℓ),

then there is a total ordering ≺≺ on the pairs e, j such that

Ωe,j = {ℓ ∈ g∗ | Pe ′,j ′(ℓ) = 0 for all (e ′, j ′) ≺≺ (e, j) and Pe,j(ℓ) 6= 0}.

The following rational functions are naturally associated with the fine stratification.
Fix ℓ ∈ Ω. Define ρ0(Z, ℓ) = Z; assume that ρk−1(Z, ℓ) is defined and set

ρk(Z, ℓ) = ρk−1(Z, ℓ) −
ℓ[ρk−1(Z, ℓ), ρk−1(Zik

, ℓ)]

ℓ[ρk−1(Z jk
, ℓ), ρk−1(Zik

, ℓ)]
ρk−1(Z jk

, ℓ)

−
ℓ[ρk−1(Z, ℓ), ρk−1(Z jk

, ℓ)]

ℓ[ρk−1(Zik
, ℓ), ρk−1(Z jk

, ℓ)]
ρk−1(Zik

, ℓ).

Set Yk(ℓ) = ρk−1(Zik
, ℓ), and Xk(ℓ) = ρk−1(Z jk

, ℓ), 1 ≤ k ≤ d; then it can be shown
[2, Lemma 1.5] that for each 1 ≤ k ≤ d,

Pfe,k(ℓ) = ℓ[Y1(ℓ),X1(ℓ)]ℓ[Y2(ℓ),X2(ℓ)] · · · ℓ[Yk(ℓ),Xk(ℓ)].

If we set

mk(ℓ) = span{Y1(ℓ),Y2(ℓ), . . . ,Yk(ℓ),X1(ℓ),X2(ℓ), . . . ,Xk(ℓ)},

then for each ℓ ∈ Ω, g = mk(ℓ) ⊕ mk(ℓ)ℓ and ρk(Z, ℓ) is the projection of Z into
mk(ℓ)ℓ parallel to mk(ℓ). It follows that

ℓ[ρk(Z, ℓ), ρk(T, ℓ)] = ℓ[ρk(Z, ℓ),T], Z,T ∈ g, ℓ ∈ g∗.

The functions ρk( · , ℓ) have the additional properties:
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(i) ρk(g j , ℓ) ⊂ g j , 1 ≤ j ≤ n, 0 ≤ k ≤ d,
(ii) ρk(g, ℓ) ∩ gik+1−1 ⊂ g(ℓ), 0 ≤ k ≤ d − 1.

Finally, if α is an automorphism of g such that α(g j) = g j holds for every j, then α∗

leaves each fine layer invariant.
(3) Now fix a layer Ωe,j in the fine stratification. For each ℓ ∈ Ωe,j, define the

“dilation set” ϕ(ℓ) = { j ∈ e | gℓj−1 ∩ ker(dδ j) = gℓj ∩ ker(dδ j )}. The index set ϕ(ℓ)
identifies those directions in the orbit of ℓ where the coadjoint action of G “dilates”

by the character δ−1
j . The indices in ϕ(ℓ) are included in the values of the sequence

i and are defined by ϕ(ℓ) = {ik | dδik
(Xk(ℓ)) 6= 0}. There are examples where

ϕ(ℓ) is not constant on the fine layer. For each subset ϕ of the values of i, the set
Ωe,j,ϕ = {ℓ ∈ Ωe,j | ϕ(ℓ) = ϕ} is an algebraic subset of Ωe,j, and we refer to this

further refinement of the fine stratification as the ultra-fine stratification of g∗. The
ultra-fine stratification also has an ordering for which the minimal layer is a Zariski
open subset of the minimal fine layer.

(4) Now fix an ultra-fine layer Ω = Ωe,j,ϕ, and for ℓ ∈ Ω, j = ik ∈ ϕ, set

q j(ℓ) =
dδ j(Xk(ℓ))

ℓ[Xk(ℓ),Z j]
.

Let V = Ve,ϕ = {ℓ ∈ g∗ | if j ∈ e − ϕ, then ℓ(Z j) = 0}. Then the set

Λ = Λe,j,ϕ =
{
ℓ ∈ V ∩ Ω

∣∣ for every j ∈ ϕ, |q j(ℓ)| = 1
}

is a topological cross-section for the orbits in Ω. If g is nilpotent, then the ultra-fine
stratification coincides with the fine stratification and Λ = V ∩ Ω.

We now return to the case where g = n ⊕ h as described above, and we apply the
stratification procedure first to the nilpotent Lie algebra n. We fix once and for all an

ordered basis {Z1,Z2, . . . ,Zn} of n for which the following hold for all 1 ≤ j ≤ n:

(i) n j = span {Z1,Z2, . . . ,Z j} is an ideal in g,
(ii) for each A ∈ h, Z j is an eigenvector for ad A.

Having chosen the basis Z1,Z2, . . . ,Zn for n, let Ω
◦ be the minimal (and hence

Zariski open) fine layer in n∗, with Λ
◦ its cross-section. Denote the objects referred

to in (1)–(3) above by e◦, i◦, j◦, and ρ◦k . For each 1 ≤ j ≤ n, set e j = Z∗
j ∈ n∗ and set

γ j = −dδ j so that ad∗ A(e j) = γ j(A)e j , A ∈ h. For each h ∈ H, since Ad∗(h)(Ω◦) =

Ω
◦ and the e j are eigenvectors of Ad∗(h), we have that Ad∗(h)(Λ◦) = Λ

◦.
With this in mind, we choose a convenient basis for h. Set c = n − 2d◦, write

{1, . . . , n} − e◦ = {u1 < u2 < · · · < uc}, and set λa = ℓ(Zua
), 1 ≤ a ≤ c. Then

ℓ → λ = (λ1, λ2, . . . , λc) identifies Λ
◦ with a Zariski open subset of Rc. We select a

subset αv, 1 ≤ v ≤ r of γua
, 1 ≤ a ≤ c as follows: a1 = min{1 ≤ a ≤ c | γua

6= 0},
a2 = min{1 ≤ a ≤ c | γua

is not a multiple of γua1
}, a3 = min{1 ≤ a ≤ c |

γua
is not in the span of γua1

, γua2
}, and so on, until for some r > 0, every γ j belongs

to the span of {γuav
| 1 ≤ v ≤ r}. Set αv = γuav

, 1 ≤ v ≤ r. We shall refer to

the set {αv | 1 ≤ v ≤ r} as the minimal spanning set of roots with respect to the
orbital cross-section Λ

◦. We shall use the notation hv =
⋂v

w=1 kerαw, 1 ≤ v ≤ r. We
now make an important observation: let f ∈ Λ

◦; for each j ∈ e◦, f (Z j) = 0, and if
j /∈ e◦, 1 ≤ j ≤ n, then hr ⊂ ker γ j . It follows that hr ⊂ n f holds for every f ∈ Λ

◦.
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Let {A1,A2, . . .Ar} ⊂ h be a basis of h mod hr that is dual to the minimal span-
ning set of roots, so that αv(Aw) = 0 or 1 according as v 6= w or v = w. Choosing

a basis {Ar+1, . . . ,Ap} for hr, we fix from now on the ordered basis {A1,A2, . . . ,Ap}
for h. With the ordered Jordan–Hölder basis {Z1,Z2, . . . ,Zn,Ap,Ap−1, . . . ,A1} for g

in place, we apply the stratification procedure to g∗ as described above (of course, we
could rename Zm = A1,Zm−1 = A2, etc.). Let Ω = Ωe,j be the minimal, Zariski open,

fine layer in g∗. Write the defining index sequence pair as i = {i1 < i2 < · · · < id},
j = { j1, j2, . . . , jd}, so that 2d is the dimension of the coadjoint orbits in Ω. Set

K◦
= {1 ≤ k ≤ d | jk ≤ n} = {k1 < k2 < · · · < kd◦}.

Lemma 1.1 One has p(Ω) ⊂ Ω
◦, and the index sequence pair for Ω

◦ is

i◦ = {ik1
< ik2

< · · · < ikd◦
}, j◦ = { jk1

, jk2
, . . . , jkd◦

}.

Proof By [1, Lemma2.2], p(Ω) is contained in the layer Ω
◦
e◦,j◦ of N-orbits in n∗

whose index data is the above. At the same time we have that p(Ω) is open in n∗, and
since Ω

◦ is dense in n∗, it follows that Ω
◦

= Ω
◦
e◦,j◦ .

The next lemma is proved in [1, Lemma 4.2] and clarifies the relationship between
the functions ρk, 0 ≤ k ≤ d and ρ◦r , 1 ≤ r ≤ d◦.

Lemma 1.2 Fix k = kr ∈ K◦, ℓ ∈ Ω, and set f = p(ℓ). Set

Ykr
(ℓ) = span{Yh(ℓ) | 1 ≤ h ≤ kr − 1, h /∈ K◦}.

We have each of the following.

(i) Ykr
(ℓ) ⊂ n( f ).

(ii) For each kr−1 < h < kr, ρh(Z, ℓ) = ρ◦r−1(Z, f ) mod Ykr
(ℓ) holds for all Z ∈ n.

(iii) For any Z ∈ n, ℓ[Z,Ykr
(ℓ)] = f [Z,Y ◦

r ( f )] and ℓ[Z,Xkr
(ℓ)] = f [Z,X◦

r ( f )].

(iv) ρk(Z, ℓ) = ρ◦r (Z, f ) mod Ykr
(ℓ) holds for all Z ∈ n.

We now focus on the special properties of the stratification procedure on g when
applied to the elements ℓ ∈ p−1(Λ◦).

Lemma 1.3 Let ℓ ∈ Ω such that f = p(ℓ) ∈ Λ
◦.

(i) One has ρk(h, ℓ) ⊂ h, 1 ≤ k ≤ d.

(ii) For each j ∈ e◦, A ∈ h, one has ℓ[ρk(A, ℓ),Z j] = ℓ[A,Z j] = 0, 1 ≤ k ≤ d.

Proof We proceed by induction on k; if k = 0, then ρ0( · , ℓ) is the identity map and
both statements (i) and (ii) are clear. Suppose that k ≥ 1 and that (i) and (ii) hold
for k − 1.

To prove (i) for k, let A ∈ h. The assumption that (i) holds for k − 1 says that
ρk−1(A, ℓ) belongs to h. Suppose first that jk > n. Then the assumption that (i) and
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(ii) hold for k − 1 also gives Xk(ℓ) ∈ h, and since h is abelian, [A,Xk(ℓ)] = 0. Thus

ρk(A, ℓ) = ρk−1(A, ℓ) −
ℓ[A,Yk(ℓ)]

ℓ[Xk(ℓ),Yk(ℓ)]
Xk(ℓ) −

ℓ[A,Xk(ℓ)]

ℓ[Yk(ℓ),Xk(ℓ)]
Yk(ℓ)

= ρk−1(A, ℓ) −
ℓ[A,Yk(ℓ)]

ℓ[Xk(ℓ),Yk(ℓ)]
Xk(ℓ)

belongs to h. On the other hand, if jk ≤ n, then the assumption that (ii) holds for
k− 1 says that ℓ[A,Xk(ℓ)] = ℓ[A,Yk(ℓ)] = 0, hence ρk(A, ℓ) = ρk−1(A, ℓ) belongs to

h in this case. This completes the induction step for part (i).

As for (ii), let j ∈ e◦ and let A ∈ h; we need only show that ℓ[A, ρk(Z j , ℓ)] =

ℓ[A, ρk−1(Z j , ℓ)]. As before, we suppose first that jk > n, so that we have Xk(ℓ) ∈ h

and ℓ[A,Xk(ℓ)] = 0. The assumption that (ii) holds for k − 1 now gives

ℓ[Z j ,Xk(ℓ)] = ℓ[Z j , ρk−1(Z jk
, ℓ)] = 0.

Hence

ℓ[A, ρk(Z j , ℓ)] = ℓ[A, ρk−1(Z j , ℓ)] −
ℓ[Z j ,Yk(ℓ)]ℓ[A,Xk(ℓ)]

ℓ[Xk(ℓ),Yk(ℓ)]

−
ℓ[Z j ,Xk(ℓ)]ℓ[A,Yk(ℓ)]

ℓ[Yk(ℓ),Xk(ℓ)]

= ℓ[A, ρk−1(Z j , ℓ)].

For the case jk ≤ n, the assumption that (ii) holds for k − 1 immediately gives
ℓ[A,Xk(ℓ)] = ℓ[A,Yk(ℓ)] = 0, whence ℓ[A, ρk(Z j , ℓ)] = ℓ[A, ρk−1(Z j , ℓ)]. This
completes the proof.

Lemma 1.4 Let ℓ ∈ Ω such that f = p(ℓ) ∈ Λ
◦. Assume that {1, 2, . . . , d} − K◦

is non-empty, and write {1, 2, . . . , d} − K◦
= {h1 < h2 < · · · }. Choose an index

hv ∈ {1, 2, . . . , d} − K◦.

(i) For 0 ≤ k < hv, one has ρk(Av, ℓ) = Av.

(ii) One has v ≤ r and {ih1
< ih2

< · · · < ihv
} = {ua1

< ua2
< · · · < uav

}.

(iii) One has { jh1
= m, jh2

= m − 1, . . . , jhv
= m − v + 1}.

Proof Suppose that v = 1; we repeat the argument for Lemma 1.3(i) with the addi-
tional fact that the case jk > n cannot occur here, as h1 = min{1 ≤ k ≤ d | jk > n}.

It follows immediately that ρk(A1, ℓ) = A1, 1 ≤ k < h1.

Now set u = ua1
, i = ih1

and j = jh1
; we show that u = i. First we claim that

u ≤ i. To see this, note that by definition of u, ℓ[h, gu−1] = 0. If u > i were true,

then h ⊂ gℓi and gi ⊂ hℓ. The first of these inclusions implies that

ph1−1(ℓ) = ph1−1(ℓ) ∩ n + h.
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Since i /∈ i◦, gi ∩ph1−1(ℓ) ⊂ (ph1−1(ℓ)∩n)ℓ. This together with the second inclusion
above gives

gi ∩ ph1−1(ℓ) ⊂ (ph1−1(ℓ) ∩ n)ℓ ∩ hℓ

⊂ (ph1−1(ℓ) ∩ n + h)ℓ

= (ph1−1(ℓ))ℓ,

contradicting the definition of i = ih1
. Thus the claim is proved. In light of this and

the fact that (e− e◦)∩{1, 2, . . . , n} = i− i◦, it remains to show that u ∈ e. Suppose
then that u /∈ e; then for any ℓ ∈ Ω, we have Zu = T(ℓ) + W (ℓ) where T(ℓ) ∈ g(ℓ)
and W (ℓ) ∈ gu−1. But, again since ℓ[h, gu−1] = 0, it follows that

ℓ(Zu) = γu(A1)ℓ(Zu) = ℓ[A1,Zu] = ℓ[A1,T(ℓ)] + ℓ[A1,W (ℓ)] = 0

holds for all ℓ ∈ Ω, which is impossible since Ω is dense in g∗.

Next we show that j = m. Observe that gm−1 = n+h1 and h1 ⊂ ph1
(ℓ) ⊂ ph1−1(ℓ).

On the other hand, since i ∈ i − i◦, we have j > n and ph1−1(ℓ) ∩ n ⊂ ph1
(ℓ). It

follows that ph1−1(ℓ) ∩ gm−1 = ph1−1(ℓ) ∩ n + h1 ⊂ ph1
(ℓ), which means that j = m.

Now suppose that v > 1 and that the proposition holds for 1 ≤ w ≤ v − 1. To

prove part (i) for v, let 0 ≤ k < hv. We proceed by induction on k, the statement
being clear when k = 0. If k ∈ K◦, then by Lemma 1.3 we have ℓ[Av,Xk(ℓ)] =

ℓ[Av,Yk(ℓ)] = 0, and hence ρk(Av, ℓ) = ρk−1(Av, ℓ). If k /∈ K◦, say k = hw, then
by our induction hypothesis, ik = uaw

, jk = m − w + 1, and Xk(ℓ) = Aw. Hence

ℓ[Av,Xk(ℓ)] = ℓ[Av,Aw] = 0 and

ℓ[Av,Yk(ℓ)] = ℓ[ρk−1(Av, ℓ),Zik
] = ℓ[Av,Zik

] = 0.

So ρk(Av, ℓ) = ρk−1(Av, ℓ) in this case also. Now by induction on k, part (i) is true
for v.

As for part (ii), set u = uav
, i = ihv

, and j = jhv
. Then [hv−1, gu−1] = (0).

Imitating the argument above for the case v = 1, we see that the assumption that

u > i leads to the inclusions hv−1 ⊂ gℓi and gi ⊂ hℓv−1. In the same way as when
v = 1, we claim that phv−1(ℓ) = phv−1(ℓ) ∩ n + hv−1. To see this, note that hv−1 ⊂
phv−1(ℓ), so obviously phv−1(ℓ) ⊃ phv−1(ℓ) ∩ n + hv−1. Counting dimensions gives
equality:

dim(phv−1(ℓ)) = m − hv + 1,

dim(phv−1(ℓ) ∩ n) = n − |{ik ∈ i◦ | k ≤ hv − 1}|

= n − {hv − 1 − (v − 1)}

= n − (hv − v),

so

dim((phv−1(ℓ) ∩ n) + hv−1) = n − (hv − v) + p − v + 1 = m − hv + 1

= dim(phv−1(ℓ)).
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Now we follow verbatim the same line of reasoning as in the case v = 1 to arrive at
a contradiction, thereby concluding that u ≤ i. Since by induction we already have

ihw
= uaw

, 1 ≤ w ≤ v − 1, we get ihw
< u for 1 ≤ w ≤ v − 1. Now, arguing as in the

case v = 1, we find that it remains to show that u ∈ e. But again, the argument for
this is identical to the case v = 1: if u /∈ e, then we find that ℓ(Zu) = ℓ[Av,Zu] = 0
holds for all ℓ ∈ Ω, etc.

Finally we show that j = m − v + 1. As in the case v = 1, gm−v+1 = n + hv−1

and hv ⊂ phv
(ℓ) ⊂ phv−1(ℓ). Also i ∈ i − i◦, so j > n and phv−1(ℓ) ∩ n ⊂ phv

(ℓ).
It follows that phv−1(ℓ) ∩ gm−v = phv−1(ℓ) ∩ n + hv ⊂ phv

(ℓ). Since we already have

jhw
= m−w + 1 for 1 ≤ w ≤ v− 1, j = m− v + 1 follows. This completes the proof.

Lemma 1.5 Let d − d◦ < w ≤ p. Then for each ℓ ∈ Λ
◦ and 0 ≤ k ≤ d, one has

ρk(Aw, ℓ) = Aw.

Proof As usual we proceed by induction on k, the case k = 0 being clear. Suppose
that k ≥ 1 and that the lemma holds for k − 1. If k ∈ K◦, then Lemma 1.3 gives
ℓ[Aw,Xk(ℓ)] = ℓ[Aw,Yk(ℓ)] = 0. If k = hv ∈ {1, 2, . . . , d} − K◦, then Lemma 1.4

gives Xk(ℓ) = Av and Yk(ℓ) = ρk−1(Zuav
, ℓ), so that in this case also ℓ[Aw,Xk(ℓ)] =

ℓ[Aw,Yk(ℓ)] = 0. In either case then, we have ρk(Aw, ℓ) = ρk−1(Aw, ℓ).

Proposition 1.6 Let g be a completely solvable Lie algebra of the form g = n ⊕ h,

where n is a nilpotent ideal and h is an abelian subalgebra such that ad(h) is completely

reducible. Let {Z1,Z2, . . . ,Zn,Ap,Ap−1, . . . ,A2,A1} be an ordered Jordan–Hölder ba-

sis of g with the following properties.

(a) {Z1,Z2, . . . ,Zn} is a basis of n with respect to which ad(h) is diagonalized.

(b) {A1,A2, . . . ,Ar} is dual to the minimal spanning set of roots and {Ar+1, . . . ,Ap}
is a basis for hr where hr is defined as above.

Let Ω = Ωe,j be the minimal fine layer in g∗ and Ω
◦

= Ωe◦,j◦ the minimal fine layer

in n∗, with respect to the bases chosen above. Write K◦ and {1, 2, . . . , d} − K◦
=

{h1 < h2 < · · · < hd−d◦} as above. Let Pfe◦,w, 1 ≤ w ≤ d◦ be the Pfaffian polynomials

that define Ω
◦. Then one has the following.

(i) d − d◦
= r, and the increasing sequence {ih1

< ih2
< · · · < ihr

} is precisely the

sequence {ua1
< ua2

< · · · < uar
} corresponding to the minimal spanning set of

roots.

(ii) jhv
= m − v + 1, 1 ≤ v ≤ r.

(iii) Let ℓ ∈ Ω ∩ p−1(Λ◦) with f = p(ℓ). For each 1 ≤ k ≤ d, let

v0 = max{1 ≤ v ≤ r | hv ≤ k},

w0 = max{1 ≤ w ≤ d◦ | kw ≤ k}.

Then

Pfe,k(ℓ) =

v0∏

v=1

ℓ(Zihv
) Pfe◦,w0

( f ).
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(iv) For every ℓ ∈ Ω, the dilation set ϕ(ℓ) is precisely the set {ik | k /∈ K◦} = {ihv
|

1 ≤ v ≤ r} and hence the minimal fine layer in g∗ coincides with the minimal

ultra-fine layer.

Proof It follows from Lemma 1.4 that the sequence {ih1
< ih2

< · · · < ihd−do}
coincides with the first d − d◦ terms of the sequence {ua1

< ua2
< · · · < uar

}. Now

if d−d◦ < w ≤ r, then Lemma 1.5 implies that Aw ∈ g(ℓ) holds for all ℓ ∈ p−1(Λ◦).
But this means that f (Zuaw

) = f [Aw,Zuaw
] = 0 holds for all f ∈ Λ

◦. Since Λ
◦ is a

dense open subset of V = span{eu1
, eu2

, . . . , euc
}, this is impossible. Thus part (i) is

proved. Part (ii) now follows from Lemma 1.4.

For part (iii) we compute using Lemma 1.2, Lemma 1.4, and the properties of ρk:

ℓ[Y1(ℓ),X1(ℓ)]ℓ[Y2(ℓ),X2(ℓ)] · · · ℓ[Yk(ℓ),Xk(ℓ)]

= ℓ[Zi1
,Z j1

]ℓ[Zi2
, ρ1(Z j2

, ℓ)] · · · ℓ[Zik
, ρk−1(Z jk

, ℓ)]

=

v0∏

v=1

ℓ[Zihv
, ρhv−1(Z jhv

, ℓ)]

w0∏

w=1

ℓ[Zikw
, ρkw−1(Z jkw

, ℓ)]

=

v0∏

v=1

ℓ[Zihv
,Av]

w0∏

w=1

f [Zikw
, ρ◦w−1(Z jkw

, f )]

=

( v0∏

v=1

ℓ(Zihv
)
)

Pfe◦,w0
( f ).

Finally for part (iv), Lemma 1.4, part (i) shows that for k = hv /∈ K◦, we have
Xk(ℓ) = Av, hence ϕ(ℓ) = {ik ∈ i | dδik

(Xk(ℓ)) 6= 0} = {ik ∈ i | k /∈ K◦} holds for

each ℓ ∈ Ω.

Corollary 1.7 Let ℓ ∈ Ω ∩ p−1(Λ◦) with f = p(ℓ). Then one has

dim(h/h ∩ g(ℓ)) =
1

2

(
dim(g/g(ℓ)) − dim(n/n( f ))

)
.

Proof This amounts to showing that hr =
⋂r

v=1 kerαv = h ∩ g(ℓ) holds for each
ℓ ∈ Ω∩ p−1(Λ◦). It is already clear that for such ℓ, hr ⊂ h∩ g(ℓ). On the other hand,
if A ∈ h ∩ g(ℓ), then for each 1 ≤ v ≤ r, αv(A)ℓ(Zihv

) = −ℓ[A,Zihv
] = 0. From

Proposition 1.6(iii), we have ℓ(Zihv
) 6= 0, hence A ∈ kerαv, and the equation above

is proved. Now

dim h/h ∩ g(ℓ)) = r = d − d◦
=

1

2

(
dim(g/g(ℓ)) − dim(n/n( f ))

)
.

Corollary 1.8 With the hypothesis of Proposition 1.6, we have

p(Ω) ∩ Λ
◦

= { f ∈ Λ
◦ | f (Zihv

) 6= 0, holds for all 1 ≤ v ≤ r}

and

p(Λ) = { f ∈ Λ
◦ | | f (Zihv

)| = 1, holds for all 1 ≤ v ≤ r}.
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Proof Recall that Ω = {ℓ ∈ g∗ | Pfe,j(ℓ) 6= 0}, and that

Ω
◦

= { f ∈ n∗ | Pfe◦,j◦( f ) 6= 0}.

By Proposition 1.6 part (iii), if f = p(ℓ) ∈ Λ
◦, then Pfe,j(ℓ) = R( f )Pfe◦,j◦( f ) where

R( f ) is a product of the factors f (Zihv
), 1 ≤ v ≤ r. These observations mean that

f ∈ p(Ω)∩Λ
◦ if and only if f ∈ Λ

◦ and R( f ) 6= 0. The first equation above follows.
As for the second, set

V = {ℓ ∈ g∗ | ℓ(Z j) = 0 for all j ∈ e − ϕ},

V ◦
= { f ∈ n∗ | f (Z j) = 0 for all j ∈ e◦}.

Observe that, by virtue of preceding results, we have p(V ) = V ◦ and p(Ω) ∩ V ◦
=

p(Ω) ∩ Λ
◦. Now from Proposition 1.6(iv) and the definition of the cross-section Λ,

we have
Λ = {ℓ ∈ V ∩ Ω | |qihv

(ℓ)| = 1, holds for all 1 ≤ v ≤ r}.

Let f ∈ p(Λ), f = p(ℓ) for some ℓ ∈ Λ. Then f ∈ p(V ) = V ◦, and f ∈ p(Ω) ⊂
Ω

◦, so f ∈ Λ
◦. But now an examination of the definition of q j together with the

observation that Xhv
(ℓ) = Av gives qihv

(ℓ)−1
= ℓ(Zihv

). Hence f belongs to the right-

hand side of the above equation.
On the other hand, let f ∈ Λ

◦ with | f (Zihv
)| = 1, 1 ≤ v ≤ r. Let ℓ ∈ p−1( f ) ∩V .

By definition of Ω, we have ℓ ∈ Ω ∩ V , and |ℓ(Zihv
)| = 1, 1 ≤ v ≤ r. Hence ℓ ∈ Λ

and f ∈ p(Λ).

2 The Wavelet Transform

In this section, we apply the algebraic constructions of Section 1 in order to address

the question of admissibility. Denote by Irr(N) the Borel space of irreducible uni-
tary representations of N , and by N̂ the Borel space of unitary equivalence classes
in Irr(N). Let κ◦ : n∗/N → N̂ be the canonical Kirillov correspondence. With the
constructions of Section 1 in place, we associate to each linear functional f ∈ n∗

a specific irreducible representation π f whose equivalence class is κ◦(N f ), as fol-
lows. First of all, the basis {Z1,Z2, . . . ,Zn} provides us with global coordinates on
N via the exponential mapping, and Lebesgue measure becomes Haar measure on
N : d(exp X) = dX,X ∈ n. We denote this measure by dx. Next, we partition n∗

by the fine stratification, and let Ω
◦

= Ωe◦,j◦ be the fine layer containing f . Then

p( f ) =
∑

j n
f
j ∩n j = pd( f ) is a subalgebra of n with the property that p( f ) f

= p( f ).

Rearranging the sequence j◦ in increasing order { j1 < j2 < · · · < jd}, we have that

(s1, s2, . . . , sd) 7→ exp(sdZ jd
) exp(sd−1Z jd−1

) · · · exp(s1Z j1
)P( f )

is a global chart for N/P( f ), and Lebesgue measure on Rd is thereby carried to an in-
variant measure on N/P( f ). Let χ f be the unitary character on P( f ) = exp p( f )

whose differential is i f . Then the unitary representation π f , induced from P( f )

to N by χ f , is irreducible. Denoting by [π f ] its equivalence class in N̂, one has
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κ◦(N f ) = [π f ]. We denote the Hilbert space in which π f acts by H f . Note that
the map J f : H f → L2(Rd) defined by

J fψ(s) = ψ(exp(s1Z j1
) exp(s2Z j2

) · · · exp(sdZ jd
))

is an isometric isomorphism.
An algorithm for determination of the Plancherel measure class and the Plancherel

formula for nilpotent groups in terms of the orbit method is given in [20]. A sim-

ilar result for the class of exponential solvable groups is proved in [4], and it is this
version, specialized to the nilpotent case, that we use here.

The procedure is implemented as follows. Recall that we have a cross-section Λ
◦

for the coadjoint orbits in Ω
◦ and that Λ

◦
= Ω

◦∩V ◦ where V ◦
= { f ∈ n∗ | f (Z j) =

0 holds for all j ∈ e◦}. Let Ω be the minimal fine layer in g∗, and set Λ
1

= Λ
◦∩p(Ω).

Recall that we have written {1, 2, . . . , n} − e◦ = {u1 < u2 < · · · < uc}, where
c = n − 2d. Via the identification f → ( f (Zu1

), f (Zu2
), . . . , f (Zuc

)), we regard
Λ

1 not only as a subset of n∗, but also as a (dense open) subset of Rc, and we shall

henceforth use the notation λ = (λ1, λ2, . . . , λc) for elements of Λ
1. Accordingly, we

shall write πλ for the irreducible representation corresponding to λ as constructed
above; note that each of the Hilbert spaces Hλ is isomorphic with L2(Rd) via the map
Jλ. Also, with Pf = Pfe◦,d◦ the Pfaffian polynomial on n∗ as defined in Section 1, we

shall write Pf(λ), λ ∈ Λ
1. At the same time we let dλ denote Lebesgue measure on

Λ
1. We describe the Fourier transform and Plancherel formula in these terms. For

each λ ∈ Λ
1 and ψ ∈ L1(N)∩L2(N), set F(ψ)(λ) =

∫
N
ψ(x)πλ(x) dx. Then F(ψ)(λ)

belongs to the space Hλ ⊗ Hλ of Hilbert–Schmidt operators on Hλ. Now let µ be

the Borel measure on Λ
1 defined by

dµ(λ) =
1

(2π)n+d
|Pf(λ)| dλ.

Then {Hλ ⊗ Hλ}λ∈Λ1 is a measurable field of Hilbert spaces and we set

H =

∫ ⊕

Λ1

Hλ ⊗ Hλ dµ(λ).

Now λ → πλ is a Borel function from Λ
1 to Irr(N), F(ψ) belongs to H, and the

map F : L1(N) ∩ L2(N) → H as defined above extends to all of L2(N) as a unitary
isomorphism.

With the Fourier transform on N in place, we turn to the quasiregular represen-
tation of G in L2(N). From now on we shall use the letter f to refer to elements of

L2(N). Let δ : H → R∗
+ be the character δ(h) = δ1(h)δ2(h) · · · δn(h), and let G have

the Haar measure dνG(xh) = dxδ(h)−1dνH(h). Define the unitary representation
τ : G → U(L2(N)) as follows. For f ∈ L2(N), set

(τ (h) f )(x0) = f (h−1x0h)δ(h)−1/2, h ∈ H

(τ (x) f )(x0) = f (x−1x0), x ∈ N.
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Recall that τ is isomorphic with the representation of G induced from H by the trivial
character. Fix ψ ∈ L2(N) and for each f ∈ L2(N), denote by m f ,ψ the bounded

continuous function on G defined by m f ,ψ(s) = 〈 f , τ (s)ψ〉L2(N), s ∈ G.
Recall that ψ is admissible for τ if m f ,ψ is square-integrable for each f ∈ L2(N)

and ‖m f ,ψ‖L2(G) = ‖ f ‖L2(N). Following [12], we search for admissible vectors by

means of the Fourier transform on L2(N). For f ∈ L2(N) set f̂ (λ) = F( f )(λ), λ ∈
Λ

1 and let τ̂ (s) = F ◦ τ (s) ◦ F−1, s ∈ G. The representation τ̂ is described in terms of
the usual action of H on N̂ . Specifically, for π ∈ Irr(N) and h ∈ H, set (h · π)(x) =

π(h−1xh), x ∈ N . For each h ∈ H, the representation h · π f is equivalent to πh f via
the intertwining operator C(h, f ) : H f → Hh f defined by

(C(h, f )φ)(x) = φ(h−1xh)δj◦(h)−1/2, φ ∈ H f ,

where δj◦(h) =
∏

j∈j◦ δ j(h). Passing to the quotient N̂ and applying the orbit
method, one sees that the stabilizer H[π f ] of [π f ] in H coincides with the analytic

subgroup {h ∈ H | h f ∈ N f } = exp(h ∩ (n + n f )). For λ ∈ Λ
1, since the action of

H is already diagonalized, we have hλ ∈ Λ
1, and since Λ

1 is an orbital cross-section,

we have that H[πλ] = Hλ = exp(h ∩ gλ) = exp(hr) = Hr holds for each λ ∈ Λ
1. For

h ∈ H and λ ∈ Λ
1, let D(h, λ) : B(Hλ) → B(Hhλ) be defined by

D(h, λ)(T) = C(h, λ) ◦ T ◦C(h, λ)−1.

Adapting the result [12, Proposition 2.1] to the present context, we have the fol-
lowing description of τ̂ in terms of the preceding orbital parameters for the Fourier
transform.

Proposition 2.1 Let f ∈ L2(N), h ∈ H, x ∈ N, λ ∈ Λ
1. One has

(i) (τ̂ (h) f̂ )(λ) = D(h, h−1λ)( f̂ (h−1λ))δ(h)1/2;

(ii) (τ̂ (x) f̂ )(λ) = πλ(x) ◦ f̂ (λ).

We observe that [12, Proposition 2.2] also restates in the same way.

Proposition 2.2 For each h ∈ H, dµ(hλ) = δ(h)−1dµ(λ).

An easy calculation shows that for each x ∈ N and h ∈ H, one has

m f ,ψ(xh) = ( f ∗ (τ (h)ψ)∗)(x)

where ψ∗(x) = ψ(x−1). We then apply the Fourier transform:

∫

G

|m f ,ψ|
2 dνG

=

∫

H

∫

N

|( f ∗ (τ (h)ψ)∗)(x)|2 dx δ(h)−1dνH(h)

=

∫

H

∫

Λ1

‖ f̂ (λ) ◦ (τ̂ (h)ψ̂)(λ)∗‖2
HS dµ(λ)δ(h)−1dνH(h)

=

∫

Λ1

(∫

H

‖ f̂ (λ) ◦C(h, h−1λ)ψ̂(h−1λ)∗C(h, h−1λ)−1‖2
HS dνH(h)

)
dµ(λ).

(2.1)
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If N is abelian, so that the Fourier transform is scalar-valued, then

∥∥ f̂ (λ) ◦C(h, h−1λ)ψ̂(h−1λ)∗C(h, h−1λ)−1
∥∥ 2

HS
= | f̂ (λ)|2 |ψ̂(h−1λ)|2

and it becomes apparent from (2.1) that a necessary condition for τ -admissibility is

that Hλ be compact for µ-a.e. λ. Note that in the context of this paper that means
simply that hr = (0). Now for the class of groups considered here, it is reasonable
to expect that the condition hr = (0) is necessary for the existence of τ -admissible
vectors even when N is not abelian, but that question remains open. Therefore, for

the remainder of this paper, we shall just make the assumption that hr = (0). We
observe that, if N is not abelian, then this means that the irreducible decomposition
of τ will have infinite multiplicity: we have r = dim(H) = dim Hλ holds for all
λ ∈ Λ

1 and (since hr = (0)), it follows that the generic dimension of H-orbits in h⊥

is r. Now Corollary 1.7 says that r = d − d◦, where 2d is the generic dimension of G

orbits (that meet h⊥) and 2d◦ is the generic dimension of N orbits in n∗. Combining
these observations with the results of [15, 16], we have that τ has finite multiplicity if
and only if r = d, if and only if N is abelian.

Recall also that in the case where N is abelian, (2.1) is the starting point for proving
the Caldéron condition for admissibility (for quite general groups H): ψ is admissi-
ble for τ if and only if

∫
H
|ψ(h−1λ)|2 dνH(h) = 1 holds for µ-a.e. λ [22, Theorem

2.1]. We shall see below that this result can be generalized to the case where N is not

abelian: we shall write τ as a direct sum of multiplicity-free subrepresentations τβ so
that a Caldéron condition for τβ-admissibility holds.

We begin by describing the action of H on Λ
1 explicitly. Recall that we have chosen

the ordered basis {Av | 1 ≤ v ≤ r} for h in conjuction with a sequence {1 ≤ ua1
<

ua2
< · · · < uar

≤ n} of indices corresponding to a minimal spanning set of roots,
as defined in Section 1. In particular for each 1 ≤ v,w ≤ r, γuav

(Aw) = δvw, and if
a < aw, γua

(Aw) = 0. Write

Q(t, λ) = exp(t1A1) exp(t2A2) · · · exp(trAr)λ, t ∈ Rr, λ ∈ Λ
1.

Then for each λ ∈ Λ
1, t → Q(t, λ) is a diffeomorphism of Rr with Hλ. The following

notation will be helpful in the descriptions that follow: for each 1 ≤ a ≤ c, if a < a1,

set ha
= 1 ∈ H, and for a ≥ a1, let ha(t) = exp(t1A1) exp(t2A2) · · · exp(tw(a)Aw(a))

where w(a) = max{1 ≤ w ≤ r | aw ≤ a}.
For each 1 ≤ a ≤ c we see that Qa(t, λ) = δ(ha(t))−1λa. More explicitly, if we set

γa,v = γua
(Av), 1 ≤ a ≤ c, 1 ≤ v ≤ r,

then for a = av we have δ(ha(t))−1
= etv , while if a 6= av, 1 ≤ v ≤ r, then

δ(ha(t))−1
= eγa,1t1+γa,2t2+···+γa,w(a)tw(a) .

Hence

Qa(t, λ) =

{
etvλa if a = av,

eγa,1t1+γa,2t2+···+γa,w(a)tw(a)λa if a 6= av.
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For 1 ≤ v ≤ r, set
zv = etv |λav

|, ǫv = sign(λav
).

Making these substitutions into the function Q, we obtain a function P(z, λ) each
coordinate of which has the form

Pa(z, λ) =






zvǫv if a = av,

( z1

|λa1
|

) γa,1
( z2

|λa2
|

) γa,2

· · ·
( zw(a)

|λaw(a)
|

) γa,w(a)

λa if a 6= av.

The function P is easily seen to have the following properties.

(i) For each λ ∈ Λ
1, P( · , λ) maps (R∗

+)r diffeomorphically onto Hλ.

(ii) For each fixed (z1, z2, . . . , zr) ∈ (R∗
+)r , P(z1, z2, . . . , zr, · ) maps Λ

1 into Λ
1 and

is H-invariant.

We set Σ = {P(1, 1, . . . , 1, λ) | λ ∈ Λ
1}; it is easily seen that Σ is a submanifold

of Λ
1 having dimension c − r, and that Σ meets the H-orbit of λ at the single point

P(1, 1, . . . , 1, λ). In fact, we have the following.

Lemma 2.3 Let Λ be the cross-section in Ω for the G-orbits in Ω. If hr = (0), then

p |Λ is a bijection of Λ onto Σ.

Proof By part (b) of Proposition 1.6 and our assumption that hr = (0), we have
Λ ⊂ h⊥ = {ℓ ∈ g∗ | ℓ(h) = {0}}, and hence p |

Λ
is a bijection. By Corollary 1.8, we

have p(Λ) = {λ ∈ Λ
1 | |λav

| = 1, 1 ≤ v ≤ r}. An examination of the map P(z, λ)
above shows that Σ = P(1, λ) ⊂ p(Λ) and that for each ℓ ∈ Λ with λ = p(ℓ),
λ = P(1, λ) ∈ Σ. This completes the proof.

For each ǫ ∈ {−1, 1}r, set Λ
1
ǫ = {λ ∈ Λ

1 | sign (λav
) = ǫv, 1 ≤ v ≤ r} and Σǫ =

Σ∩Λ
1
ǫ . In the event that r = c, then for each ǫ, Σǫ is the single point (ǫ1, ǫ2, . . . , ǫc). In

this case we let dσ be the counting measure on Σ, multiplied by 1/(2π)n+d. Otherwise

write {1, 2, . . . , c} − {av | 1 ≤ v ≤ r} = {b1 < b2 < · · · < bq}; set σw = λbw
, 1 ≤

w ≤ q. Then each set Σǫ is identified with an open subset of Rq, and we thereby
transfer Lebesgue measure to each Σǫ. The resulting measure on Σ, including the
multiple 1/(2π)n+d, will be denoted by dσ = dσ1dσ2 · · · dσq. At the same time we

identify H with (R∗
+)r , so that

exp(t1A1) exp(t2A2) · · · exp(trAr) = (et1 , et2 , . . . , etr ) = (z1, z2, . . . , zr).

The natural Haar measure on H is then

dνH(z1, z2, . . . , zr) =
dz1dz2 · · · dzr

z1z2 · · · zr

.

By virtue of this identification and by restricting λ to Σ, the function P(z, λ) yields a

map from H × Σ to Λ
1. We claim that P(z, σ) = zσ. Observe that for a 6= av, 1 ≤

v ≤ r, we have

δua
(z)−1

= z
γa,1

1 z
γa,2

2 · · · z
γa,w(a)

w(a) , z = (z1, z2, . . . zr) ∈ H.
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Since |λav
| = 1 for λ ∈ Σ, P(z, σ) is defined coordinate-wise on H × Σǫ by

Pa(z, σ) =

{
zvǫv if a = av,

δubw
(z)−1σw if a = bw.

The claim follows. It is clear that P is a diffeomorphism and that for any non-negative
measurable function φ on Λ

1,

∫

Λ1

φ(λ) dλ =

∫

Σ

∫

H

φ(zσ)δub1
(z)−1δub2

(z)−1 · · · δubq
(z)−1 dzdσ.

From now on we identify Λ
1 with H × Σ as above. Now set

δe◦(z) =

∏

j∈e◦

δ j(z), z ∈ H.

Lemma 2.4 For each λ = zσ ∈ Λ
1, one has Pf(zσ) = δe◦(z)−1Pf(σ). Moreover, the

formula ∫

Λ1

φ(λ)µ(λ) =

∫

Σ

∫

H

φ(zσ)δ(z)−1 dνH(z)|Pf(σ)|dσ,

holds for any non-negative measurable function φ on Λ
1.

Proof Fix λ = zσ ∈ Λ
1, let ℓσ ∈ g∗ such that p(ℓσ) = σ and set ℓ = zℓσ ∈ g∗.

Let δe =
∏

j∈e δ j , where e is the jump set corresponding to the minimal layer in

g∗. By [2, Lemma 1.6], Pfe,j(ℓ) = δe(z)−1Pfe,j(ℓσ). But part (a) of Proposition 1.6,
together with our choice of basis of h dual to the minimal spanning set of roots,
insures that

δe(z)−1
= z1z2 · · · zrδe◦(z)−1.

On the other hand, observing that p(ℓ) = zσ, part (c) of Proposition 1.6 gives

Pfe,j(ℓ) =

r∏

v=1

ℓ(Zuar
)Pfe◦,j◦(zσ) = z1z2 · · · zrPfe◦,j◦(zσ).

Similarly Pfe,j(ℓσ) = Pfe◦,j◦(σ), and hence

z1z2 · · · zrPfe◦,j◦(zσ) = Pfe,j(ℓ) = z1z2 · · · zrδe◦(z)−1Pfe,j(ℓσ)

= z1z2 · · · zrδe◦(z)−1Pfe◦,j◦(σ).

The first part of the lemma is proved.

As for the second part, write δub
(z) =

∏q
w=1 δubw

(z); again by virtue of our choice
of basis for h, we have

δ(z)−1
= z1z2 · · · zr δe◦(z)−1δub

(z)−1.
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Hence

dµ(λ) = |Pf(zσ)|δub
(z)−1dzdσ = z1z2 · · · zrδe◦(z)−1δub

(z)−1dνH(z)|Pf(σ)|dσ

= δ(z)−1dνH(z)|Pf(σ)| dσ.

Fix an orthonormal basis {eβ | β ∈ B} for L2(Rd), (where B is some index set) and

for each λ = zσ ∈ Hσ, set e
β
λ = C(z, σ) J−1

σ eβ , so that {e
β
λ}β is an orthonormal basis

of Hλ. For each λ ∈ Λ
1 and each basis index β, we have the subspace Hλ ⊗ e

β
λ =

{T ∈ Hλ ⊗ Hλ | Image (T∗) ⊂ Ce
β
λ}. Recall that Hλ ⊗ e

β
λ is the set of maps of

the form v 7→ 〈v, eβλ〉w where w ∈ Hλ, and the obvious map Hλ → Hλ ⊗ e
β
λ is an

isometric isomorphism. For each basis index β, set Hβ
=

∫ ⊕

Λ1 Hλ⊗ eβλ dµ(λ), so that

H = ⊕βHβ . Setting K =
∫ ⊕

Λ1 Hλ dµ(λ), we have an obvious isometric isomorphism

of K onto each Hβ : w = {w(λ)}λ∈Λ1 ∈ K corresponds to the element

{w(λ) ⊗ eβλ}λ∈Λ1 ∈ Hβ .

For any element g = {g(λ)}λ∈Λ1 = {w(λ) ⊗ e
β
λ}λ∈Λ1 of Hβ , one calculates that

(τ̂ (x)g)(λ) = πλ(x)w(λ) ⊗ eβλ for x ∈ N and

(τ̂ (z)g)(λ) = C(z, z−1λ)w(z−1λ) ⊗ e
β
λ δ(z)1/2, z ∈ H.

Thus the subspace Hβ of H is τ̂ -invariant, and its inverse Fourier image L2(N)β =

F−1(Hβ) is τ -invariant. Accordingly, we write τ̂ =
⊕

β τ̂
β and τ =

⊕
β τ

β . Now for
each basis index β, the preceding decomposition of the Plancherel measure µ gives a

direct integral decomposition of Hβ :

(2.2) Hβ ∼=

∫ ⊕

Σ

Hβ
σ|Pf(σ)| dσ,

where Hβ
σ =

∫ ⊕

H
Hzσ ⊗ eβzσδ(z)−1 dνH(z).

For the moment, fix σ ∈ Σ and a basis index β. Define τ̂βσ : G → U(Hβ
σ) by the

same formula as in Proposition 2.1 above: for g = {g(z)}z∈H ∈ Hβ
σ and z0 ∈ H

define

(i) (τ̂βσ (z)g(z0) = D(z, z−1z0σ)(g(z−1z0))δ(z)1/2, z ∈ H;

(ii) (τ̂βσ (x)g)(z0) = πz0σ(x) ◦ g(z0), x ∈ N .

Proposition 2.5 For each σ ∈ Σ and for each β, τ̂βσ is unitarily isomorphic with

π̃σ = indG
N (πσ) (and hence is irreducible.)

Proof Fix σ ∈ Σ and let L be the Hilbert space of π̃σ. For w ∈ L, λ = zσ ∈ Λ
1, set

(Tw)(z) = C(z, σ)(w(z)) ⊗ eβzσδ(z)1/2. Then
∫

H

‖(Tw)(z)‖2
HSδ(z)−1 dνH(z) =

∫

H

‖C(z, σ)w(z) ⊗ eβzσ‖
2
HS dνH(z)

=

∫

H

‖w(z)‖2
Hσ

dνH(z) = ‖w‖2
L.
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Hence T is a linear isometry from L into Hβ
σ . It is easily seen that T is invertible. We

compute that

τ̂βσ (z)(Tw)(z0) = τ̂βσ (z)
(

C(z0, σ)w(z0) ⊗ eβz0σδ(z0)1/2
)

= C(z, z−1z0σ)C(z−1z0, σ)w(z−1z0) ⊗ eβz0σ
δ(z−1z0)1/2δ(z)1/2

= C(z0, σ)w(z−1z0) ⊗ eβz0σδ(z0)1/2

= T(π̃σ(z)w)(z0).

It follows that the natural isomorphism (2.2) intertwines the representation τ̂β

with the direct integral of the representations τ̂βσ . To sum up the preceding, we have
shown that the Fourier transform, together with the decomposition of the Plancherel
measure µ, implements a natural decomposition of τ into unitary irreducibles:

τ ∼=
⊕

β

∫ ⊕

Σ

τ̂βσ |Pf(σ)|dσ.

Now fix an index β, and for f ∈ L2(N)β , write f̂ (λ) = w f (λ)⊗e
β
λ , where w f ∈ K.

Note that for each λ ∈ Λ
1, ‖ f̂ (λ)‖HS = ‖w f (λ)‖Hλ

. In the sequel we shall often
drop the cumbersome subscripts on norms indicating the Hilbert space, relying on
context and other notation to affect the appropriate distinctions.

Fix ψ ∈ L2(N)β and set u = wψ so that ψ̂(λ) = u(λ)⊗ e
β
λ . One calculates that for

each λ ∈ Λ
1 and z ∈ H,

‖ f̂ (λ) ◦ (τ̂ (z)ψ̂)(λ)∗‖2
= ‖w f (λ)‖2‖u(z−1λ)‖2 δ(z)

= ‖ f̂ (λ)‖2‖ψ̂(z−1λ)‖2δ(z).

(2.3)

Define ∆ψ : Λ
1 → [0,+∞) by

∆ψ(λ) =

∫

H

‖ψ̂(z−1λ)‖2 dνH(z) =

∫

H

‖ψ̂(zσ)‖2 dνH(z).

Note that ∆ψ is constant on H-orbits in Λ
1. Combining the equations (2.1) and

(2.3), we get

∫

G

|m f ,ψ|
2 dνG =

∫

H

∫

Λ1

‖w f (λ)‖2‖u(z−1λ)‖2 dµ(λ) dνH(z)

=

∫

H

∫

Λ1

‖ f̂ (λ)‖2‖ψ̂(z−1λ)‖2 dµ(λ)dνH(z)

=

∫

Λ1

‖ f̂ (λ)‖2
(∫

H

‖ψ̂(z−1λ)‖2 dνH(z)
)

dµ(λ)

=

∫

Λ1

‖ f̂ (λ)‖2
∆ψ(λ) dµ(λ).
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So it is clear that if ∆ψ(λ) = 1 holdsµ-a.e., then m f ,ψ belongs to L2(G) and ‖m f ,ψ‖ =

‖ f ‖, that is, ψ is admissible for τβ . An easy adaptation of the argument in [22,

Theorem 2.1] shows that the converse is true.

Proposition 2.6 Let ψ ∈ L2(N)β . Then ψ is admissible for τβ if and only if

∆ψ(λ) = 1 holds for µ-a.e. λ ∈ Λ
1.

Proof The proof is already halfway done; to complete it, suppose that ‖m f ,ψ‖ =

‖ f ‖ holds for all f ∈ L2(N)β . Fix λ0 ∈ Λ
1. For r > 0, let Br(λ0) be the ball

about λ0 of radius r, let χBr(λ0) be the characteristic function of the set Br(λ0), and

let f = fλo,r ∈ L2(N)β be defined by f̂ (λ) = µ(Br(λ0))−1/2χBr(λ0)e
β
λ ⊗ e

β
λ . Then

‖ f ‖2
= 1, so from our assumption and the above calculation, we have

1 =

∫

Λ1

‖ f̂ (λ)‖2
∆ψ(λ) dµ(λ) =

1

µ(Br(λ0))

∫

Br(λ0)

∆ψ(λ) dµ(λ).

The result now follows from standard differentiability results.

Remark 2.7 Let ψ ∈ L2(N)β be admissible for τβ and let f ∈ L2(N)β . Write

ψ̂(λ) = u(λ) ⊗ e
β
λ and f̂ (λ) = w f (λ) ⊗ e

β
λ as above. Then

τ̂ (xz)ψ̂(λ) = πλ(x) ◦C(z, z−1λ)u(z−1λ) ⊗ eβλ δ(z)1/2

and

Wψ( f )(xz) = 〈 f̂ , τ̂(xz)ψ̂〉

=

∫

Λ1

〈 f̂ (λ), τ̂ (xz)ψ̂(λ)〉 dµ(λ)

=

∫

Λ1

〈w f (λ), πλ(x) ◦C(z, z−1λ)u(z−1λ)〉 dµ(λ) δ(z)1/2.

Hence if Lβ : K → Hβ is the canonical isomorphism and ψ̂ ′ = Lβ
′

◦ (Lβ)−1ψ̂, then
Wψ ′ ◦ Lβ

′

= Wψ ◦ Lβ .

We now show how to construct admissible vectors for τβ : suppose that G is not
unimodular and that η is a unit vector in L2(H, νH) which also happens to belong to

L2(H, δ−1νH). Since δ 6= 1, we have δ(0, 0, . . . , zv, . . . , 0) 6= 1 for some v, 1 ≤ v ≤ r.
Write δ(0, 0, . . . , zv, . . . , 0) = z

p
v , p 6= 0. Assume that q = dim(Σ) > 0, and for each

ǫ ∈ {−1, 1}r, let sǫ be the identification map from Σǫ onto an open subset of Rq.
We choose a measurable function ũ : Rq → (0,∞) such that for any polynomial

function P(t) on Rq, we have
∫

Rq ũ(t)p|P(t)| dt < ∞. Define u : Σ → (0,∞) by
u(σ) = ũ(sǫ(σ)), σ ∈ Σǫ. Then we have

∫
Σ

u(σ)p|Pf(σ)| dσ < ∞. Now for each

pair of basis indices α and β, define ψ = ψα,βη,u ∈ L2(N)β by

(2.4) ψ̂(zσ) = η(z1, z2, . . . , zv−1, zvu(σ), zv+1, . . . , zr)eαzσ ⊗ eβzσ.
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With the identification λ = zσ, it will be helpful to abuse notation slightly by writing

η(λ) = η(zσ) = η(z1, z2, . . . , zv−1, zvu(σ), zv+1, . . . , zr),

so that ψ̂(λ) = η(λ)eαλ ⊗ e
β
λ . Now we have that

∫

H

‖ψ̂(zσ)‖2 dνH(z) =

∫

H

|η(z)|2 dνH(z) = 1

holds for all σ ∈ Σ, and the calculation
∫

N

|ψ(x)|2 dx =

∫

Λ1

‖ψ̂(λ)‖2 dµ(λ)

=

∫

Σ

∫

H

‖ψ̂(zσ)‖2δ(z)−1 dνH(z)|Pf(σ)|dσ

=

∫

Σ

∫

H

|η(z1, z2, . . . , zv−1, zvu(σ), zv+1, . . . , zr))|2δ(z)−1 dνH(z)|Pf(σ)|dσ

=

∫

Σ

∫

H

|η(z)|2(δ(z1)δ(z1) · · · δ(zv−1)δ(u(σ)−1zv)δ(zv+1) · · · δ(zr))−1

× dνH(z)|Pf(σ)|dσ

=

∫

H

|η(z)|2δ(z)−1 dνH(z)

∫

Σ

u(σ)p|Pf(σ)| dσ <∞

shows that ψ ∈ L2(N)β . Hence by Proposition 2.6, ψ is admissible for τβ .

Next, suppose that ψ = ψα,βη,u and ψ ′
= ψα

′,β ′

η ′,u are two such admissible vectors.

For f ∈ L2(N)β and f ′ ∈ L2(N)β
′

we compute that

〈m f ,ψ(s),m f ,ψ ′(s)〉L2(G) =

∫

G

m f ,ψ(s)m f ′,ψ ′(s) dνG(s)

=

∫

H

∫

N

( f ∗ (τ (z)ψ)∗)(x)( f ′ ∗ (τ (z)ψ ′)∗)(x) dx δ(z)−1dνH(z)

=

∫

H

∫

Λ1

〈 f̂ (λ) ◦ (τ (z)ψ)̂ (λ)∗, f̂ ′(λ) ◦ (τ (z)ψ ′ )̂(λ)∗〉HS

× dµ(λ)δ(z)−1dνH(z)

=

∫

H

∫

Λ1

Trace
(

f̂ ′(λ)∗ ◦ f̂ (λ) ◦ (τ (z)ψ)̂ (λ)∗ ◦ (τ (z)ψ ′)̂ (λ)
)

× dµ(λ) δ(z)−1dνH(z).

Now one checks that

f̂ ′(λ)∗ ◦ f̂ (λ) ◦ (τ (z)ψ)̂ (λ)∗ ◦ (τ (z)ψ ′ )̂ (λ)

= 〈w f (λ),w f ′(λ)〉η(z−1λ)η ′(z−1λ)δ(z)e
β ′

λ ⊗ e
β ′

λ · δα,α ′ ,
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where δα,α ′ = 1 or 0 according as α = α ′ or α 6= α ′. Apply this with the decompo-
sition of µ and we get

〈m f ,ψ(s),m f ′,ψ ′(s)〉L2(G)

=

∫

H

∫

Λ1

〈w f (λ),w f ′(λ)〉 η(z−1λ)η ′(z−1λ) dµ(λ)dνH(z) · δα,α ′

=

∫

H

∫

Σ

∫

H

〈w f (z ′σ),w f ′(z ′σ)〉η(z−1z ′σ)η ′(z−1z ′σ)δ(z ′)−1

× dν(z ′)|Pf(σ)|dσdν(z) · δα,α ′

=

∫

Σ

∫

H

〈w f (z ′σ),w f ′(z ′σ)〉
(∫

H

η(z−1z ′σ)η ′(z−1z ′σ) dν(z)
)
δ(z ′)−1

× dν(z ′)|Pf(σ)|dσ · δα,α ′

=

∫

Λ1

〈w f (λ),w f ′(λ)〉 dµ(λ)〈η, η ′〉 · δα,α ′ ,

which means we have the orthogonality relation

(2.5) 〈Wψ( f ),Wψ ′( f ′)〉L2(G) = 〈w f ,w f ′〉K〈η, η ′〉L2(H,ν) · δα,α ′ .

In particular, this shows that if α 6= α ′, then the images of Wψ and Wψ ′ are orthog-
onal in L2(G). We are now ready to prove the main result.

Theorem 2.8 Let G = N ⋊ H where N is a connected, simply connected nilpotent

Lie group, and where H is a vector group such that the Lie algebra ad(h) is R-split and

completely reducible, and such that H[π] = (1) holds for almost every [π] ∈ N̂. Let τ be

the quasiregular representation of G in L2(N). Then τ has an admissible vector if and

only if G is not unimodular.

Proof Suppose first that G is not unimodular. We need to construct an admissible
vector for τ . To do this, we fix a Jordan–Hölder basis of G satisfying the conditions of
Section 1, and with all notations from Section 1, we conclude that hr = (0). Recalling
the structure of the Fourier transform on L2(N) developed in the preceding, and in

particular the decomposition L2(N) =
⊕

β L2(N)β , we then execute the construction

given above for τβ-admissible vectors: let η be a unit vector in L2(H, νH) that also
belongs to L2(H, δ−1νH) and let v, 1 ≤ v ≤ r, such that δ(0, 0, . . . , zv, . . . , 0) 6= 1.
Write δ(0, 0, . . . , zv, . . . , 0) = z

p
v , p 6= 0, and assume that q = dim(Σ) > 0. We

omit the proof in the case where q = 0; in that case each τβ is a finite direct sum

of irreducible, square-integrable representaitons, and the proof is a simplification of
what follows. For each ǫ ∈ {−1, 1}r, recall that sǫ is the identification map from Σǫ

onto an open subset of Rq.
Now for each basis index β, we choose a measurable function ũβ : Rq → (0,∞)

such that for any polynomial function P(t) on Rq, we have

∑

β

∫

Rq

ũβ(t)p|P(t)| dt <∞.
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Define uβ : Σ → (0,∞) by uβ(σ) = ũβ(sǫ(σ)), σ ∈ Σǫ, so that we have

∑

β

∫

Σ

uβ(σ)p|Pf(σ)| dσ <∞.

Let ψβ denote the function ψβ,β
η,uβ

as defined above, so that

ψ̂β(zσ) = η(z1, z2, . . . , zv−1, zvuβ(σ), zv+1, . . . , zr)eβzσ ⊗ eβzσ.

Then each ψβ is admissible for τβ and the images of Wψβ are pairwise orthogonal.

Set ψ =
∑

β ψ
β . Then ψ belongs to L2(N): for each β,

∫

N

|ψβ(x)|2 dx =

∫

H

| η(z)|2δ(z)−1 dν(z)

∫

Σ

uβ(σ)p|Pf(σ)| dσ,

so
∑

β ‖ψ
β‖2 < ∞. For any f ∈ L2(N),

Wψ( f ) = 〈 f , τ (·)ψ〉 =

∑

β

〈 f β , τ ( · )ψβ〉 =

∑

β

Wψβ ( f β)

and
∑

β ‖Wψβ ( f β)‖2
=

∑
β ‖ f β‖2

= ‖ f ‖2. Thus Wψ( f ) ∈ L2(G), and ‖Wψ( f )‖ =

‖ f ‖ holds for all f ∈ L2(N).
On the other hand, suppose that ψ ∈ L2(N) is admissible for τ , and fix any basis

index β. Then ψβ is admissible for τβ , so by Proposition 2.6, ∆ψβ (λ) = 1 a.e. on

Λ
1, and hence ∆ψβ (σ) = 1 a.e. on Σ. Now if G is unimodular, then δ(z) = 1 for all

z ∈ H, so by Lemma 2.4,

∫

Σ

|Pf(σ)| dσ =

∫

Σ

∆ψβ (σ)|Pf(σ)| dσ =

∫

Σ

∫

H

‖ψ̂(zσ)‖2 dν(z)|Pf(σ)|dσ

=

∫

Λ1

‖ψ̂(λ)‖2 dµ(λ) = ‖ψ‖2 <∞.

This is possible only if dσ is a finite measure. But by Lemma 2.3, Σ is diffeomorphic

with the cross-section Λ for G-orbits in Ω, and it is known [4, Corollary 2.2.2] that dσ
can only be finite when q = 0 and Σ is a finite set. By Lemma 2.3, this means that the
regular representation of the unimodular group G decomposes into a finite sum of
irreducible (square integrable) representations. It is well known (see for example [11,

Proposition 0.4]) that this can only happen when G is discrete.

Next we show that L2(G) can be decomposed by means of the wavelet transforms

on each L2(N)β .

Lemma 2.9 There is an orthonormal basis {η j} for L2(H, νH), each element of which

also belongs to L2(H, δ−1νH).
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Proof Write δ(z)−1dνH(z) = z
p1

1 z
p2

2 · · · z
pr
r dz1dz2 · · · dzr where pw ∈ R, 1 ≤ w ≤ r,

and choose ν ≥ 0 such that ν ≥ −min(p1, p2, . . . , pr). For j = ( j1, j2, . . . , jr) ∈
{0, 1, . . . }r , set

η j(z) =

r∏

w=1

(
e−zw (2zw)

ν+1
2 L(ν)

jw
(2zw) c

−1/2
ν, jw

)
, z = (z1, z2, . . . , zr) ∈ H,

where L(ν)
l (s), l = 0, 1, . . . is the Laguerre polynomial

L(ν)
l (s) =

1

l!
ess−ν

( d

ds

) l

(e−ssl+ν), 0 < s <∞

and

cν,l =

∫ ∞

0

e−ssνL(ν)
l (s)2 ds.

As in [18] we see that {η j} j∈{0,1,2,... }r is an orthonormal basis of L2(H, νH). Also,
since ν + pw ≥ 0, 1 ≤ w ≤ r, we have

∫

H

|η j(z)|2δ(z)−1 dνH(z) =

r∏

w=1

c−1
ν, jw

∫ ∞

0

e−2zw (2zw)ν+pw L(ν)
j (2zw)221−pw dzw <∞.

Assume that G is not unimodular, and that q = dim(Σ) > 0. Let {η j} be the basis
of L2(H, ν) as in Lemma 2.9, and let u : Σ → (0,∞) a measurable function such that∫

Σ
u(σ)p|Pf(σ)|dσ, where p is chosen appropriately as above. Fix a basis index β0,

set
W α

j,u = W
ψ
α,β0
η j ,u
, α ∈ B, j ∈ {0, 1, 2, . . .}r,

and set
Jαj = W α

j,u(L2(N)β0 ).

From (2.5) we see that the subspaces Jαj are pairwise orthogonal in L2(G) and that
each is isomorphic with K.

Theorem 2.10 We have

L2(G) =

⊕

α∈B
j∈{0,1,2,... }r

Jαj .

Proof We must show that L2(G) is contained in the direct sum. Let Y ∈ L2(G) and
for z ∈ H set Yz(x) = Y (xz), x ∈ N . We have

‖Y‖2
=

∫

H

(∫

N

|Yz(x)|2 dx
)
δ(z)−1 dν(z)

=

∫

H

(∫

Λ1

‖Ŷz(λ)‖2 dµ(λ)
)
δ(z)−1 dν(z).
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Since ‖Ŷz(λ)‖2
=

∑
α,β |〈Ŷz(λ)eαλ , e

β
λ〉|

2, then for each pair of indices α and β,

∫

H

|〈Ŷz(λ)eαλ , e
β
λ〉|

2δ(z)−1 dν(z) <∞

holds for µ-a.e. λ. Let y
α,β
λ denote the mapping z 7→ 〈Ŷz(λ)eαλ , e

β
λ〉δ(z)−1/2; then

there is a co-null subset Λ
1
0 of Λ

1, such that y
α,β
λ ∈ L2(H, νH) holds for each λ ∈ Λ

1
0,

α, β ∈ B. Now for each λ ∈ Λ
1
0, write λ = zλσ and set η j,λ(z) = η j(z−1zλ), z ∈

H. Observe that {η j,λ | j ∈ {0, 1, 2, . . .}r} is an orthonormal basis of L2(H, νH).
Hence for each λ ∈ Λ

1
0, α, β ∈ B, we have complex numbers {a j(λ, α, β) | j ∈

{0, 1, 2, . . .}r} such that

yα,βλ =

∑

j∈{0,1,2,... }r

a j(λ, α, β)η j,λ.

This means that Ŷz(λ)δ(z)−1/2
=

∑
α,β

∑
j a j(λ, α, β)η j,λ(z)e

β
λ ⊗ eαλ . Now for each

α ∈ B, j ∈ {0, 1, 2, . . .}r, set gαj (λ) =
∑

β a j(λ, α, β)e
β
λ ⊗ e

β0

λ . We claim that gαj ∈

Hβ0 for all α. To see this we observe that

‖Y‖2
=

∫

H

∫

Λ1

‖Ŷz(λ)‖2 dµ(λ)δ(z)−1dν(z)

=

∫

Λ1

∑

α,β

∫

H

|〈δ(z)−1/2Ŷz(λ)eαλ , e
β
λ〉|

2 dν(z) dµ(λ)

=

∫

Λ1

∑

α,β

‖y
α,β
λ ‖2 dµ(λ)

=

∫

Λ1

∑

α,β

∑

j

|a j(λ, α, β)|2 dµ(λ)

≥

∫

Λ1

∑

β

|a j(λ, α, β)|2 dµ(λ)

= ‖gαj ‖
2.

Denote by f αj the inverse Fourier transform of gαj , and set ψ = ψα,β0
η j ,u . Then for a.e.

z ∈ H, (W α
j,u( f αj ))z = ( f αj ∗ (τ (z)ψ)∗) belongs to L2(N), and for such z,

(W α
j,u( f αj )z )̂ (λ) = gαj (λ) ◦ (η j(z−1zλ)eαλ ⊗ e

β0

λ )∗ δ(z)1/2

= δ(z)1/2
(∑

β

a j(λ, α, β)e
β
λ ⊗ e

β0

λ

)
◦ η j(z−1zλ)e

β0

λ ⊗ eαλ

= δ(z)1/2
∑

β

a j(λ, α, β)η j(z−1zλ)e
β
λ ⊗ eαλ .
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Summing over all α and j, we find

∑

α, j

(W α
j,u( f αj )z)̂(λ) = δ(z)1/2

∑

α,β

(∑

j

a j(λ, α, β)η j(z−1zλ)
)

e
β
λ ⊗ eαλ

=

∑

α,β

〈Ŷz(λ)eαλ , e
β
λ〉 eβλ ⊗ eαλ

= Ŷz(λ).

Taking the inverse Fourier transform we obtain Yz =
∑

α, j W α
j,u( f αj )z for a.e. z ∈ H,

and hence

Y =

∑

α, j

W α
j,u( f αj ).
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