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Abstract

Predictability of revenue and costs to both operators and users is critical for payment
schemes. We study the issue of the design of payment schemes in networks with
bandwidth sharing. The model we consider is a processor sharing system that is accessed
by various classes of users with different processing requirements or file sizes. The users
are charged according to a Vickrey-Clarke-Groves mechanism because of its efficiency
and fairness when logarithmic utility functions are involved. Subject to a given mean
revenue for the operator, we study whether it is preferable for a user to pay upon arrival,
depending on the congestion level, or whether the user should opt to pay at the end.
This leads to a study of the volatility of payment schemes and we show that opting for
prepayment is preferable from a user point of view. The analysis yields new results on
the asymptotic behavior of conditional response times for processor sharing systems and
connections to associated orthogonal polynomials.
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1. Introduction

Pricing is a critical issue for any facility provider offering resources to customers compet­
ing for their use. This is notably a key issue for internet service providers (ISPs) offering
transmission capacities (wired or wireless) to residential or business customers sharing the
bandwidth of the network, especially bandwidth of peering links and of radio cells. In this
paper we investigate pricing policies by considering both fairness and efficiency. As in [4], we
pay special attention to the Vickrey-Clarke-Groves (VCO) auction model [15], [17] defined as
follows.

Assume that a single auctioneer (an ISP in the present context) offers to N bidders (customers)
an infinitely divisible commodity of capacity c (network capacity). The bidder n has a valuation
function Wn (x) of the fraction x of the resource (Wn (x) is often referred to as the utility
function). The first step of the auctioneer is to maximize the social welfare. The optimal
allocation is x = (Xl, ... , iN) such that

N

i = arg max '" W .(x .)x L.J } }
j=l

(1)
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Pricing for bandwidth sharing 963

subject to the conditions x j 2: 0 for all j and L7=1 x j ~ c. The solution to (1) is said to be
a social optimal solution (that lies on the Pareto boundary) and when Wj(x) = logx then the
corresponding solution is said to be proportionally fair or a Nash bargaining point. Solving (1)
when Wj (x) = log x yields Xi = c/ N, which corresponds to the processor discipline equally
sharing amongst all users. This service discipline as a means of sharing bandwidth is natural
in packet networks where data is transferred using transmission control protocol, aiming to
achieve an equal share of the bandwidth of bottlenecks in networks [13]. This assumption can
be verified by using measurements from real networks when bottlenecks are clearly identified
(mostly at peering links). This is often referred to as max-min bandwidth sharing.

After having identified the optimal allocation, the price charged to bidder no to use the
resource per unit of time denoted by nno, is evaluated as

(2)

and measures the maximum decrease in social welfare suffered by customers upon arrival of
the marked customer no.

Pricing of network resources has been studied in a number of works. Most analyses deal
with static scenarios when the number of users is fixed; see, for example [8] and [16]. A detailed
survey of pricing and incentives can be found in [10].

The vea pricing mechanism is often referred to as an efficiency auction mechanism as
opposed to a revenue maximization mechanism where the price charged is the Lagrange
multiplier of the optimization problem (1). Bulow and Klemperer [5] have shown that the
total revenue from an efficiency auction with (n + 1) players is at least as high as the total
revenue obtained from revenue maximization with n players. In this paper we refer to the
revenue maximization price as the congestion or Lagrangian price.

Once prices per unit of time have been fixed, the next issue is to determine how to fix the
total price of a transaction (say, the transmission of a certain amount of data, knowing that
bandwidth is shared among active flows). More precisely, let us denote by p(t) the price to pay
per unit of time at time t when the number of users is n(t). Either payment can be fixed at the
time of arrival or once the customer has completed its service. In the latter case, the total price
for using the service facility is given by the path integral

npost = is p(t)dt, (3)

where S is the time spent by the customer in the system. We refer to this as a postpayment
scheme.

If the price is fixed upon arrival, the total cost depends on the system state upon arrival
multiplied by the expected sojourn time. This is what we call prepayment and the total price is
the random variable

npre = PolEo(S), (4)

where Po is the price upon the arrival of customer and lEo(s) is the mean sojourn time of the
customer, depending on the state of the system at arrival time. In the case of the processor
sharing disciplines with general service times, lEo (s) depends on the number of customers and
their residual service times.
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Remark 1. We could also consider a variation of (4) by considering

nmodpre = PoS,

where Po is the price and S the conditional sojourn time, depending on the number present at
arrival time. Such a scheme gives the same mean payment but has higher volatility as is shown.

Let L be the number in the system at the time of arrival.
Then

The second moment is given by

and, therefore, the payment scheme will have higher volatility than the prepayment scheme (4).
We do not consider it in this paper.

The objective of this paper is to compare these two payment schemes under various pricing
policies, the vca outlined above as well as other congestion based prices and max-min
bandwidth sharing. Recently, Birmiwal et ale [4] presented an analysis of the VCG pricing
and Lagrangian pricing for the processor sharing model where the behavior of prepayment
and postpayment strategies was analyzed through simulation. In this paper we present a
detailed analytical analysis of such schemes that leads to very interesting connections between
conditional sojourn times in processor sharing systems and some orthogonal polynomials; the
analysis leads us to establish new results for the joint distribution of the service and the sojourn
times in an M1M11 processor sharing queue. In Section 2 we describe the network model
under consideration and various pricing policies. The computations of the prices is performed
in Section 3 under the assumption that the flow size is exponentially distributed. Numerical
results are presented in Section 4 where we study the volatility of prices conditioned to have
the same mean value. Concluding remarks are presented in Section 5.

2. Network model

2.1. Price under processor sharing

We consider a servicing facility with capacity c. Customers arrive according to a Poisson
process with rate A and require independent and identically distributed service times with
probability distribution function B(x) and mean IE(B).

We assume that the service capacity is shared among those customers in the system, according
to the processor sharing discipline (max-min fairness). In other words, if there are n customers
in the system at time t, each of them is served with a service rate equal to c/ n at time t.

It is well known in the literature that the processor sharing queue is insensitive to the service
time distribution, and in the stationary regime the number of customers in the queue is geometric
with mean p/(l - p), where p = AJE(B)/c. In the following, let L(t) denote the number of
customers in the processor sharing queue at time t.

Let us assume that customers are charged according to the VCG policy. From (2), it is easily
checked that when there are L(t) customers in the system, the price at time t is

p(t) = 7rno = L(t) log (1 + _1_).
L(t)
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(5)

It is worth noting that the function x ~ x log(1 + 1/x) is concave and monotonic increasing
and tends to 1 when x ~ 00. Thus, a customer will have to pay more when arriving in a
congested system.

The major issue with VCG pricing is that a customer arriving in an empty system will pay
nothing since it causes no perturbation of the social welfare. But, from the servicing facility it
is essential to charge the customer even if the system is empty. To remedy this shortcoming we
shall assume that there is always a (fictitious) customer in the system. This leads us to consider
the modified VCG price.

Definition 1. (Modified VCG pricing.) When there is a permanent fictitious customer in the
system, the decrease in social welfare caused by an arriving customer is evaluated by considering
the decrease in social welfare of the fictitious customer. In such a case, the price to pay per unit
of time is computed as

p(t) = (L(t) + 1) log (1 + 1 ).
L(t) + 1

Note that we consider normalized prices. In theory, we should multiply pet) by a constant
expressed in monetary units per second.

Remark 2. As mentioned in the introduction, the modified VCG pricing will yield a total
revenue at least as large as the revenue obtained from the revenue maximization problem
with L users. Of course for large L the two VCG solutions will coincide.

We easily observe that (1 - 1/2(L(t) + 1» ::; p(t) ::; 1. The upper and lower bounds in
this equation are of the following form.

Definition 2. (Homographicpricing.) The price to pay per unit of time for homographic pricing
is defined by

.., b
p(t) = a + L(t) + 1

for some real constants a and b such that a + b > O.

Beyond approximating the VCG policy, homographic pricing has the advantage of encom­
passing other pricing policies .

• Fixed price. The price to pay per unit of time is set equal to constant (b = 0 in (5».

• Usagepricing. The price to pay per unit of time is proportional to the bandwidth received
by the customer (a = 0 in (5».

Finally, let us consider congestion pricing which consists of more charging customers when
the system is loaded.

Definition 3. (Congestion pricing.) The price to pay per unit of time in the case of congestion
pricing is defined as p(t) = L(t) + 1.

All the pricing policies considered in this paper depend on the state of the system (namely
on the number of customers). Generally speaking, when there are n customers in the system,
the price to pay per unit of time is Pn. For modified vca pricing,

Pn = (n + 1) log (1 + _1_)
n+l

and for congestion pricing Pn = n + 1. For homographic pricing, Pn = a + bjtn + 1).
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2.2. Postpayment versus prepayment

In the case of prepayment, the customer pays upon its arrival into the system. In that case, the
price a customer has to pay under the VCG pricing policy is defined by (4). In a stationary MlG/1
processor sharing queue, the mean sojourn time lEo(S) is a linear function of the number L of
customers in the system upon arrival [2], namely

lEo(S) = Ao + AlL (6)

for some known constants Ao and A 1. This can be used to compute the distribution of the
random variable npre once the price Po is known.

In the case of postpayment, the price to pay is given by (3). A general method of computing
the above integral is given in the next section for exponential service times. For the specific
case of homographic pricing defined by (5), postpayment leads us to consider the integral

ITpost = is p(t) dt = as+ ba,

where a is the service requirement of the customer and where we have used the fact that for

the processor sharing policy Jt dtj(L(t) + 1) = a. Thus, we have to determine the random
variable as+ ba , which requires the study of the joint distribution of the random variables S
and o .

3. Price computations

In this section we assume that service times (or, equivalently, flow sizes) are exponentially
distributed. To simplify the notation, we take the mean service time of a flow lE(B)jc = 1 so
that the flow arrival rate A = p, which is the load of the system.

3.1. Prepayment

In the case of exponential service times, the constants Ao and A1 introduced in (6) are given
in [14],

2
Ao = --, At = --. (7)

2-p 2-p

3.1.1. Modified VCG pricing. The prepayment price under the VCG pricing policy is given by

n pre = (L + 1) log (1 + _1_)(Ao + AlL).
L+1

Let us define the function

f(x) = (x + 1)(Ao + AIX) log (1 + _1_).
x+1

The function f(x) is monotonic increasing on [0, (0), f(x) ~ AIX, and f-I(x) ~ xjAl for
large x.

The first and second moment of the random variable npre are clearly given by

00

lE(npre) = (1 - p) L f(n)pn,
n=O

00

lE(n~re) = (1- p) Lf(n)2pn ,

n=O
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respectively. Finally, we have

967

I Lf-1C )J (IOg(l/p»)lP'(n pre > x) = lP'(L > f- (x)) = P x '" exp -x AI

for large x. This shows that the tail of the distribution of the prepayment price has an exponential
decay with rate (2 - p) 10g(1/p).

3.1.2. Homographic pricing. When considering the pricing policy defined by (5), we have

fipre = (a + _b_)(Ao + AlL).
L+l

The moments of the random variable fipre can be easily computed. The mean value is given by

IE
'" b aAI b(Ao - AI)(l - p) log(l - p)

(npre) = aAo + ( - a)AI + -1-_-p - -----p-----

and the second moment by
"'2 2 '"

lE(npre) = -(aAo + (b - a)AI) + 2abAI(Ao - AI) + 2(aAo + (b - a)AI)lE(npre)

a2Ai(1 + p) b2(Ao - AI)2 .
+ (l - p)2 + p Lt2(l - p),

where Li2(X) is the dilogarithm (or Spence's) function [1].
Taking a = 1 and b = -1 and using (7) for the expression of constants Ao and AI, we

obtain an approximation of the first and second moments of the random variable fipre in the
exponential case:

'"oJ 1 (3 -PI)IE(npre) = -- + -(1 - p) log(1 - p)
2(2-p) I-p p

and

lE
"'2 5 + 6p - 3p2 (1 - p) log(1 - p) (1 - p) Li2(1 - p)

(npre) = 2 2 + 2 + 2 .4(2-p) (l-p) 2(2-p) p 4p(2-p)

3.1.3. Congestion pricing. For congestion pricing, the mean value of prepayment can be
expressed as

- Ao 2pAI 2
lE(npre) = -1---p + (1 _ p)2 = -(2---p-)-(I---p-)2 (8)

and the second moment

-2 (1 + p)A6 4pAoAI (2 + p) 4p(1 + 4p + p2)Ai 4(1 + 4p + p2)
lE(npre) = (1 _ p)2 + (l _ p)3 + (1 _ p)4 = (2 _ p)2(l _ p)4' (9)

3.1.4. Fixed pricing. In the case of fixed pricing and exponential service times, we have

- - a
IE(npre) = lE(npost ) =--

I-p

and
lE ~2 (4 - 3p + p2)a2 lE ~2 4a 2

(npre) = (l - p)2(2 _ p)2 ~ (npost ) = (1 - p)2(2 _ p)'

The squared coefficient of variation for prepayment is p and that for postpayment is 2(1 +
p) / (2 - p) showing that postpayment is more volatile than prepayment since the mean values
are equal.
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(10)

3.2. Postpayment

To compute the price with postpayment, we have to compute the path integral (3). We first
describe a general method of evaluating this quantity for a general price structure, applicable
to modified vca pricing. We then consider the case of homographic pricing, notably when
a = 1 and b = -1, thus approximating the modified veo pricing policy.

3.2.1. General price structure. To compute the path integral (3), let us condition on the number
of customers in the system upon arrival of the outstanding customer for which we want to
compute the postpayment price. This leads us to consider the quantity defined by

:Pn = is p(t) dt I L(O) = n.

By using the same technique as in [7], it is easily verified that the complementary distribution
functions Pn(y) = JP>(9'n > y), n ~ 0, verify the recursion

er; n
Pn- = --Pn-l - (1 + p)Pn + pPn+l.ay n + 1

The above equation can be written in matrix form as

ap
D-=MPay , (11)

where P is the infinite column vector with nth entry is equal to Pn (y), D is the infinite diagonal
matrix whose nth diagonal element is Pn, and M is the infinite tridiagonal matrix whose nonnull
elements are given for n :::: 0 by

mn,n = -(1 + p), mn,n+] = p. (12)

Set 1Tn = (n + 1)o" and define the Hilbert space

H = {Un) E jRN: t f; Pn17:n < cx+
n=O

equipped with scalar product

00

(I, g) = L IngnPn 1Tn for I, g E H.
n=O

Let us make the following assumption.

Assumption 1. The prices Pn are lower bounded and such that

(ff!)n+l (n + l)Pn )Kp = sup -- + sup < 00.
n::::O Pn n::::O (n + 2)Pn+l

(13)

Note that the above assumption is satisfied when Pn is increasing and the ratio Pn+1/Pn tends
to a limit when n ~ 00, which is the case for modified VCO, homographic, and congestion
pricing. In the case of usage pricing, K p = 2.
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Proposition 1. Under the assumption

I + p - K p.JP > 0,

969

(14)

the operator M = D-1M is symmetric and bounded and, hence, selfadjoint. The operator
-M is, moreover, monotonic, i.e. for all f E H, (-Mf, f) ~ 0.

Proof. Symmetry is readily verified by using the fact that for n ~ 0, pJrn = «n + I)/(n +
2»Jrn+l . For f E H, we have

(-MI, f) = f (0 + p)/; - Pln+dn - n: 1In-dn )Jrn o

n=O

By using the Schwarz inequality, it is easily shown that

where the constant K p is defined by (13). Under assumption (14), the operator -M is
monotonic. By using the same arguments, we have

By using the fact that prices are lower bounded, we deduce that the operator eM is bounded.

Assumption (14) is satisfied for modified VeG, homographic pricing with a ~ 1, congestion,
and usage pricing since K p ~ 2 and I + p - Kp.JP > (1 - .JP)2 > 0. Monotonicity implies
that the spectrum of the operator M is included in (-00,0].

To compute the spectrum of the selfadjoint operator M, we consider the following problem.
Find f(x) E H and x E ~ such that Mf(x) = xf(x). This leads us to consider the following
recursion: fo(x) is a constant (say, equal to 1), f-l (x) = 0, and, for n ~ 0,

1 n
fn+l (x) = -(Pnx + 1 + P)fn(x) - fn-l (x).

p pen + 1)

The above recursion is a three-term recurrence relation for which Favard's condition is obviously
satisfied [3]. Let us introduce the family of polynomials Qn (x) defined as follows: Qo(x) = 1,
Q-l (x) = 0, and, for n ~ 0,

n
pQn+l(X) - (Pn x + I + p)Qn(x) + --Qn-l(X) = o.

n+1

Since Favard's condition is satisfied, the polynomials (Qn (x) are orthogonal with some weight
measure 1/J(dx) with support in (-00,0] so that

f o Po
Qj(x)Qk(x)1/!(dx) = --OJ,k,

-00 ~rrj

where OJ,k is the Kronecker symbol. The roots of the polynomial Qn(x) for n > °are real and
simple. From the monotonicity property, these roots are nonpositive,

The solution to (II) then reads, for n ~ 0,

00 0
Pn(Y) = L JrmPm f Qm(x)Qn(x)ex Y 1/J (dx ),

m=O PO -00
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which comes from the fact that P = eyMe, where e denotes the vector with all entries being 1;
see [7] for details.

Computing the exponential eY.M can be very difficult in practice. Nevertheless, by using
the fact that the operator M is selfadjoint, we can obtain approximations for the vector P by
truncating the matrices M and D to the subspace spanned by the first N components for N > 0
chosen appropriately to keep the error small.

The above results can be applied to vca pricing but the results are not explicit. By
approximating this scheme by the homographic pricing policy (5) with a = 1 and b = -~,

we can obtain a closed form expression by means of some orthogonal polynomials and their
associated orthogonality measure.

3.2.2. Homographic pricing. When the price to pay per unit of time is Pn given by (5), the
postpayment price is fipost = as+ bo . When service times are exgonentially distributed, it is
possible to compute the Laplace transform of the random variable npost by using the transform
of the sojourn time S(x) conditioned on the service time (i.e, the sojourn time of a customer
when the service is x); see [12] for details.

The mean value of the random variable S(x) for general service times is given by [9],

x
lE(S(x» = -­

I-p

and then

~ alE(a)
lE(npost ) = -- + blE(O'),

I-p

It is worth noting that the second moment of postpayment price depends on the second moment
of the service. This is not the case for prepayment. Hence, postpayment may be subject to more
fluctuations than prepayment. This will be illustrated in the next section, even for exponential
service times.

In the case of exponential service times with unit mean, since

1
lE(S) =--,

I-p

we obtain

2 4
lE(S ) = 2 '

(1 - p) (2 - p) ( 0'2) 2lE(aS) = lE -- = --,
I-p I-p

IE ~2 4a 2 4ab 2
(TIpost ) = (1-p)2(2-p) + I-p +2b.

Note that when a = 1 and b = -~, we have

~2 4 2 1
lE(TIpost) = (l - p)2(2 - p) - 1 - P + 2'

To estimate the tail of the distribution of the random variable fipos t , the use of the Laplace
transform of the conditional service time S(x) given in [12] seems to be very difficult. Instead,
we give below an alternative expression for the Laplace transform fi~ost (s) by using sieved Pol­
laczek polynomials [6] defined by the following recursion: pt"(x, cx, f3) == 0, pt(x, a, f3) == 1,
and, for n ~ 0,

(n + I)P:+ 1(x; a, f3) - 2[(n + A+ cx)x +ev:«. a, f3) + nP:-l (x: a, f3) = 0. (15)

When A= 1, we simply set P:+1(x; cx, f3) = Pn(x; o, f3).

https://doi.org/10.1239/jap/1450802746 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802746


Pricing for bandwidth sharing

For x E [-1, 1] and e E [0, 1f] such that x = coe«, we set

a cose + fJ
T=----

sine

971

For x = cos e E [-1,1], Pollaczek polynomials Pn(x; a, f3) have the following generating
function:

00L Pn(x; a, f3)zn = (1 - zeiO) - 1/ 2+ ir (1 - ze-iO) - 1/ 2- ir .

n=O

(16)

These polynomials are, furthermore, orthogonal with respect to a measure which has a compo­
nent absolutely continuous with respect to the Lebesgue measure and that can have an atomic
component. The density of the continuous component is given by

1
w(x; a, (3) = e(20-Jr)r

2 cosh 1fT

so that

1
1 1

Pn(x; a, fJ)Pm(x; a, fJ)w(x) dx = 8m,n,
-1 n + 1/2 + a

where 8m,n is the Kronecker symbol. The discrete component has atoms at points Xn and Yn
defined by (22) and (23), respectively.

Wehave the following result for the Laplace transform fi;ost (s) of the random variable fipost.

Proposition 2. The Laplace transform n;ost(s) is given by

,....,* 100 a(x; p)2 __
npost(S) = (1 - p) d1/!(x),

-00 s - x

where dlfr(x) is the spectral measure of the polynomials Qn(x) defined by

Thefunction alex; p) is given by

(2(X; p) = 1 e2if>i

)1 + p - 2.JPcosJJ

with ¢ being defined by

-- ( .JPsinO )c/J = arctan --
1 -.JP cos e

and
_ (2(bJa) + 1) cosO - b(I + p)Ja.JP
T = _ .

2sine

(17)

(18)

(19)

(20)
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Proof. We apply the method described in Section 3.2.1. When the instantaneous prices ar~

given by (5) (Pn = a + bI(n + 1», we have to deal with the infinite tridiagonal matrix J,l
whose nonnull entries are given by

_ n -(I+p)(n+l) _ p(n+l)
mn,n-l = a(n + 1) + b' mn,n-l = a(n + 1) +b' mn,n+l = a(n + 1) + b'

A vector (in (x) is an eigenvector for the matrix M with eigenvalue x (i.e, J,l f (x) = x f (x »
if, for n ~ 0,

(a + n~ l)x!n(x) = n: 1!n-l(X) - (l + P)!n(x) + P!n+l(X),

which is equivalent to

p(n + l)fn+l (x) - «a(n + 1) + b)x + (n + 1)(1 + p»fn (x) + nfn-l (x) = o.
The above recurrence relation can be written as

(n + 1)(.JP)n+I fn+l (x) - 2«n + A+ a)X + fJ)(.JP)n in (x) + n(.JP)n-I fn-I (x) = 0

with A = !'
x = _ax_+_l_+_p

2-jP

b 1
a = - +-,

a 2
f3 = _~(1 + p).

a 2-jP

By using the recurrence relation (15), we deduce that

1 (ax+l+ p b 1 b(l+ P ) )
!n(x) = (.[p)n Pn 2-jP ; ~ + 2'-~ 2-jP .

The polynomials Qn(x) defined by (18) are orthogonal with respect to the measure d~(x),

which may take various forms, depending on the parameters a and b. The measure d~(x)

has a component absolutely continuous with respect to Lebesgue measure and can have a
discrete component. The support of the absolutely continuous component is the interval [- (1+
.[p)2 [a, -(1 - .[p)2Ia] and for

x=
1+ p - 2-jP cosfJ

a
(21)

with {) E [0, rr], the absolutely continuous component is ~c(dx) given by

(23)

(22)
-afJ - (n + 'A)J(n + 'A)2 + fJ2 - a 2

Xn =
a 2 - (n + 'A)2

-af3 + (n + A)J(n + 'A)2 + fJ2 - a 2

Yn = a2 _ (n + 'A)2

d'if/c(x) 1 (-(rr -))-- = _ exp cot e - - +e ,
dx 2-jP coshor cot e12) 2

where i is defined by (20).
When bfa + ! < -(bla)(1 + p)/2-jP (which is the case when a = 1 and b = -!), the

discrete component has atoms at the points ~n = -(1 + p - 2-jPxn)/a and Xn = -(1 + p ­
2-jPYn)la, where

where a and fJ are given above.
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The polynomials a.(x) are such that
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We apply the general method of Section 3.2.1. From the spectral theorem, any f E H can
b~ decomposed as f = J~oo f(x) Q(x) d1fr(x), where Q(x) is the vector whose nth entry is
Qn (x); the function f (x) appearing in this decomposition is given by

00

f(x) = L Pn1rnfn Qn(x).
n=O

(24)

The complementary distribution functions of the prices Pn defined by

Pn = is p(t) dt I L(O) = n for n ~ 0

satisfy (0) with Pn =.in = a + b/CJ; + 1). The vector iP*0) ~hose nth component is
the Laplace transform :P;(s) = lE(e-S 3' n) then satisfies (sJr - M):P*(s) = ep' where ep is
the vector whose nth entry is 1I (n + 1)Pn and li is the identity operator. In other words,
9'*(s) = (sli - M)-le-.

p ~ ~

The Laplace transform n;ost (s) of the random variable npost is, by definition, given by

....... * .......* ....... -1 100
(ep , ep(x» -npost (S) = (ep , /P (s) = (ep , (sli - M) ep) = d1fr(x),

-00 S - x

where we have used the spectral resolvent identity in the last step [11] and where ep(x) is the
projection of the vector ep on the vector space generated by the vector Q(x) and ep is the vector
with components (1 - p) pn for n ::: O.

By using (24), we have

00

ejj(x) = L Qn(x)pnQ(x) = ~(x; p)Q(x)
n=O

with ~(x; t) denoting the generating function of the polynomials Qn(x), given for x E [-(1 +
#)2 [a, -(1 - -JP)2 fa] by

....... ( t. -) -1/2+ii ( t . _) -1/2-ii
~(x· t) = 1 - _e1() 1 - _e-1()

'# # '

where we have used relation (18) between the polynomials Qn(x) and Pollaczek polynomials,
and the parameters eand i are as in (21) and (20), respectively.

The Laplace transform fi;ost (s) is eventually given by

fi;ost(s) = /00 iii(x; p)(ep • Q(x» dt(x) = 0 _ p) /00 iii(x; p)2 dt(x),
-00 s - x -00 s - x

where the function ~(x; p) is given by

~(x; p) = (1 - #ei8 ) - 1/ 2+ ii (1 _ #e-i8 ) - 1/ 2- ii .
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By using the fact that
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1 - .JPeiO= j 1 + p - 2.JP cos iJe-i;P,

where 4J is defined by (19), (17) follows.

To conclude this section, let us discuss the tail asymptotics for the random variable fipost.
From (17), we have

'" /00 1 '" 2 -JP>(npost > Y) = -(1 - p) -C2(x; p) eXY d1/J(x).
-00 x

For arbitrary values of the parameters a and b, the above equation does not allow an explicit
derivation of the tail asymptotics (see, for example, [7] for a discussion); for the sojourn time
in the MIMIl processor sharing queue, a singular perturbation analysis can be performed when
y -+ 0 and p -+ 1. However, when a = 1 and b = -!, the spectrum of the measure d1f (x)

has atoms. The atom with minimum absolute value is located at point -(1 + p - 2.JPxo)ja,
where Xo E (-1,0) is defined by (22) (with ex = 0). Hence, the tail of the distribution of
the random variable npost approximating modified vea pricing (a = 1 and b = -!) is
exponential with decay rate 1 + p - 2.JPxo. For the random variable npre with exponential
service times, the coefficient of the exponential decay is (2 - p) log( 1j p), which is much larger
than 1 + p - 2.JPxo < (1 - .JP)2.

3.2.3. Congestion pricing. By taking Pn = Pn ~ n + 1, we are led, by applying the method of
Section 3.2.1, to consider the family of orthogonal polynomials qn(x) defined by the recursion:
q-I(x) = 0, qI (x) = 1, and, for n ~ 0,

~ ~ n ~
pqn+I(X) - «n + l)x + 1 + p)qn(x) + --qn-I(X) = O.

n+l

To the best of the authors' knowledge, this family of orthogonal polynomials (qn(x)) seems
to be unknown in the literature. In particular, their generating function defined by q(x; t) =
L~o qn(x )tn satisfies the following second-order differential equation:

a2 ~ a~
2 q 2 q ~

xt - - (t - (3x + 1 + p)t + p)- - (t - 1 - p - x)q = O.at2 at
The first two moments of the random variable npost can, however, be computed as follows.

By using (10), we obtain

~ ~ n ~

pIE(npost I L(O) = n + 1) - (1 + p)IE(npost I L(O) = n) + --IE(npost I L(O) = n - 1)
n+l

= -Pn·

The above equation can be written as Mm = - p, where M is the infinite matrix defined by (12)
and m(respectively p) is the column vector whose nth entry is equal to IE(npost I L(O) = n)
(respectively Pn). By using the results of [7], the eigenvectors of the matrix M are the vectors
Q(x) whose nth component is

https://doi.org/10.1239/jap/1450802746 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802746


Pricing for bandwidth sharing 975

where the polynomials Pn (x; ex, fJ) are the Pollaczek polynomials. The polynomials a. (x) are
orthogonal with respect to the measure {J (x) whose support is the interval [- (1 + ,J75)2, - (1 ­
JP)2] and defined for x = -1 - p - 2,JP cos ewith e E [0, 1l'] by

d{ft = sinO exp(cote(-~+e)).
dx cosh((n cot 8) /2) 2

The polynomials Qn (x) satisfy the orthogonality relation

j

- O- JP) 2 " " " 1
Qn(x)Qm(x) d1fr(x) = -8n,m.

_(1+JP)2 1l'n

By using the spectral resolvent identity, and by setting en equal to the vector with all components
equal to 0 except the nth one equal to 1, we obtain

" 1
E(npost I L(O) = n) = -em, en)

1l'n
-1 -I"= -(M p, en)
1l'n

j

_ (1 - # )2 -1 00 " " "

= - L Pmrrm Qm(x) Qn(x) d1/J(x).
-(1+JP)2 X m=O

By deconditioning on the initial state, we eventually obtain

(25)

As shown in [7], the generating function &(x; t) = L~o Qn(x)tn satisfies the differential
equation

2 a& "
(t - (x + p + l)t + p)- + (t - x - p - I)Cl = O.at

We have

00 2 ..... .....
" ....." 2 a (2 aCl "x + 2 - p "
L..JPm1l'mQm(X) = P -a2 (x ; p ) + 3p -a (x;p)+C2= 2 C2(x;p),
m=O t t x

where we have used (26) in the last step of (27). Hence,

..... j_(l_JP)2 -(1 - p)(x + 2 - p) " 2"
E (Ilpost) = 3 (2 (x; p) d 1fr (x) .

_(1+JP)2 x

From [7], we know that the Laplace transform S*(z) of the sojourn time is given by

j

- O- JP) 2 ..... d{j,(x)
S*(z) = (1 - p) (;l(x; p)2__;

_(1+JP)2 Z - X

hence, we have
..... 2-p 2 l+p

lE(npost ) = --lEeS ) - lEeS) = 2 .
2 (1 - p)

(26)

(27)

(28)
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Similarly, by using (10), we easily obtain the matrix equation MfJ = -p', where v
(respectively p') is the column vector whose nth entry is lE(fI~ost I L (0) = n) (respectively

2PnIE(fIpost I L(O) = n») and, consequently,

"2 1-(1-JP)2 -(1 - p) ~ ", " " "
lE(npost ) = L...J PmJrmQm(x)(;l(x; p) d1/J(x).

_(l+JP)2 X m=O

By using (25), we have

" j_(1_JP)2 -I 00 " " "

IE(npost I L(O) = n) = - L PmJrmQm(x)Qn(x)d1/J(x)
_(l+JP)2 X m=O

j

_ (l _ JP)2 X + 2 - p " " "
= - 3 (;l(x; p)Qn(x)d1fr(x),

_(1+JP)2 X

where we have used (27) in the last step. Now, from [7], we know that

j

_ (1 _ JP)2 1 " " " n + 2
2"<J2(x; p)Qn(x) d1fr(x) = --,

_(1+JP)2 X 2 - P

1

- (1 - JP)2 -I " "" n + 2 ( 4 )
-3C2(x; p)Qn(x)dljJ(x) = (2 )(3 2) n + 1+ -2- ,

_(l+JP)2 X - P - P - P

and then

" n +2 ( 1 +2P)
IE(npost I L(O) = n) =-- n + 1 +-- ,

3 - 2p 2 - P

,,/ _ 2(n + I)(n + 2) ( 1 1 + 2P)
Pn - 3 2 n + + 2 .- p -p

Consequently, we have

~ "," 2 ~ 2 ( 1 + 2P) "L...J PmJrmQm(x) = -3-- L...J(m + 1) (m + 2) m + 1 +-- o" Qm(x).
- 2p 2 - p

m=O m=O

On the one hand, we have

00L (m + 1)3(m + 2)pm Qm(x)

m=O

a4ci a3ci a2ci aci "= p4_
4

(x; p) + Ilp 3 _ 3 (x; p) + 31p2_2 (x; p) + 22p-(x; p) + 2<J2(x; p)at at at at
(2 - p)(3 - 2p)(4 - 3p) + (30 - 15p - 2p2)x + 8x 2 "
------------:4:----------<J2(x; p). (29)

x
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On the other hand,

00

L(m + 1)2(m +2)pmQm(x)

m=O

977

a3& a2& a& "
=p3 at3 (x;p)+7 p2 at2 (x;p)+10Pih(x;p)+2<2(x;p)

6 - 7p + 2p 2 + 4x "
- 3 C2(x; p). (30)

x

By using the fact that [7], for all m ~ 0, can be expressed as

j - O - ,J,O)2 -1 " ,.. ,..
-(2(x; p)Qm(x) d1/J(x) = 1,

_(1+,J,O)2 X

00 2(1 + 2p)
L(m + 1)2(m + 2)pm = 4 '
m=O (1 - p)

we deduce that, from (30),

j - O - ,J,O)2 1" 2" 2(2+p)
4'2(x; p) d1/J(x) = 2 4'

-O+,J,O)2 x (2 - p) (1 - p)

where we have used the identity from [7],

j - O - ,J,O)2 1 4
2(l-p) -3 <2(x;p)2d..fr(x) =lE(S2) = 0 )2(2 )'

_(l+,J,O)2 x - P - P

Similarly, by using (29) and the fact that

00 2(1 + 7p +4p2)
L(m+l)3(m+2)pm= 5'
m=O (1 - p)

we have

j - O - ,J,O)2 -1 " 2'" 4(6 + 5p - 4p2 - p3)
-(2(x; p) d1/J(x) = .

_(l+,J,O)2 x 5 (2 - p)3(1 - p)5(3 - 2p)

Hence,

~ 2 ( 1+2P ) ,..LJ(m+l) (m+2) m+l+ 2-p pm Qm(x)
m=O

(2 - p)2(3 - 2p)(4 - 3p) + (2 - p)(27 - 19p + 2p2)x + 4(3 - 4p)x2 ,..
4 Cl(x; p).

(2- p)x

It follows that

E(fi2 ) _ -2(1 - p)
post - (3 - 2p)(2 - p)

(j - O - ,J,O)2 (2 - p)2(3 - 2p)(4 - 3p) ,.. 2'"
x 5 C2(x; p) d1/J(x)

-O+.JP)2 x

j - O - ,J,O)2 (2 - p)(27 - 19p + 2p2) + 4(3 - 4p)x " 2"')+ 4 '2(x; p) d1/J(x)
-O+,J,O)2 X
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and, hence,
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A 2 2 (2 lE(S4)
lE(npost) = (3 _ 2p)(2 _ p) (2 - p) (3 - 2p)(4 - 3p)~

2 lE(S3) lE(S2»)
- (2 - p)(27 - 19p + 2p )-- + 4(3 - 4p)-- .

6 2

By using the fact that

3 j-O-v'P)2 1 A 2 A 12(2 + p)
IE(S ) = 6(1 - p) 4'2(X; p) d1/r(x) = (2 )2(1 )3'

-O+v'P)2 X - P - P

4 j-O-v'P)2 -1 A 2 A 96(6 + 5p - 4 p2 - p3)
lE(S ) = 24(1 - p) -5 '2(X; p) d1/r(x) = (2 )3(1 )4(3 2)'

-(1 +Jp)2 X - P - P - P

we eventually obtain
IE fi2 _ 4(3 + 16p+ p2 - 8p3)

( post) - (3 - 2p)(2 - p)(l _ p)4'

4. Numerical results

(31)

In Figure 1 we have displayed the mean value of prepayment and postpayment pricing as a
function of the load p for exponential service times with unit mean. The approximation ofVCG
pricing can satisfactorily be approximated by homographic pricing with a = 1 and b = -!. In
addition, for this latter pricing policy the mean values of postpayment and prepayment prices
are remarkably close to one another. This means that under these pricing policies, the revenue
of the operator and the price to pay by customers do not significantly depend on the postpayment
versus prepayment policy.

To study the volatility of prices, we compute the coefficients of variation (i.e. the ratio of
the variance to the mean) of approximated VCG prepayment pricing and postpayment pricing.

100
-0- VCG prepayment

<> Approx. VCG prepayment
........ Approx. VCG postpayment

10

0.1 -+---- r-------r---,...--~---,r-------r-__r__-..,____, _,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

FIGURE 1: Mean values ofVCG and approximated VCG prepayment and postpayment pricing payment
as a function of the load p.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

-0- VCG prepayment
-<>- Approx. VCG prepayment
--cr- Approx. VCG postpayment

(a) VCG pricing

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 -P---r-----r----.-,...-.............---r----.--..-----.----.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

-0- Postpayment
-0- Prepayment

(b) Congestion pricing
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FIGURE 2: Coefficients of variation of prepayment and postpayment pricing as a function of the load p.

It is worth noting that if we rescale prices so as to equate the means, the comparison of the
second moments amounts to comparing the coefficients of variation of the original prices. We
have also reported the coefficient of variation of the pure vca prepayment pricing, which can
easily be numerically evaluated. The results are reported in Figure 2(a).

We deduce from Figure 2(a) that the approximating vca scheme is sufficiently close to the
pure vca scheme. On the basis of this observation, we can observe that postpayment is much
more volatile than prepayment. This can easily be understood by examining limiting cases.
When p ~ 0, S ""'V a and, hence, npost ""'V a /2 and then the coefficient of variation of is equal

JIE(a2)/IE(a)2 - 1 ""'V 1, while npre ""'V Ao/2 and has a very small coefficient of variation.

Similarly when p ~ 1, npos t ""'V S and the coefficient of variation is the coefficient of

~ariation of the sojourn time, and is approximately equal to J3. For prepayment, we have
npre ""'V AlL and the coefficient of variation tends to 1.

From the above analysis it appears that for vca pricing, prepayment is less volatile than
postpayment. From a practical point of view, prepayment thus appears more suitable for
customers because prices are less volatile and the scheme is much more simpler to implement.

Another key feature of vca pricing is the domination of prepayment over postpayment for
all load values. This property is also satisfied for congestion pricing. From (8) and (9), the
coefficient of variation for prepayment in the case of congestion pricing is given by J4p + p2
and for postpayment, from (28) and (31), the coefficient of variation is

6 + 59p + 10p2 - 29p3 - 2p4

(2 - p)(1 + p)2(3 - 2p)

Weobserve that coefficients of variation are greater under congestion pricing than those under
veapricing. This latter policy is, hence, less volatile than congestion pricing.

https://doi.org/10.1239/jap/1450802746 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802746


980 F. M. GUILLEMIN AND R. R. MAZUMDAR

5. Conclusion

In this paper we have developed a general method of studying pricing policies in packet
networks where bandwidth is shared according to the equal share principle. The method has
particularly been applied when flows have an exponential volume of data but some results hold
for general volume distributions.

From the numerical results obtained in this paper, it appears that prepayment is both less
volatile (less fluctuations in the price for the customer) and much easier to implement. The
operator does not have to track the flow for all its lifetime. The price can be computed at
flow arrival. Further studies are necessary to understand whether these results hold under other
bandwidth sharing principles (for example, in the presence of head-of-line priority traffic or
weighted fairness).
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