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SPECTRAL ANALYSIS ON UPPER LIGHT CONE IN R3 

AND THE RADON TRANSFORM 
ANTONI WAWRZYNCZYK 

Introduction. The upper light cone L in R3 is a homogeneous space of the 3-
dimensional Lorentz group G. It may be identified with the space of horocycles 
in the upper hyperboloide H which is the symmetric space associated to G. 
There exists a duality between H and L (see [5] p. 144) and a general procedure 
leads to a generalized Radon transform: 

R: <D(H)-><D(L) 

and the dual Radon transform 

B : £ ( L ) - + £ ( / / ) . 

These operations commute with the natural action of the group G. It was 
proved in [12] that the spectral analysis holds in the space £ ( / / ) with respect 
to the system of functions given as follows: 

H 3 x —y {x\pY, p e L, /x G C. 

where (-|-) is the indefinite group invariant scalar product on R3. 
In the present paper we study the problem of spectral analysis in the space 

*E (L). One finds that the system of functions 

L3p-+(x\pY, xEH 

is not sufficient for obtaining the spectral analysis on L, although the duality 
between H and L can suggest it. The reason is that in *£ (L) there appear finite 
dimensional and discrete series of irreducible representations of G. 

Nevertheless, we obtain a spectral analysis theorem for a larger class of el­
ementary functions (Theorems 5.3 and 5.4). It permits us to characterize in 
terms of spectral analysis the G-invariant space ker#. In Section 6 we prove 
also a theorem of Pompeiu type, that is the necessary and sufficient condition 
for a compactly supported distribution on L to span by translations and linear 
combinations a dense subset in T, (L). 

1. The group and its homogeneous spaces. Throughout what follows G 
will denote the Lorentz group in three dimensions, that is the group of all linear 
mappings in R3 which preserve the form: 

(x\y) := -xiy{ - x2y2 + x3y3 
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and the sign of X3. 
Let us distinguish in G the following three 1-parameter subgroups: 

I f\ 0 0 \ 
A:= la(t)\a(t):= \ 0 chf shf , ' G R 

I VO shr chtJ 
( f cosO sin0 0\ ] 

K:= lk(0)\k(6):= - s i n 0 cos0 0 L f l G R 

Every element g € G can be represented in a unique way as 

g=g(91t,s) = k(6)a(t)n(s) 

(the Iwasawa decomposition). 
The group N conserves in R3 the planes given by the equation xi — X3 = 

(x\po) = const., where /?o := (0,1,1). We denote also XQ := (0,0,1). The point 
xo is K -fixed and po is N -fixed. 

The orbit H : = Gxo is the upper hyperboloide and as a homogeneous space 
is isomorphic to the quotient G/K. The upper light cone L := Gpo is in turn 
isomorphic to G/N. 

For a given homogeneous space (G, Y) and a function / on F we denote by 
Lg the translation 

(1.2) L g / 0 0 : = / ( £ - ' ) ' ) , g€G,y£Y. 

The representation G 3 g —* Lg will be referred to as the regular representation 
of G. 

We are principally interested in the action of the group G in the spaces *£ (//), 
£(L) and !>(//), 2)(L) of all smooth functions and all Schwartz test functions 
on H and L, respectively. The topology in *£ is the usual Fréchèt topology of 
the uniform convergence with all derivatives on compact sets. In the space (D 
we have the topology of compact convergence with all derivatives. The dual 
space (D ' is the space of all distribution and £ ' can be identified with the space 
of compactly supported distributions. The group G acts continuously on *£ and 
*D by means of the operators Lg and on the dual spaces *D', T,' by means of 
contragredient representation. 

Let T e £'(G) and S G <D'(Y). The convolution T * S is the distribution on 
Y defined by the formula 

(1.3) T * S ( / ) := Tg®Sy(f(gy)), f G 0 ( 7 ) . 
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The invariant measures on K, A, N respectively can be chosen in the following 
way: 

r2n 

(1.4) J fdk:= ±-Jn f(k(6))d9; 

(fda:= / if(a(t))dt 
JA JR 

/ (fdn := / (p(n(s))ds. 
JN JR 

In virtue of the Iwasawa decomposition the Haar measure on G can be defined 
as follows: 

(1.5) f fdg := f [ [ f(ka(t)n)eldkdtdn. 
J G JK JR JN 

On the manifold H we can define the following G-invariant measure: 

/ fdm:= / / f(anxo)dnda. 
JH JK JN 

After determining a G-invariant measure dy on a homogeneous space y we are 
able to inject the space £ (F) into D'(F) in such a way that the translations in 
£ (F) coincide with the contragredient action of G on <D'(Y). Namely, given 
/ G <E(Y) we put: 

-L / ( / ) ( V ) : = / f<pdy, pe<D(Y). 
JK 

With the aid of the Haar measure on K we can introduce the operator P : 
£ ( G ) - • £ ( / / ) as follows 

Pf(gK):= [ f(gk)dk. 
JK 

The operator P is surjective and commutes with the regular representation. A 
distribution T G £ ' ( / / ) can be considered as a compactly supported distribution 
on G according to the formula: 

f ( / ) : = T ( P / ) , / G ©(G). 

The space *£'(//) becomes now a convolution algebra with respect to the 
operation defined by the formula: 

7 * 5 := f * 5 , T,5 G £ ' ( # ) , 
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the right hand side being defined by (1.3). 
The space £>(//) constitutes a subalgebra of *£'(//). 
Every point p G L determines a subset £p CH called a horocycle and defined 

as: 

Çp:={xeH\(x\p) = l}. 

Let us observe that g£p - £gp. In particular every horocycle is of the form 
gÇpoig £ G- Since the isotropy group of the point £Po is just N we can identify 
the space of all horocycles with G/N = L. 

In a similar way there is a one-to-one correspondence between the points of 
H and subsets of L defined by 

x := {p£ L\(x\p) = 1} for x eH. 

We observe that Jto = Kpo and (gxY = gx. The sets x C L will be referred 
to as circles in L. 

2. The Fourier, the Radon and the dual Radon transforms. Let us con­
sider on H X L the family of functions given by: 

H XL3(x,p)-*(x\pY, peC. 

We shall use the notation: 

e^P{x) := {x\pY and 

e^(p) := {x\pY, x G H,p G L. 

The invariance of the form (-|-) leads to relations: 

yZA) en,gx ~ LjgeyL^c and ev,gp ~ Lgeii,P' 

In particular the functions e^Po are N -fixed and the functions e^Xo are A'-fixed. 
We have: 

(2.2) e^(ka(t)p0) = e^(kp0)e^ and 

e^Po(na(t)x0) = e~^. 

We shall refer to the functions epçc on L and to e^p on H as to the exponential 
functions on corresponding manifolds. 

The Fourier transform of a function / G (D(H) is defined by the formula 

(2.3) f(\p) := / e_iX_lnp(x)f(x)dm(x\ A G C,p G L. 
J// 
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For T € £ ' ( / / ) we put: 

(2.2) T(\,p):=T(e_iX.l/2,p). 

By the very definition one obtains: 

(2.5) (LgTT(\, •) = Lgt(\, •) and 

f(A,fa(Opo) = ^"(,'A+1/2)/I,(A,*po). 

The Fourier transform originally defined on C X L is uniquely determined by 
its values on C X Kpo = C X S1. The restriction of the Fourier transformation 
to the space r£/(AT\//) of A'-invariant and compactly supported distributions is 
called the spherical Fourier tansform on H. 

We shall write 

î(A):=î(A,/>0). 

THEOREM 1.1. [5] The spherical Fourier Transform on H is an isomorphism of 
the convolution algebra <£/(AT\//) onto the space As of all holomorphic functions 
(p on the complex plane satisfying the following conditions: 

l > ( - z ) - y>(z), 
2° There exist constants /?, m, r > O such that 

\<P(Z)\ £R(\ + |z | r^i i m z i . 

We observe that the image of the spherical Fourier transform on H is just the 
subalgebra of all even elements in the algebra of the classical Fourier transforms 
of the elements of £'(R). 

The Radon transform on H is the mapping which assigns to a function / G 
£>(//) the function Rf e<D(L) given by the formula: 

(2.6) Rf(gpo):= [ f{gnx0)dn. 
JN 

The value Rf(gpo) can be interpreted as the mean value of the function / 
on the horocycle g^Po. 

The dual Radon transform maps £(L) into *E(H) according to the formula: 

(2.7) Bxl>(gxo):= [ ^(gkp0)dk. 
JK 

The value Bifcigxo) is the mean value of ip on the circle gkpo. Both operations 
commute with the translations acting on corresponding manifolds. 
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There is a simple relation between the Radon and the Fourier transforms on 
H. Let / E £>(H). We have 

f(^kpo) = [ f(x)(x\kp0)-
lX-l'2dm 

JH 

= [ f(kx)(x\kpo))-lX-l/2dm(x) 
JH n f(ka(t)nxo)(a(t)nxo\p)~iX~l/2dndt 

= f e{iX+l/2)t J f(ka(t)nx0)dndt 

= [ e{iX+l/2)tRf(ka(t)p0)dt. 
JR 

The symmetric space Fourier transform of / G (D(H) is then equal to the 
classical Fourier transform of the function 

R3 t-^e^2Rf(ka(t)p0). 

Let us consider on *D (L) the operator given by the formula 

<p(\,k):= [ e^+l^^(ka(t)p0)dL 
JR 

Then we have 

(2.8) f(\kp0)^(Rf)~(\,k). 

In particular for / G (D(K\H) one obtains: 

/(A) = (/?/HA,/:). 

PROPOSITION (1.2.) Let V> G D(/T\L). Then V> € R<D(K\H) if and only if the 
function R 3 / - > et/2xfj(a(t)po) is even. 

Proof In virtue of the formula (2.8) and the inversion formula for the classical 
Fourier transformation we obtain for any / G (D(K\H) : 

(2.9) F(t) := e^RfiaiOpo) = [ /(À)é>~/A'JÀ. 
JR 

Taking into account that / is an even function (Theorem 1.1) we observe that 
F is even. 

On the other hand if the function 

t -> e^tpiaiOpo) 
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is even its classic Fourier transform belongs to (D(K\Hy, hence for some ip G 
<D{K\H) we have: 

[ R<p(a(t)p0)e
(iX+l'2)tdt = [ e'fiiKaWfxùe^dt. 

JR JR 

By the injectivity of the classical Fourier transform we obtain Rip = X/J. 

3. Some properties of invariant subspaces in *£ (L). The manifold L has 
an additional structure, namely that of the multiplication of elements by positive 
reals. This action obviously commutes with the group action. We denote: 

(3.1) iit)f(p):= f(elp). 

For a given \i G C let us denote by £M(L) the space of all elements of £(L) 
which satisfy: 

(3.2) f(rp) = r*f(p), r > 0. 

The space 1^ is invariant with respect to the left regular representation of G. 
The elements of *E^(L) are uniquely determined by their values of the orbit 

B:=Kp0 = {peL\p3 = 1}. 

For any g G G and b G B we have: 

= f(g~X-b){gx0\bY = e^igxoyfig-'-b), 

where 

h gb 

8 (g-lx\b) 

defines an action of G on B. We introduce a representation of G on £(B): 

U^f(b):=(gx0\b)"f(g-l-b). 

Then we have 

(3.3) Lgf\B = U£(f\B) for / € %(L). 

Let 

[<pdb: = [ 
JB JK 

ip(kp0)dk. 
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A direct calculation shows: 

(3.4) [(g o b)db = [ p(b)(gx0\b)-{db. 
JB JB 

We denote 

(¥#):= [ <pW(b)db. 
JB 

Then we obtain by applying (3.4): 

(3.5) (U£<p\tl>) = M V - 1 V 0 -

In particular 

(f/;-'/viV') = (^it/;rl/2V'). 

For an integral value // = n the space £„(L) contains an invariant subspace 
consisting of restrictions to L of all homogeneous polynomials of order n. In 
order to describe all invariant subspaces in T^iL) we introduce the following 
family of functions on B : 

(3.6) em(k(0)po):=eimB. 

PROPOSITION 3.1. 1° If p, G C is not an integer then the representation U^ is 
irreducible. 

2° If p = n G NU{0} then in the representation space £ ( # ) there exist three 
invariant subspaces: 

F+ 

1 n 

~En 

= closed linear span of \e\\k ^ «}, 

= closed linear span of {ëk\k ^ — n) and 

3° If p — —n,n G N then in the representation space there exist three 
invariant subspaces: 

F-n 

F+ 

1 —n 

— closed linear span of {ëk\k ^ — «}, 

= closed linear span of {ëk\k = n} and 

= FI + Ft . 

The space Fzn is just the annihilator of the space Ff_ { with respect to the 
form ( | ) . We shall denote by Ff, n G Z the subspace of £M of those elements 
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whose restrictions to B belong to Ff\ similarly En := F ' D F ^ n G N U {0} 
and E-n :— FZn + Ftn. By virtue of (3.3) all these spaces are G-invariant. 

Let us introduce: 

(3.7) e^k^)a(t)p0):=eM+^. 

We shall also consider the restrictions of functions on L to the orbit Ap0 which 
can be considered as a function on R. Given / G £ (L) we write 

(3.8) f\t):= f(a(t)Po). 

Then we have 

(T(s)f)A(t)= fA(S + t). 

Let / G *£ (L). By the Fourier series of / we mean the decomposition: 

00 

(3.9) f(k(0)p) = YJ ein0fn(p\ where 
n=-oc 

fn(p):= ^J\~in9f(k(e)p)d0. 

The function / „ belongs to £(L) and satisfies 

/ „ (* (%) = eMf(p). 

The series (3.9) converges in 'E(L) see [9]. In particular we have 

oo 

f(k(8Mt)p0) = X) ' "* /«« . 

For a given closed and ^-invariant subspace V C £(L) we shall denote by 
Vn the subspace of V consisting of the functions / „ , / G V and by V„ the 
space of all functions / £ , / G V. In the sequel we are studying the invariance 
properties of the spaces V„ for V being G-invariant. 

PROPOSITION 3.2. Let V C ^(L) be a closed and G-invariant subspace. Assume 
that f £VQ,(P£ 2)(R) and suppose that e^2(f is even. Then f * (p G VQ. 

Proof. Let u G <D(K\G/K) md ^ £ V0 = V n£ ( /^ \L) . The function 

L 3p—» I u(g)ip(gp)dg 
JG 
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also belongs to the space Vo and then the function 

R 3 f - > / u(g)\l)(ga(t)p0)dg 
JG 

is an element of VQ. 
Representing the Haar measure on G in the form (1.5) we obtain: 

7(0 := / u(g)i/j(ga(t)po)dg 
JG 

= u(ka(s)n)ip(ka(s)na(t)po)esdkdsdn 

K R N 

= u(a(s)n)dnip(a(s)a(t)po)es ds 

R N 

/ Ru(a(s)p0)e
silj(a(s - t)p0)ds. 

JR 

According to Proposition 1.2 the function 

s -> es/2Ru(a(s)p0) 

is even hence 

esRu(a(s)po) = Ru(a(—s)po). 

We obtain 

7(0 = / Ru(a(-s)p0)ilj(a(s - t)p0)ds = f * (p(t) 
JR 

where 

fit) := il>(a(t)po) = i^(t) and <p(s) := Ru(a(s)p0). 

The proof follows. 

COROLLARY 3.3. Lef / G ^ and ter T G £'(R) be swc/z that ell2T is even. 
ThenT* f GV0

A. 

Proof Proposition 3.2 proves the statement for the distributions given by 
the test functions. By the density of £>(R) in !E'(R) and the continuity of the 
mapping 

£'(R) X <£(R) 3 (7\ / ) -* T * / G £(/?) 

the proof follows. 
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Let us denote by £/(!*) the algebra of all even elements of £(R). 

COROLLARY 3.4. IfV is closed and G-invariant then the space e'/2VA of all 
functions of the form ell2 f, f EVQ is a ^{^-convolution module. 

Now, we are going to deduce the same invariance property for functions which 
not necessarily belong to VQ but satisfy a special condition of analicity. 

Let us define 

D0V'.= ^(0) , <p€£(R). 

Definition. A function / G £ (L) will be called A-analytic if 

00 

(3.10) 7{t)f(gp0) = TL^DZ(lg-if)
A 

and the series converges in £ (R) for all t G R. 

Given / E *E(L) we denote by V(f) the closed linear span of all functions 
L8f,geG. 

We are going to prove: 

PROPOSITION 3.5. Let f G £(L) be A-analytic. Then the function 

xj) := e''2Tit)f + e~^M-t)f 

belongs toV(f)for all t G R. 

Proof. As proved in [5] every differential operator D on L which commutes 
with the regular representation is of the form: 

(3.11) Df(gpo) = P(D0)(Lg-ify*, 

where P(-) is a polynomial with constant coefficients. Let us denote by g,a, n 
the Lie algebras of the groups G,A,N respectively. By U(g) we denote the 
enveloping algebra of g and by Z(g) its center. The differential of the regular 
representation of G on £ (L) give us a representation of U(g) on £ (L) by means 
of differential operators. This action of U(g) conserves closed G-invariant sub-
spaces. In particular the elements of the center Z(g) define differential operators 
on *£(L) commuting with the regular representation, thus being of the form 
(3.11). The determination of the corresponding polynomial P can be done with 
the aid of the Harish-Chandra isomorphism ([9] Lemma 2.3.4). If Z G Z(g) we 
have 

(3.12) Zf(gpo) = Lg-iZf(po) = Z(L8-t /)(po). 
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On the other hand Z = Y + Q, where Y £ U(a) and Q belongs to the ideal 
U(g)n. Since the elements of the ideal vanish on (E(L)(= £(G/A0) we obtain 
Zf = Yf. 

Let us identify a = R by chosing d/dt as a base in a. The element Y 
considered as a polynomial on a* = R is mapped into a symmetric polynomial 
under the application 7 defined by: 

7 p ( * ) : = p h c - M , x£R ([9] p. 168). 

Let us consider YQ := 7_1(*2) and let ZQ = Y$ + g G Z(g). Then 

2 

'•-(I-;)-=*'• 
The differential operator 

dt 2 

assigns to a function <p £ *E (R) the element 

- / /2 ^ f/2 
e ' — e I œ. 

dt 

In virtue of (3.12) and the last statement we obtain 

LEMMA 3.6. For any f £tE{L) the function 

(3.13) L 3 gp0-+Z0f(gp0) = Yof(gpo) = X2(Lg-> f)A 

,d2 

dt^ 

belongs to V(f). 

= e<l^e<l\L^ f)\V) 

Let us note that, assuming the convergence of the series in question we can 
write for y £ £ (R) : 

\k=0 ' k=0 

= e'1'2 ({jit) + Ti-t))e''2<p) (0) 

= e'/2ip(t) + e-'^ipi-t). 
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If we apply the formula to the function (L^-i/)A , (the convergence of the 
series is assured by the supposition of / being A-analytic) the right hand side 
becomes the function ip and the left hand side as a function of the variable gpo 
belongs to V(f) in virtue of the Lemma 3.6. The proof follows. 

As a corollary we obtain 

THEOREM 3.7. Let f G £(£) be an A-analytic function. Then the space 
(e'^Vif))* C £(R) is an <ES'(R)-convolution module. 

Proof. If T G ^ ( R ) is symmetric then 

Tt(e''2f(ga(t)p0) + e'^figai-Opo)) = 2T(e'/2(Lg-i f)A). 

As a function of p — gpo this element belongs to V(f) according to Proposition 
3.5. The function 

R 3 s — Tt{etl2f{a(s 4- t)p0)) = e~sl2T * (e1'2 ff(s) 

belongs then to V(f)A. This ends the proof. 

Corollary 3.4 and Theorem 3.7 suggest the following 

Conjecture. If V C £(X) is closed and G-invariant then e^2VA is an £/(R)-
convolution module. 

4. Spectral analysis for '£/(R)-modules. The spectral analysis theorem of L. 
Schwartz describes translation invariant closed subspaces in *E (R) as the spaces 
generated by functions of the form xmelXx

1X 6 C,m G N. A closed subspace 
V C 'E(R) is translation invariant if and only if it is an £'(R) convolution 
module. 

Let us consider 

(4.1) V1 := {T G £'(R)|(r , if) = 0, ^ G V}. 

The annihilator space V 1 is an ideal in the convolution algebra 'E'iR). By 
the Hahn-Banach theorem 

(4.2) V = (K 1 ) 1 := {^ G £ ( R ) | < 7 » = 0, T G V}. 

The problem of describing the closed <£/(R)-modules reduces to the descrip­
tion of ideals of £'(R). 

In this section we shall denote by / the classical Fourier transform. 
The space / := (V^T forms an ideal in the algebra A — (£'(R))". The 

theorem of L. Schwartz characterizes the ideals of A in terms of its spectrum. 
Given an ideal / C A we denote: 

Sp7 := {A G C|V>(A) - 07 V G / } . 
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If A G Sp / we denote by m(A) the multiplicity of À, that is the maximal 
natural number such that all elements of / have in À zero of order ^ m(X). 

THEOREM 4.1. [8] (Spectral synthesis theorem) Each ideal J C A is uniquely 
determined by the set of pairs (A,m(A)), AG Sp/ . 

If particular the theorem states that V J= 0 if and only if Sp / =£ 0 for 
/ := (V x r , V being a closed £'(R)-module. 

A simple calculation proves that A G Sp/ with multiplicity ^ m(A) if and 
only if the function xmelXx belongs to V for every m ^ m(A). The spectrum of 
V is defined as the spectrum of (V1)". In this way one obtains the version of 
the Schwartz theorem mentioned at the beginning of the section: 

THEOREM 4.1'. Every translation invariant and closed subspace V C £(R) 
is generated by all functions of the form 

xmeiXx, mGNU{0} 7 A G C 

contained inV.IfV =£ 'E(R) then SpJ is a countable set without accumulation 
points. 

The space £/(R) of all even distributions forms a subalgebra of £'(R) whose 
Fourier transforms is the algebra As of all even elements in A. The spectral 
synthesis theorem for As was proved in [4]. 

THEOREM 4.2. Let J be an ideal in As and let I be the ideal generated in A 
by J. Then J = I C\AS. In particular J is uniquely determined by the set of pairs 
(A,m(A)),AG Sp/ = Sp/. 

This theorem permits us to describe the '£/(R)-modules in ^ (R) . Let V C 
£s(R) be such a module. We define 

(4.3) V~:= (VL)n^(R) and (V~f := (V7-)1 H <ES(R). 

Again, by the Hahn-Banach theorem we have 

(4.4) V = (V±f. 

Let T EV- and let Ao be zero of order m of the transform T, that is let 

dk * 
— Ir(A0) = 0 for all k ^ m. 

Then we have 

0 = 4r-JAeiXx)\x=x0 = Tx((ix)keiXn for all k£m, 
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and by the symmetry the same holds for — Ao. In virtue of (4.4) we deduce that 
A G Sp(V-)" with the multiplicity m(\) if and only if the symmetric parts of 
the functions xkelXx and xke~lXx belong to V for all k ^ m(A). 

By applying Theorem 4.2 we get 

THEOREM 4.2'. Each closed £/(R)-module V C £5(R) is generated by all 
functions of the form 

xk ch AJC, A G Sp V, k-even and less or equal to m(X) and 

xk sh AJC, A G V,k-odd and less or equal to m(\). 

Sp V is countable and has no accumulation points. 

The last result solves the problem of spectral synthesis in the space (E{K\H) 
(see [1] or [11]). In order to obtain at least the spectral analysis in the space 
*£ (L) we need information about the ^/-modules in the whole space *E (R). 

In the sequel we denote by Aai
 (Ea(R)1 £a'(R) the subspaces of all alternating 

elements in A, £(R) and £'(R) respectively. The spaces %(R) and 2^(R) are 
<E/-submodules of 'E(R) which contain no exponentials. We can suppose that 
on studying ^/-modules we should rather consider the functions of the form 

axkeXx + bxme'Xx 

as elementary functions on R. 
At the beginning let us assume that V C £o(R) is a closed £/(R)-module. The 

operator of derivation D : / —* / ' is continuous, commutes with the convolution 
and maps £y(R) onto 2i(R) with kernel consisting of constant functions. The 
space 

W := (D~W)n<Es(R) 

is closed and is a <£/(R)-submodule of *E5(R) hence is generated by the functions 

x2k ch AJC, Sp W, 2k ^ m(X) and 

x2k+1 sh AJC, Sp W, 2k + 1 ^ m(A). 

The module V is then generated by the derivatives of the above functions. If 
A G Sp W and A ^ 0 the multiplicity of A in V understood as the highest power 
of the variable JC appearing as a factor in this set of generating functions is equal 
to max (0, m(A)). The multiplicity of A — 0 in V is equal to max(0, m(0)). 

We have in this way a counterpart of Theorem 4.2': 

PROPOSITION 4.3. IfVC %i(R) is a closed %i^)-module then V is generated 
by all functions of the form 

Jc2shAjc and x2k l chjc 
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contained in V. If V =£ 'Ea(R) then the set of\Js for which some of above 
functions appear in V is countable and has no accumulation points. 

Passing to the general case, let V be a nontrivial, closed ^'-module in £ (R) 
and V1- C £/(R) its annihilator which is also an <£/-module. The space / : = 
(V^r C A is then an As -module. We shall consider now the possible relations 
of J to As and Aa. 

Case 1. If / C As then by Theorem 4.2 it is determined uniquely by Sp / 
and the multiplicities. The elements of V1- annihilate the whole space £a(R) as 
well as the functions: 

x*chÀJc,À G SpV,£ + 2m ^ m(X) 

xk sh AJC, A G Sp V, k = 2m + 1 ^ m(A). 

In this case V = £a(R) + (V-1)- = £fl(R) + (V H i;(R)). 
Case 2. Assume J CAa. Then we have V1- C 'EjCR) and 

v - (V x ) x = <E,(R) + (V H <Ea(R)). 

Applying Proposition 4.3 to the module V Pi ̂ ( R ) we get: 
The module V is generated by ^ ( R ) and by all functions of the form 

x2k~x ch AJC and x2k sh Ax contained in V. 
From now we can assume that neither (/ C J^LS) nor J C Aa. Let us consider 

the subspaces: 

Ws: = {f £As\3<peJ /(A) = ¥>(A)+v(-A)}, 

Wa: = { / e A a | 3 ^ 6 / /(A) = v(A)-¥>(-A)}. 

The space Ws is an ideal in As and Wa is an As- submodule of Aa. According 
to our assumption Ws =£ 0 and Wa ^ 0. 

Case 3. Suppose Ws ± As. According to Theorem 4.2 SpWs contains at least 
one point, say Ao G C. Then for any T G V1 one has 

0 = f(Ao) + f ( -Ao) - r x ( chA 0 x) . 

It means that the function ch Ao* belongs to V. 
Case 4. Let Wa ^ Aa. There exist an ideal I CAS such that 

Wa:={^(\) = \<p(\),<pel}. 

Since / is nontrivial we can choose Ao G Sp/. Supposing Ao =£ 0 we obtain 
for every T G V^: 

0 = -!-(f(Ao) - f(-Ao)) = ^Tx(sh\0x) 
Ao Ao 
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which implies that sh Xox G V. 
If Sp/ - {0} and m(0) = 2k > 0 then 

wa=^{x2k+l^eAs}. 

This being the case we have for all T € Vx : 

0 = ^ P T ( f (A) " f ( ~ A ) ) I A = 0 = ^((w)2*"1) 

which means that Jt2*-1 € V. 
(Note that in cases 3 and 4 if zero is the unique element of the spectrum then 

V is generated by polynomials.) 
Case 5. It remains to consider the case Wa = Aa and Ws — As. Let us define 

a relation R in As X Aa by the formula: 

xRy if x + j G / . 

If jc/ty and xRy' then 

We can lift the relation to As X (Aa/Ja) by putting 

xR[y] if */ty. 

This relation is an application commuting with the multiplication by elements 
of As:R(fx)= fRx. 

Since the algebra As contains the unity we obtain: 

Rx = R(x • 1) - xR(l). 

Let us fix a représentant jo of the class R(l). Then one has 

/ = {x + xy0 + Ja\x e As}. 

If in particular y — x + xyo + y, j €E Ja then 

*(A) = i(j(A) + y(-A)). 

Denoting j(A) := j(—A) we have for every y £J : 

j - 2 ^ + y)(yo + i ) = ( i + yo)y + 0 - yo)y e Ja. 
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Case 5A. If Ja = Aa then J + A which corresponds to the case V = 0 which 
was excluded. 

Case 5B. Suppose Ja = 0. This being the case the elements of / are of the 
form y = x(l + yo),x G As. If 1 + y0 is everywhere distinct from zero then the 
holomorphic and alternating function y0 does not take the values 1 and — 1. In 
virtue of the Picard theorem j 0 is constant hence zero and we obtain J = As 

once again. 
Case 5C. Finally we suppose Aa =£ Ja ^ 0. Let / be the ideal in As such that 

.all elements of Ja are of the form y(X) = À/(À), / G /. For any Ao G Sp/ and 
I G V 1 we obtain: 

0 =(1 + yo(Xo))t(X0) + (1 - yo(A0))f (-Ao) 

=rx(( l - yo(Xo))elXoX) + (1 + yo(A0))^"AaX). 

This implies that the function 

tfé>/AoX + be~iXoX 

belongs to V for a = 1 — jo(Ao) and b = 1 + jo(Ao). The function is nontrivial 
for each Ao-

All cases can be summarized in the following way: 

THEOREM 4.4 IfV is a nontrivial closed ^{^-module in *E(R) then there 
exists A G C such that the function 

aeiXx + be~iXx 

is nontrivial and belongs to V, or the identity function f(x) — x belongs to 
V. If the module V does not contain any function of the first kind then V is 
finite-dimensional and is generated by polynomials. 

5. Spectral analysis theorems for £ (L). In this section we apply Theorems 
4.1-4 to obtain results about spectral analysis and in several cases even spectral 
synthesis in the space *E(L). 

First let us distinguish a particular invariant subspace fAt C£(L) . Let 

# := {/ e <E(L)\ [ f(gkp)dk = 0, g EG, PeL}. 
JK 

This is the maximal invariant subspace of £ (L) which does not contain any 
A'-fixed elements. Let us note that in the case of the manifold H such a subspace 
is trivial. This fact is the reason of principal differences between the analysis 
on H and L. By the very definition it's clear that fA£ is closed, G-invariant and 
moreover invariant with respect to the operators T(0Î t G R. Since the regular 
representation of G commutes with r the subspaces 9^ C C\C are also invariant. 
By Theorem 4.V we obtain: 
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LEMMA 5.1. The space 0\[q
A is uniquely determined by its spectrum Spffy^ 

and the corresponding multiplicity function mq{\). 9^A is lineary generated by 
the functions of the form 

rVA ' , AGSpfA4A, m^mq(X). 

According to the lemma the functions el
q

x belong to fA£ for each A G Sp 9^A. 
Now, the integral equation defining 9s[ can be represented in the following way: 

0 = J Lr,e
i
q

x(kp0)dk = (U^ëq\ë0) = (ëq\U
l
g

lXrlë0) 

for all g G G. The space generated by the vectors 

u-iX~le0, gee 

differs from the whole space if and only if —/A — 1 = « G N (Proposition 3.1). 
Thus ty D %\ =£ 0 if and only if iX = —n — I and in this case n + 1 è \q\ 

according to Proposition 3.1.3. We have obtained 

PROPOSITION 5.2. The space 9{q,q G Z is finite-dimensional and linearly gen­
erated by the functions of the form: 

^(WMOpo) := tse-nt+iqd with 

n G N, n S \q\ and s ^ mq(—n). 

In particular this means that the representation of G in fÂ  is admissible and 
the character eiq0 occurs in fA£ with finite multiplicity which is less or equal to 

^mq(-n). 
n=\ 

The calculation of the multiplicities mq(\) q G Z is an open problem. 
Now, consider a closed and G-invariant subspace V C fA£. According to 

Lemma 3.6 the finite-dimensional spaces etl29{q
A are invariant with respect to 

the operator d2 jdt1. The eigenvectors of this operator in the space etl19{q
A are 

the functions 

and the elements of the Jordan base of the operator are of the form 

where P is a polynomial of order less than or equal to mq(—n). This leads to 

https://doi.org/10.4153/CJM-1988-067-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-067-7


SPECTRAL ANALYSIS 1477 

PROPOSITION 5.3. Every closed and G-invariant sub space V C C\[ is linearly 
generated by combinations of the functions VV,>M contained in V. 

Now, our purpose is to prove a spectral analysis theorem in £(£) hence, 
after obtaining even the spectral synthesis for subspaces of 0\i it is sufficient to 
consider invariant subspaces in £(L) whose intersection with 9\C are trivial. If 
V ^ 0 but ^ P l F = 0 we have Vo ± 0. In virtue of Corollary 3.4 the space 
V := ell2VQ is an <£/(R)-module. By Theorem 4.4 the space V contains for 
some À the function 

aeiXt + be~lXt with \a\2 + \b\2 ± 0, 

or the function / (f) — t. 
The space Vo then contains the element 

^(k(0)a(t)po) := ae{iX-x'2)t + be~(iX+l/2)t 

or the function 

if(k(e)a(t)p0):=te-i'2. 

The first function can be written as 

a**-1/2,*, + be-(i\+ 1/2),*, 

and the second as 

„0> • - a 

^-1/2^0 * aA A = - l / 2 

Taking into account the G-invariance of V we obtain: 

THEOREM 5.3. If V C *E (L) w nontrivial, closed and G-invariant but VD1A£ = 

e - i / 2 ^ G V for all x ^H, 

or there exist A, a, £, G C swc/i f to |# |2 + \b\2 > 0 and for all x G H the function 

aei\-\l2j + ^ - ( /A+1 /2 ) ,JC 

belongs to V. 

THEOREM 5.4. Each G-invariant and closed subspace V C £(X) such that 
V H fA£ =£ 0 contains for some n €N at least one of the functions 

^±(k(0)a(t)po) = e±ine-nt. 
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Proof. According to Proposition 5.2 we have in V D fA£ a function of the 
form 

V^,o(*(0MOpo) = eufi'm 

such that n ^ \q\. This element belongs to Ftn or Flw depending on the sign 
of q. Both spaces are carrier spaces of irreducible representations of G hence 
together with the above element the whole space Fln or FZn belongs to V. In 
particular i/;* or t/;~ belongs to V. 

Theorems 5.3 and 5.4 mean that the spectral analysis holds in the space £(L) 
with respect to the elemental family given by the collection of all functions 

V^, «GN; e{*\/2^ xeH 

and the functions 

^ / A - I / 2 ^ + ^ > - ( / A + I / 2 ) , ^ x€H, \a\2 + \b\2 > 0. 

Nevertheless, some additional information can be deduced with the aid of 
Theorems 3.7 and 4.4. Namely, we obtain 

PROPOSITION 5.5. Let V C *E(L) be a closed and G-invariant sub space. Assume 
that for some n G Z the space Vn contains some A-analytic function. Then Vn 

contains a function of the form 

<p„(.k(0)a(t)Po) ••= te""-''2 

or the function 

^</A-l/2) + ^ - ( / A + l / 2 ) ? | f l |2 + | f t |2 ^ a 

6. Comments and applications. The space *E (L) is mapped under the dual 
Radon transform (2.7) continuously into *£(//). Since the mapping B commutes 
with the group action, the space ker# is closed and G-invariant. By the very 
definition a function / belongs to 9\i if and only if for each t G R one has 
7 ( 0 / G ker#. In particular 9\C C keri? since fA£ is r-invariant. In the sequel 
we shall see that fA£ =£ ker#. This implies that ker# constitutes an example of 
a G-invariant subspace which is not 7-invariant. 

Let 

ipxigk) := BeiX-l/2^(gxo) = [ (xo\gkpo)lX-^2dk. 
JK 

The function ip\ is a zonal spherical function on H. It is known [5] that 
<f-x = (f\ for each À G C. In particular it means that 

ei\-l/2,x0 ~ e-«A-l/2,*o G kQrB' 
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By the G-invariance of keri? and the formula (2.1) the same is true for an 
arbitrary point x G H. By applyting the derivation with respect to A one obtains 

*/A-l/2,x e kerB f ° r a11 A G C a n d X E H' 

All these functions do not belong to fA£, hence fA£ ^ kerB. At the same time 
we observe that in kerB appear elementary functions of all frequencies À G C. 

On the Pompeiu problem on L. Let A C Rn be a compact set and let 
/ G /^(R"). The Pompeiu problem consists in asking if the condition: 

/ (x)dx = 0 for all rigid motions g 

implies / = 0 almost everywhere on Rn. If the answer is positive one says 
that A has the Pompeiu property. The problem is equivalent to the question if 
the translations of the characteristic function U span a dense subset in Ll(Rn). 
By the Tauberian theorem of Wiener the set A has the Pompeiu property if and 
only if the Fourier transform 1̂  is everywhere different from zero. 

Various generalizations of the Pompeiu problem were considered on R and 
on symmetric spaces of rank one ([1], [2], [3], [6], [7].) 

The results of the last section permit us to formulate a theorem of Pompeiu 
type for the manifold L. 

THEOREM 6.1. Let T G ŒJ'iL). The system of equations 

T(Lgf) = 0, for each g eG 

has in *£ (L) only the trivial solution / — 0 if and only if the following conditions 
are satisfied: 

a) For every A G C the functions 

H 3 x - • T(eiX_l/2iX) and H G x -+ T(e_{iX+l/2)iX) 

are linearly independent. 
b) Tie^]^) ± 0 for some x G H. 

c) For every n G N there exists Q G Z such that \q\ ^ n and 

?XVv,o) * 0. 

Proof. Let us denote 

V : = { / € £ ( L ) | r ( L s / ) = 0 , s € G } . 

/ . 
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The space V is closed and G-invariant. If V ± 0 then according to Proposition 
5.2 and Theorem 5.3 one of the following conditions is satisfied: 

1) ^ a - i / 2 ^ + be.{iX+l/2)iX G V for some À G C, 

\a\2 + \b\2 * 0 and all x G// , 

or 
3) V H0\C ^ 0 and consequently Ftn or FZn belongs to V for n G N. 
In the first case the condition a) is not satisfied: the case 2) contradicts b) and 

the case 3) contradicts c). Then the conditions a) b) c) are sufficient. 
Now, if a) is not satisfied then for some a, b G C and À G C we have 

(a, b) ± (0,0) and 

T(aeiX-l/2s + ^ - ( / A + I / 2 ) , J = 0 for all xeH. 

The nontrivial and G-invariant space spanned by the functions in parenthesis 
belong to V. 

If b) is not satisfied then the function 

is a solution of the system in question. 
If for some n G N and all q G Z such that q ^ n (or all ^ such that q ^ —n) 

we have 

7X0,,„,o) = 0 

then the space Ftn (or FZn) belongs to V. This ends the proof. 
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