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SPECTRAL ANALYSIS ON UPPER LIGHT CONE IN R*
AND THE RADON TRANSFORM

ANTONI WAWRZYNCZYK

Introduction. The upper light cone L in R? is a homogeneous space of the 3-
dimensional Lorentz group G. It may be identified with the space of horocycles
in the upper hyperboloide H which is the symmetric space associated to G.
There exists a duality between H and L (see [5] p. 144) and a general procedure
leads to a generalized Radon transform:

R:DMH)— D)
and the dual Radon transform
B :E(L)— EMH).

These operations commute with the natural action of the group G. It was
proved in [12] that the spectral analysis holds in the space E(H) with respect
to the system of functions given as follows:

H>x—{(x|p), peL,peC.

where (-|-) is the indefinite group invariant scalar product on R?.
In the present paper we study the problem of spectral analysis in the space
‘E(L). One finds that the system of functions

L>p—(x]p), xeH

is not sufficient for obtaining the spectral analysis on L, although the duality
between H and L can suggest it. The reason is that in £ (L) there appear finite
dimensional and discrete series of irreducible representations of G.

Nevertheless, we obtain a spectral analysis theorem for a larger class of el-
ementary functions (Theorems 5.3 and 5.4). It permits us to characterize in
terms of spectral analysis the G-invariant space kerB. In Section 6 we prove
also a theorem of Pompeiu type, that is the necessary and sufficient condition
for a compactly supported distribution on L to span by translations and linear
combinations a dense subset in E (L).

1. The group and its homogeneous spaces. Throughout what follows G
will denote the Lorentz group in three dimensions, that is the group of all linear
mappings in R* which preserve the form:

(xly) 1= —xiy1 — x2y2 + x3y3
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and the sign of x3.
Let us distinguish in G the following three 1-parameter subgroups:

1 0 0
A:= {a(t)'a(t) = ( 0 cht Sht) N € R}

0 sht cht
cosf sinfd O
K = {k(@)]k(0)2= (—sin@ cosf 0) ,GER}
0 0 1
1 s -
2 s?
N i= n(s)ln(s) = —S 1 - '7 7 5§ 6 R
P
S —2‘ 7‘

Every element g € G can be represented in a unique way as

g = g(8,t,5) = k(®)a(t)n(s)

(the Iwasawa decomposition).

The group N conserves in R? the planes given by the equation x; — x3 =
{(x|po) = const., where pg := (0, 1, 1). We denote also xq := (0,0, 1). The point
xp is K-fixed and pg is N -fixed. ‘

The orbit H := Gxy is the upper hyperboloide and as a homogeneous space
is isomorphic to the quotient G/K. The upper light cone L := Gpy is in turn
isomorphic to G/N.

For a given homogeneous space (G,Y) and a function f on Y we denote by
L, the translation

(12) Lyfo):=f@E"y), g€Gyey.

The representation G > g — L, will be referred to as the regular representation
of G.

We are principally interested in the action of the group G in the spaces ‘E(H),
‘E(L) and D (H), D (L) of all smooth functions and all Schwartz test functions
on H and L, respectively. The topology in £ is the usual Fréchet topology of
the uniform convergence with all derivatives on compact sets. In the space D
we have the topology of compact convergence with all derivatives. The dual
space D’ is the space of all distribution and E’ can be identified with the space
of compactly supported distributions. The group G acts continuously on £ and
D by means of the operators L, and on the dual spaces D', E’ by means of
contragredient representation.

Let T € E'(G) and S € D'(Y). The convolution T * S is the distribution on
Y defined by the formula

(1.3)  T*S(f):=T, ®85(f (), feD).
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The invariant measures on K, A, N respectively can be chosen in the following
way:

2m

(1.4) / faki= 2 [ F@)a6:
K 2m Jo

/ pda : / pla(t))dt
A R
/cpdn:=/<p(n(s))ds.
N R

In virtue of the Iwasawa decomposition the Haar measure on G can be defined
as follows:

(1.5) /fdg :=/]/f(ka(t)n)e'dkdtdn.
G kK JRJIN

On the manifold H we can define the following G-invariant measure:

ffdm:=//f(anxo)dnda.
H K JIN

After determining a G-invariant measure dy on a homogeneous space y we are
able to inject the space E(Y) into D’(Y) in such a way that the translations in
E(Y) coincide with the contragredient action of G on D’(Y). Namely, given
f € E(Y) we put:

1(f)(¢)2=/Kf<de7 peDX).

With the aid of the Haar measure on K we can introduce the operator P :
E(G) — E(H) as follows

Mmm;/fwm.
K

The operator P is surjective and commutes with the regular representation. A
distribution T € ‘E'(H) can be considered as a compactly supported distribution
on G according to the formula:

T(f):=T®Pf), f€DG).

The space E’(H) becomes now a convolution algebra with respect to the
operation defined by the formula:

T+S:=Tx*S, T,S€E'H),
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the right hand side being defined by (1.3).

The space D (H) constitutes a subalgebra of E'(H).

Every point p € L determines a subset §{, C H called a horocycle and defined
as:

& = {x € H|(x|p) = 1}.
Let us observe that g§, = &,,. In particular every horocycle is of the form
g&p,, & € G. Since the isotropy group of the point £, is just N we can identify
the space of all horocycles with G/N = L.

In a similar way there is a one-to-one correspondence between the points of
H and subsets of L defined by

x:={pell|(xlp) =1} forx €H.

We observe that Xy = Kpy and (gx)” = gx. The sets X C L will be referred
to as circles in L.

2. The Fourier, the Radon and the dual Radon transforms. Let us con-
sider on H X L the family of functions given by:

H XL5>(xp)—{x|p), peC.
We shall use the notation:

eup(x) := (x|p)* and
eux(p) = (x|p)*, x €H,p €L

The invariance of the form (:|-) leads to relations:
Q1) epge = Lgeyx and ey = Lgey,.

In particular the functions e, ,, are N-fixed and the functions e, ,, are K -fixed.
We have:

(22)  eux(ka(t)po) = e, x(kpo)e*' and
eupo(na(t)xg) = e M.

We shall refer to the functions e, , on L and to e, , on H as to the exponential

functions on corresponding manifolds.
The Fourier transform of a function f € D (H) is defined by the formula

@3 FOu0= [ enipfWdne, AeCpeL.
H
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For T € E'(H) we put:

22)  TO\p):=Tle_in-1/,)-
By the very definition one obtains:

Q25 LTy, ) =L, TT(\,) and
T\ ka(t)po) = e P VDT(N, kpo).

The Fourier transform originally defined on C X L is uniquely determined by
its values on C X Kpy = C X S'. The restriction of the Fourier transformation
to the space E£'(K\H) of K-invariant and compactly supported distributions is
called the spherical Fourier tansform on H.

We shall write

T := T\, po)-

THEOREM 1.1. [S] The spherical Fourier Transform on H is an isomorphism of
the convolution algebra E'(K\H) onto the space A; of all holomorphic functions
@ on the complex plane satisfying the following conditions:

1°<P(_Z) = 30(2)7

2° There exist constants R,m,r > O such that

le(2)| = R(1 + ]zl)’"e'“mz'.
We observe that the image of the spherical Fourier transform on H is just the
subalgebra of all even elements in the algebra of the classical Fourier transforms
of the elements of E'(R).

The Radon transform on H is the mapping which assigns to a function f €
D (H) the function R f € D (L) given by the formula:

2.6)  Rf(gpo):= / £ (gnxo)dn.
N

The value R f (gpo) can be interpreted as the mean value of the function f
on the horocycle g&p,.
The dual Radon transform maps ‘E (L) into E (H) according to the formula:

(27)  B(gxo) := / Y(gkpo)dk.
K

The value B(gxp) is the mean value of 1 on the circle gkpy. Both operations
commute with the translations acting on corresponding manifolds.
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There is a simple relation between the Radon and the Fourier transforms on
H.Let f € D(H). We have

F O\ kpo) = /H £ @) {xkpo) =" 2dm
- /H £ ) (xlkpo)) ™ ()
- /R /N f (hattynzo)aimo p) =~ V2dn di
= /R eliAt1/2) / f (ka(t)nxo)dn dt
- /R e I2NR £ (ka(t)po)dt.

The symmetric space Fourier transform of f € 9D(H) is then equal to the
classical Fourier transform of the function

R >t — €"?R f (ka(t)po).
Let us consider on D (L) the operator given by the formula
PO k) = fk N1 o (ka(t)po)r.
Then we have
2.8)  Fkpo) = RN k).
In particular for f € D(K\H) one obtains:

FO) = RFY (k).

PropostTioN (1.2.) Let ¢y € D(K\L). Then v € RD (K\H) if and only if the
function R 3 t — e'y(a(t)py) is even.

Proof. In virtue of the formula (2.8) and the inversion formula for the classical
Fourier transformation we obtain for any f € D(K\H):

2.9) F@) := e’/zRf(a(t)po) = / }‘t‘()\)eﬁ)‘/d)\.
R

Taking into account that f is an even function (Theorem 1.1) we observe that
F is even.
On the other hand if the function

t — e'/*y(a(t)po)
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is even its classic Fourier transform belongs to D (K \H ), hénce for some ¢ €
D(K\H) we have:

/ Rep(a(po)e ™ 17 dr = / e'Py(a(typo)e™dr.
R R
By the injectivity of the classical Fourier transform we obtain Ry = .

3. Some properties of invariant subspaces in £ (L). The manifold L has
an additional structure, namely that of the multiplication of elements by positive
reals. This action obviously commutes with the group action. We denote:

@G T f@) = fe'p).

For a given pu € C let us denote by E,(L) the space of all elements of E (L)
which satisfy:

B2 fep=rf@), r>0.

The space ‘E, is invariant with respect to the left regular representation of G.
The elements of E,(L) are uniquely determined by their values of the orbit

B:=Kpy={p €Llps = 1}.

For any g € G and b € B we have:

_ “1py _ g—lb -1
= f(g~" - b){(gxolb)* = eun(gxo) f(g™" - b),
where

gb
(g~ 'x|b)

defines an action of G on B. We introduce a representation of G on E (B):

g.b::

Uk £ (b) := (gxolb)* f (87" - b).
Then we have

(33) Lyf|B =ULSIB) for f € Eu(L).

/<pdb:=/ap(kpo)dk.
B K

Let
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A direct calculation shows:
(3.4) /B (g 0 bydb = /B o (b){gnolb)~db.
We denote
(oY) := /B @(b)y(b)db.
Then we obtain by applying (3.4):
(B.5)  Ukeld) = (p|U* ).
In particular
WL Pely) = (plU ).
For an integral value p = n the space ‘£,(L) contains an invariant subspace
consisting of restrictions to L of all homogeneous polynomials of order n. In

order to describe all invariant subspaces in E,(L) we introduce the following
family of functions on B:

(3.6)  En(k(B)po) := ™.

ProposiTion 3.1. 1° If u € C is not an integer then the representation U, is
irreducible.

2° If u = n € NU{O} then in the representation space E(B) there exist three
invariant subspaces:

il

:= closed linear span of {&|k < n},

n
Ff := closed linear span of {&|k Z —n} and
E,:=F NF".
3° If u = —n,n € N then in the representation space there exist three

invariant subspaces:

o

F7, := closed linear span of {&|k Z n} and

B i=F +F*,

:= closed linear span of {é |k < —n},

=+ *

The space F=, is just the annihilator of the space F", with respect to the
form (-|-). We shall denote by F, ,n € Z the subspace of E, of those elements
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whose restrictions to B belong to F; similarly E, := F, NF,", n € NU{0}
and E_, := FZ, + F*,. By virtue of (3.3) all these spaces are G-invariant.
Let us introduce:

BT enk@®apy) := ™M

We shall also consider the restrictions of functions on L to the orbit Apy which
can be considered as a function on R. Given f € E (L) we write

(38) A= f(a®po).
Then we have
) HXN) = fAs + 0.

Let f € E(L). By the Fourier series of f we mean the decomposition:

o

39 fk@®)p) = ) €™ fulp), where

n=-—-o

1 27 )
falp):= 5‘/ eﬁ"'af(k(e)p)d&
T Jo

The function f, belongs to E(L) and satisfies

fak@p) = ™ £ (p).

The series (3.9) converges in E (L) see [9]. In particular we have

fk@apo) = Y ™ fA).

n=-—-o

For a given closed and K-invariant subspace V C ‘E(L) we shall denote by
V, the subspace of V consisting of the functions f,, f € V and by V2 the
space of all functions f%, f € V. In the sequel we are studying the invariance
properties of the spaces VA for V being G-invariant.

ProposITION 3.2. Let V C ‘E(L) be a closed and G-invariant subspace. Assume
that f € VOA, © € D(R) and suppose that e'/*¢ is even. Then f x pEe Vé‘.
Proof. Let u € D(K\G/K) and ¢ € Vo = V N E(K\L). The function

L>p— / u(g (gp)dg
G
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also belongs to the space V and then the function
R> 1= [ uenisatopody
G

is an element of V.
Representing the Haar measure on G in the form (1.5) we obtain:

1(@): / u(g)p(ga(t)po)dg
G

/ / / u(ka(s)n)y(ka(s)na(t)po)e’ dkdsdn
K RN
= / / u(a(s)n)dn(a(s)a(t)po)e’ds

R N

= /R Ru(a(s)po)e*P(a(s — Dpo)ds.
According to Proposition 1.2 the function
s — es/zRu(a(s)po)
is even hence

e*Ru(a(s)po) = Ru(a(—s)po).

We obtain
1) = / Ru(a(—s)po)Y(a(s — Opo)ds = f * (1)
R

where

£ = Pa®pe) = ¢*(t) and (s) := Rula(s)po).
The proof follows.

CoroLLARY 3.3. Let f € Vé‘ and let T € E'(R) be such that e'/*T is even.
Then T * f € V.

Proof. Proposition 3.2 proves the statement for the distributions given by
the test functions. By the density of D (R) in ‘E’(R) and the continuity of the

mapping
E'R)X ER)S (T, f)—Tx* f € ER)

the proof follows.
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Let us denote by E/(R) the algebra of all even elements of E (R).

COROLLARY 3.4. If V is closed and G-invariant then the space e'/ ZV(;‘ of all
functions of the form e'l? f,f € Vé4 is a E/(R)-convolution module.
Now, we are going to deduce the same invariance property for functions which

not necessarily belong to V|, but satisfy a special condition of analicity.
Let us define

Doy := ¢'(0), ¢ € ER).

Definition. A function f € E (L) will be called A-analytic if

00

tm
(3.10) 70 f (gpo) = ) — DUy £V

m=0
and the series converges in E (R) for all 1 € R.

Given f € E(L) we denote by V(f) the closed linear span of all functions

L. f,g €G.
We are going to prove:

ProposITION 3.5. Let f € E(L) be A-analytic. Then the function
Y=l f + e Pr-nf

belongs to V(f) for all t € R.

Proof. As proved in [5] every differential operator D on L which commutes
with the regular representation is of the form:

(3.11) D f(gpo) = P(Do)(Lg-1 f),

where P(-) is a polynomial with constant coefficients. Let us denote by g,a,n
the Lie algebras of the groups G,A,N respectively. By l(g) we denote the
enveloping algebra of g and by Z(g) its center. The differential of the regular
representation of G on E (L) give us a representation of ll(g) on £ (L) by means
of differential operators. This action of 1l(g) conserves closed G-invariant sub-
spaces. In particular the elements of the center Z(g) define differential operators
on E(L) commuting with the regular representation, thus being of the form
(3.11). The determination of the corresponding polynomial P can be done with
the aid of the Harish-Chandra isomorphism ([9] Lemma 2.3.4). If Z € Z(g) we
have

(3.12)  Zf(gpo) = Lg-1Z f(po) = Z(Lg-1 f)(po)-
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On the other hand Z = Y + Q, where Y € ll(a) and Q belongs to the ideal
U(g)n. Since the elements of the ideal vanish on E(L)(= E(G/N)) we obtain

Zf=Yf.

Let us identify a = R by chosing d/dr as a base in a. The element Y
considered as a polynomial on a* = R is mapped into a symmetric polynomial
under the application Y defined by:

Yp(x):=p (x - %) , x€R ([9]p. 168).

Let us consider Yy := Y~ '(x?) and let Zy, = Y, + Q € Z(g). Then

d 1\
=(-+=] =X
Yo (dt 2)

The differential operator

d 1
X:_+_
da 2

assigns to a function ¢ € E(R) the element

e —-t1/2 ie:/z

at ¥

In virtue of (3.12) and the last statement we obtain

Lemma 3.6. For any f € E(L) the function
Yof(gpo) = X*(Ly-1 )

€I/2d—2€l/2(L f)A(O)
ar? g

I

(3.13) L > gpo— Zo f(gpo)

I

belongs to V(f).

Let us note that, assuming the convergence of the series in question we can
write for ¢ € E(R) :

t2k

3 d2k
(3.14) (2Zme ‘/zd—t—zze’/zap) 0)
k=0 '

Il

Y K Dk + (_t)ka /2

€ oo Z Ko ey
k=0 k=0

e () + 1=1)e?¢) (0)

e2p(t) + e P p(—0).
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If we apply the formula to the function (L,-: f Y4, (the convergence of the
series is assured by the supposition of f being A-analytic) the right hand side
becomes the function ¢ and the left hand side as a function of the variable gpg
belongs to V(f) in virtue of the Lemma 3.6. The proof follows.

As a corollary we obtain

THeOREM 3.7. Let f € ‘E(L) be an A-analytic function. Then the space
"V (f ) C ER) is an E/(R)-convolution module.

Proof. If T € E'(R) is symmetric then
Ti(e'* f (ga(tpo) + e ™/* £ (ga(=1)p0)) = 2T(e*(Ly-1 f)™).

As a function of p = gpy this element belongs to V ( f) according to Proposition
3.5. The function

R > s —Ti(e? f(a(s + D)po)) = e *I*T % (' £ Y\(s)

belongs then to V(£ )*. This ends the proof.
Corollary 3.4 and Theorem 3.7 suggest the following

Conjecture. If V. C ‘E(L) is closed and G-invariant then e'2VA is an E/(R)-
convolution module.

4. Spectral analysis for Z/(R)-modules. The spectral analysis theorem of L.
Schwartz describes translation invariant closed subspaces in ‘£ (R) as the spaces
generated by functions of the form x™e**, A\ € C,m € N. A closed subspace
V C ‘E(R) is translation invariant if and only if it is an E’(R) convolution
module.

Let us consider

@1n vh={TeE'RT,¢)=0,p eV}

The annihilator space V1 is an ideal in the convolution algebra E’(R). By
the Hahn-Banach theorem

“2) V=vhHt:={pe ER)|T,¢)=0,T eV}

The problem of describing the closed E’(R)-modules reduces to the descrip-
tion of ideals of E'(R).

In this section we shall denote by 7 the classical Fourier transform.

The space J := (VL))" forms an ideal in the algebra A = (E’(R))". The
theorem of L. Schwartz characterizes the ideals of A in terms of its spectrum.
Given an ideal / C A we denote:

SpJ := {A e Cly(\) =0,y € J}.
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If A € SpJ we denote by m()\) the multiplicity of A, that is the maximal
natural number such that all elements of J have in )\ zero of order < m(\).

THEOREM 4.1. [8] (Spectral synthesis theorem) Each ideal J C A is uniquely
determined by the set of pairs (A\,m()\)),\ € SpJ.

If particular the theorem states that V # O if and only if SpJ # 0 for
J := (V1) V being a closed ‘E’(R)-module.

A simple calculation proves that A € SpJ with multiplicity 2 m()\) if and
only if the function x™e"** belongs to V for every m < m(\). The spectrum of
V is defined as the spectrum of (V1)". In this way one obtains the version of
the Schwartz theorem mentioned at the beginning of the section:

THeoreM 4.1, Every translation invariant and closed subspace V C E(R)
is generated by all functions of the form
x"e™, meNu{0}, reC
contained in V. If V. # E(R) then SpJ is a countable set without accumulation
points.

The space E/(R) of all even distributions forms a subalgebra of Z’(R) whose
Fourier transforms is the algebra A; of all even elements in A. The spectral
synthesis theorem for A; was proved in [4].

THEOREM 4.2. Let J be an ideal in Ag and let I be the ideal generated in A
by J.ThenJ = I NA;. In particular J is uniquely determined by the set of pairs
A, m(A), A € SpJ = Spl.

This theorem permits us to describe the E/(R)-modules in Z(R). Let V C
‘E¢(R) be such a module. We define
43) Vr=@WHNER) and VH':=VHINER).

Again, by the Hahn-Banach theorem we have
44) VvV =@VHE

Let T € V£ and let Ay be zero of order m of the transform 7', that is let

d .
WT()\O) =0 forall k £m.

Then we have

k

0=

Te(@™)|r=p, = To((ix)*e™)  for all k < m,

https://doi.org/10.4153/CJM-1988-067-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-067-7

1472 ANTONI WAWRZYNCZYK

and by the symmetry the same holds for —A¢. In virtue of (4.4) we deduce that
X € Sp(V+) with the multiplicity m()) if and only if the symmetric parts of
the functions x*¢"» and x¥e ~*** belong to V for all k < m()).

By applying Theorem 4.2 we get

Theorem 4.2'. Each closed ‘E/(R)-module V. C E,(R) is generated by all
functions of the form

x¥chAx,\ € SpV, k-even and less or equal to m(\) and

xKshAx, X € V, k-odd and less or equal to m()\).
SpV is countable and has no accumulation points.

The last result solves the problem of spectral synthesis in the space E(K\H)
(see [1] or [11]). In order to obtain at least the spectral analysis in the space
E (L) we need information about the E/-modules in the whole space E (R).

In the sequel we denote by A,, E,(R), E/(R) the subspaces of all alternating
elements in A, E(R) and E’(R) respectively. The spaces F(R) and E,(R) are
Z/-submodules of E(R) which contain no exponentials. We can suppose that
on studying Z/-modules we should rather consider the functions of the form

ax¥e™ + pxMe M

as elementary functions on R.

At the beginning let us assume that V C Z,(R) is a closed Z/(R)-module. The
operator of derivation D : f — f'is continuous, commutes with the convolution
and maps E;(R) onto Z,(R) with kernel consisting of constant functions. The
space

W=D 'V)NE(R)
is closed and is a Z/(R)-submodule of Z(R) hence is generated by the functions
x*chAix, SpW,2k < m(\) and
x** U shax,  SpW,2k + 1 < m(\).

The module V is then generated by the derivatives of the above functions. If
A € SpW and A # 0 the multiplicity of X in V understood as the highest power
of the variable x appearing as a factor in this set of generating functions is equal
to max (0, m(\)). The multiplicity of A = 0 in V is equal to max(0, m(0)).

We have in this way a counterpart of Theorem 4.2’

ProposiTioN 4.3. If V C ‘E,(R) is a closed ‘E;(R)-module then V is generated
by all functions of the form

x’>shdx and x*7'chx
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contained in V.- If V. # E,(R) then the set of N's for which some of above
functions appear in 'V is countable and has no accumulation points.

Passing to the general case, let V be a nontrivial, closed fs' -module in £ (R)
and V+ C E/(R) its annihilator which is also an £/-module. The space J :=
(V)" C A is then an A;-module. We shall consider now the possible relations
of J to A; and A,.

Case 1. If J C A then by Theorem 4.2 it is determined uniquely by SpJ
and the multiplicities. The elements of VL annihilate the whole space ‘E,(R) as
well as the functions:

xfchhx,\ € SpV,k + 2m < m(\)
xEshdx, A € SpV,k =2m + 1 £ m(\).

In this case V = E,(R) + (VHE = £,(R) + (V N E(R)).
Case 2. Assume J C A,. Then we have V1 C E/(R) and

vV =whHt = ER) + (VN ER)).

Applying Proposition 4.3 to the module V N E,(R) we get:

The module V is generated by ZE(R) and by all functions of the form
x%~1ch Ax and x% sh Ax contained in V.

From now we can assume that neither (/' C 4;) nor J C A,. Let us consider

the subspaces:

W,:={f €AJFo €] fQ) =0+ o(-N},
Wo:={f €AdTp € FN) =)~ (=N}

The space W; is an ideal in A; and W, is an A;- submodule of A,. According
to our assumption W; # 0 and W, # 0.

Case 3. Suppose W # A,. According to Theorem 4.2 Sp W; contains at least
one point, say A\g € C. Then for any T € V' one has

0 =TOo) + T(=Xo) = Te(chXox).

It means that the function ch Aox belongs to V.
Case 4. Let W, # A,. There exist an ideal / C A, such that

W = {YlpN) = dp(\), ¢ €1}

Since / is nontrivial we can choose Ao € Sp/. Supposing Ao # O we obtain
for every T € V1:

1 . R 2
0= /\—(T()\o) —T(=X) = /\—Tx(sh Aox)
0 0
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which implies that shAgx € V.
If Sp/ = {0} and m(0) = 2k > 0 then
W, = { D% plp € A}

This being the case we have for all T € V* :

d2k~l R .
0= —5=r () = T(= M=o = 2T(@)*

which means that x>~ € V.
(Note that in cases 3 and 4 if zero is the unique element of the spectrum then
V is generated by polynomials.)
Case 5. It remains to consider the case W, = A, and W; = A,. Let us define
a relation R in A; X A, by the formula:
xRy if x+yel.
If xRy and xRy’ then
y—y €JNA, =:J,.
We can lift the relation to A; X (A,/J,) by putting
xf{[y] if xRy.
This relation is an application commuting with the multiplication by elements
of Ay : R(fx) = fRx.
Since the algebra A; contains the unity we obtain:
Rx = R(x - 1) = xR(1).
Let us fix a representant y, of the class R(1). Then one has

J = {x + xyo + Ju|x € A}

If in particular y = x + xyy + j, j € J, then

1
x(A\) = z(y(/\) + y(=A).
Denoting y(\) := y(—A) we have for every y € J :

1
Y= 50+ N0+ D= A+ yoy + (1= y)y €L
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Case 5A. If J, = A, then J + A which corresponds to the case V = 0 which
was excluded.

Case 5B. Suppose J, = 0. This being the case the elements of J are of the
form y = x(1 + yg),x € A;. If 1 + y, is everywhere distinct from zero then the
holomorphic and alternating function y, does not take the values 1 and —1. In
virtue of the Picard theorem y, is constant hence zero and we obtain J = A
once again.

Case 5C. Finally we suppose A, # J, # 0. Let I be the ideal in A; such that
.all elements of J, are of the form y(A\) = A f(\), f € 1. For any Ao € Sp/ and
T € V+ we obtain:

0 =(1 + yoho)T(Ao) + (1 = yo(Ao)T (= Ao)
=T((1 = yo(ho))e™™) + (1 + yo(Ao)e .

This implies that the function
aei)\ox + be—D\oX

belongs to V for a = 1 — yo(Ag) and b = 1 + yo(Ao). The function is nontrivial
for each \g.
All cases can be summarized in the following way:

THEOREM 4.4 If V is a nontrivial closed E;,(R)-module in E(R) then there
exists A € C such that the function

aei/\x + be—i/\x

is nontrivial and belongs to V, or the identity function f(x) = x belongs to
V. If the module V does not contain any function of the first kind then V is
finite-dimensional and is generated by polynomials.

5. Spectral analysis theorems for £ (L). In this section we apply Theorems
4.1-4 to obtain results about spectral analysis and in several cases even spectral
synthesis in the space E (L).

First let us distinguish a particular invariant subspace Al C E(L). Let

N i={f €20 | f@kok=0. geG, peL)

This is the maximal invariant subspace of E (L) which does not contain any
K -fixed elements. Let us note that in the case of the manifold H such a subspace
is trivial. This fact is the reason of principal differences between the analysis
on H and L. By the very definition it’s clear that A is closed, G-invariant and
moreover invariant with respect to the operators 7(¢),t € R. Since the regular
representation of G commutes with 7 the subspaces A; C A are also invariant.
By Theorem 4.1’ we obtain:
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LEMMA 5.1. The space D\QA is uniquely determined by its spectrum Sp N,*
and the corresponding multiplicity function my(\). 9\@"‘ is lineary generated by
the functions of the form

me™ X\ e Sp %A, m = my(N).

According to the lemma the functions efl* belong to Al for each A € Sp 9\4/‘.
Now, the integral equation defining A’ can be represented in the following way:

0= /KLg-,ey(kpo)dk = (U 8,|80) = (2,|U"20)
for all g € G. The space generated by the vectors
Ugf"’\‘leo, g€GC

differs from the whole space if and only if —i\ — 1 = n € N (Proposition 3.1).
Thus A, N E;y # 0 if and only if i\ = —n — 1 and in this case n + 1 < |q|
according to Proposition 3.1.3. We have obtained

ProposITION 5.2. The space N, q € Z is finite-dimensional and linearly gen-
erated by the functions of the form:

1l)q,n,s(k(g)a(t)po) = [Se_m+iq9 with
neN, n=|ql and s = my(—n).

In particular this means that the representation of G in A’ is admissible and
the character e’ occurs in A’ with finite multiplicity which is less or equal to

q
qu(—n).
n=1

The calculation of the multiplicities m,(\) ¢ € Z is an open problem.

Now, consider a closed and G-invariant subspace V C A(. According to
Lemma 3.6 the finite-dimensional spaces e’/ are invariant with respect to
the operator d? /dtz. The eigenvectors of this operator in the space e’/ 29\@" are
the functions

e(—n+l/2)t7 n< ‘ql
and the elements of the Jordan base of the operator are of the form
P(r)e* /21,

where P is a polynomial of order less than or equal to m,(—n). This leads to
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ProposITION 5.3. Every closed and G-invariant subspace V. C N\ is linearly
generated by combinations of the functions 1, s contained in 'V .

Now, our purpose is to prove a spectral analysis theorem in E (L) hence,
after obtaining even the spectral synthesis for subspaces of A it is sufficient to
consider invariant subspaces in ‘£ (L) whose intersection with A( are trivial. If
V # 0but AL NV = 0 we have Vy # 0. In virtue of Corollary 3.4 the space
V= e’/ZV(;‘ is an E/(R)-module. By Theorem 4.4 the space V contains for
some )\ the function

ae™ + be™™ with |a|* + |b|* # 0,

or the function f(t) = ¢.
The space V) then contains the element

w(k(o)a(t)po) i= ae(i)\' 1/2)1 + be"(iA‘{* 1/2)!
or the function
p(k(@)a(t)po) := te /.

The first function can be written as

aep—1/2x t be_ix+1/2)x
and the second as

(1) -

d
e . ey €),x0-
1/2,x% EP\ A==1/2 0

Taking into account the G-invariance of V we obtain:

THEOREM 5.3. IfV C ‘E(L) is nontrivial, closed and G-invariant but VN, =
O then either

e<711>/2’x €V forallx €eH,

or there exist \,a, b, € C such that |a|* + |b|* > 0 and for all x € H the function
aep—12x t be_ixr1x

belongs to V.

THEOREM 5.4. Each G-invariant and closed subspace V. C ‘E(L) such that
VA # 0 contains for some n € N at least one of the functions

¥ (k@)a(r)po) = e,
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Proof. According to Proposition 5.2 we have in V N A a function of the
form

Yy nok@a(t)po) = €4~

such that n < |g|. This element belongs to F*, or F-, depending on the sign
of g. Both spaces are carrier spaces of irreducible representations of G hence
together with the above element the whole space F*, or F-, belongs to V. In
particular ¥, or 1, belongs to V.

Theorems 5.3 and 5.4 mean that the spectral analysis holds in the space E (L)
with respect to the elemental family given by the collection of all functions

Yy, n€N; eﬁ‘fm, x€EH

and the functions
aep 1.+ be_niijn. X €H,lal* + [b* > 0.
Nevertheless, some additional information can be deduced with the aid of
Theorems 3.7 and 4.4. Namely, we obtain

ProposITION 5.5. Let V. C ‘E(L) be a closed and G-invariant subspace. Assume
that for some n € L the space V, contains some A-analytic function. Then V,
contains a function of the form

@nk(®)a(t)pg) := te™ 112
or the function

aelA 712 4 peAT1/2) g2 4 |b|? # 0.

6. Comments and applications. The space E (L) is mapped under the dual
Radon transform (2.7) continuously into E (H). Since the mapping B commutes
with the group action, the space kerB is closed and G-invariant. By the very
definition a function f belongs to A if and only if for each ¢+ € R one has
7(t) f € kerB. In particular A C kerB since A is 7-invariant. In the sequel
we shall see that Al # kerB. This implies that ker B constitutes an example of
a G-invariant subspace which is not 7-invariant.

Let

©x(gk) := Bejy— /2., (8%0) = /(xo|gkpo>'%'/2dk-
K

The function ¢, is a zonal spherical function on H. It is known [5] that
@-x = ¢, for each A € C. In particular it means that

Cix—1/200 — €=ix—1/2,% € kerB.
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By the G-invariance of ker B and the formula (2.1) the same is true for an
arbitrary point x € H. By applyting the derivation with respect to A one obtains

e.m_ €kerB forallAe€Candx € H.

iA—1/2x
All these functions do not belong to A, hence Al # ker B. At the same time
we observe that in ker B appear elementary functions of all frequencies A € C.

On the Pompeiu problem on L. Let A C R” be a compact set and let
f € L*(R"). The Pompeiu problem consists in asking if the condition:

f(x)dx =0 for all rigid motions g
gA

implies f = 0 almost everywhere on R". If the answer is positive one says
that A has the Pompeiu property. The problem is equivalent to the question if
the translations of the characteristic function 14 span a dense subset in L!(R").
By the Tauberian theorem of Wiener the set A has the Pompeiu property if and
only if the Fourier transform 14 is everywhere different from zero.

Various generalizations of the Pompeiu problem were considered on R and
on symmetric spaces of rank one ([1], [2], (3], [6], [7].)

The results of the last section permit us to formulate a theorem of Pompeiu
type for the manifold L.

THEOREM 6.1. Let T € E'(L). The system of equations
T(Lyf)=0, foreachge€G
has in ‘E (L) only the trivial solution f = 0 if and only if the following conditions
are satisfied:
a) For every A € C the functions

H > x —T(en-12.) and H €x—T(e_x+1/2)x)

are linearly independent.

b) T(egl/z,x) # 0 for some x € H.

c) For every n € N there exists Q € Z such that |q| 2 n and

T(lpq,n,O) # 0.

Proof. Let us denote

V:={f € EW|TUL,f)=0,g € G}.
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The space V is closed and G-invariant. If V # 0 then according to Proposition
5.2 and Theorem 5.3 one of the following conditions is satisfied:

1) aej—1p2c + be_(ini1p2, €V forsome A € C,
la]> + |b|># 0 andallx €H,

2) e<711)/2,xv’ forall x € H,
or
3) VNA_ # 0 and consequently F*, or F_, belongs to V for n € N.
In the first case the condition a) is not satisfied: the case 2) contradicts b) and
the case 3) contradicts c). Then the conditions a) b) c¢) are sufficient.
Now, if a) is not satisfied then for some a,b € C and A € C we have
(a,b) # (0,0) and

T(aejy—yjac + be_(ini1yn,) =0 forallx e H.

The nontrivial and G-invariant space spanned by the functions in parenthesis
belong to V.
If b) is not satisfied then the function

(1)
—1/2x

is a solution of the system in question.
If for some n € N and all ¢ € Z such that ¢ = n (or all g such that ¢ = —n)
we have

T(Ygn0) =0

then the space F*, (or FZ,) belongs to V. This ends the proof.
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