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ABSTRACT 

In the elliptic restricted three body problem an invariant relation 
between the velocity square of the third body and its potential is 
studied for long time intervals as well as for different values of the 
eccentricity. This relation, corresponding to the Jacobian integral in 
the circular problem, contains an integral expression which can be 
estimated if one assumes that the potential of the third body remains 
finite. Then upper and lower boundaries for the equipotential curves can 
be derived. For large eccentricities or long time intervals the upper 
boundary increases, while the lower decreases, which can be interpreted 
as shrinking respectively growing zero velocity curves around the 
primaries. 

1. INTRODUCTION 

In a paper by Szebehely and Giacaglia (1964) the equations of motion 
for the infinitesimal third body in the elliptic restricted three body 
problem are presented in the same analytical form as for the circular 
case. From these equations, they derived an invariant relation for the 
velocity square, which corresponds to the Jacobian integral in the 
circular problem. In our paper, using this relation, we search for 
boundaries for the equipotential curves, which limit the motion of the 
third body to well defined parts of the plane. 

The problem is described in a synodic, pulsating, barycentric 
coordinate system (£,n); the primaries are situated on the £ axis and 
their masses are taken to be (1-y) und u (Fig.l). Starting from the 
usual synodic barycentric coordinate system (£",n")» the pulsating 
system (£,n) is obtained, when the variable distance r between the 
primaries: 

a(l-e2) 
r = — - — 

1+e cos f 
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( a , e and f being the semimajor a x i s , the e c c e n t r i c i t y and the t rue 
anomaly of the e l l i p t i c o r b i t ) i s chosen to be the u n i t of l eng th . 

2. 

0. 
- 2 . 

An 

p m3(£,n) 

P l / / p 2 

m o ( 5 o . O ) 0 . m . ( C . , O ) 
l v ' l 2 . 5 

Fig.l.: Synodic, pulsating barycentric coordinate system (5,n), 

This results in fixed abscissae for these bodies: 

5 j = 5-7r = u 

C2 = e«/r = - (l-y) 
(1.1) 

A transformation to the true anomaly as the independent variable leads 
to the desired form for the equations of motion for the third body 
(primes denote derivatives with respect to the true anomaly f): 

5" ~ 2n' = 3o) 
3? 

n" + IV =~ 

3n 

The function w depends on the potential function Q: 

a U(f),n(f)) = \ t(i-y) P 2 + VP 2] + r 2 + — 

(1.2) 

l+e cos r (1.3) 

where P,>P2
 a r e t^e normed distances from the third body to the primaries: 

(1.4) 
P,2 = (C-Sj)2 + n2 
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2 2 2 
P2 = <5-£2) + n 

The invariant relation for the velocity square in the pulsating 
system is given by the formula (Szebehely and Giacaglia, 1964): 

V1 + n'2 = 2u)(C,n,f) - 2 /|| df - C (1.5) 

and corresponds to the Jacobian integral for e = 0. 

It is shown by Erdi (1982) that it is possible to evaluate the 
integral in Equation (1.5) for the case of Trojan asteroids using an 
asymptotic solution for their motion. In a paper by Delva and Dvorak 
(1979) a series expansion was used to study an equivalent of equation 
(1.5). 

2. ESTIMATION OF THE INTEGRAL /|j df 

In equation (1.5) for the velocity square, the integral term on 
the right hand side causes variations of the zero velocity curves, 
which define the regions of motion. We now estimate boundaries for its 
value for long intervals of the time. For this purpose it is necessary 
to restrict the motion of the third body in such a way, that the value 
of the potential function fi(£,l) on the orbit always remains bounded by 
an upper limit M(M>0) for all times: 

n(E,n) 1 M (2.1) 

or we have to exclude collisions with the primaries and very large 
distances :from them. A lower limit for n(£,n) is the value in the 
Lagrangian points L and L,.; the inequality 

m = £2(5L ,nL ) = | 1 n(5,n) 1 M (2.2) 
4 4 

is valid on the orbit for all times. To be able to estimate the integral 

i = ;|| df = ;n(e(f),n(f)) e s i n £ 2 df (2.3) 
(l+e cos f) 

we will use the inequality (2.2) and a theorem on integration (Smirnow, 
(1973): 
if two functions ft (£ (f),n (f)) and g(f) are integrable (and thus bounded) 
on an interval [f ,f ] and if g(f) does not change its sign on the 
interval, the following inequalities hold for the integral of (ft.g): 

for g(f) _> 0: 
f, f f. 

m / g df < / fl g df < M / g df 
f f f (2.4) 
a a a 
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f o r g ( f ) <_ 0 : 

M r g df <_ s fi g df <_ m r g df 
f f f 

a a a 
Since we are interested in long time intervals or long intervals of 

the true anomaly, we choose the integration interval to be an integer 
multiple of 2TT: 

f = f = 0 (2.5a) 
a o v ' 
f, = f„ = 2mr , n e N 
b 2n 

and a d e c o m p o s i t i o n of t h e i n t e r v a l : 

f , = kir , k = 0 , . . . , 2 n 
( 2 . 5 b ) 

f = 0 < f < . . . < f < . . . < f 
o — 1 — — k — — 2n 

Defining the function g(f) by the equation 

g(f)-e_8in_f (2>6) 

(1+e cos f) 

it is positive or zero on all intervals [f„.,f . ] and negative or zero 
on [f . ,,f?- 91> j=0,...,n-l. Calculating its integral on these intervals 
and using (2.5j, we find the inequalities: 

m ^ - r < / 2 ^ + 1 Q g d f < M ^ (2.7a) 
1-e f2j 

- M ^ l / ^ f l g d f l - m ^ T (2.7b) 

1-e f2j+, 1-e 

Summation then gives for the total integral I (2.3): 

-n(M-m) -^-2 <_ I <_ n(M-m) ^-j (2.8) 

1-e 1-e 

3. BOUNDARIES FOR THE EQUIPOTENTIAL CURVES 

The result (2.8) is used to study the possible changes of the zero 
velocity curves with changing eccentricity and length of the integration 
interval. The curves are defined by the equation 

F(£,n,f) = 2w - 21 - C = 0 (3.1) 
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or by the condition that 

G(C,n,f) = 2 4 [(l-ji)p 2 + W
 2] + i^H + i^} = (2I+C) (1+e cos f) 

(3.2) 

The relation holds and is meaningful for any fixed value of f. From 
the inequality (2.8) and estimating the factor (1+e cos f), the curves 
G(£,n,f) can vary within the following limits: 

c - e C -
 4 e " f ~ m ) < GU.n.f) < C + e C + *SSL2£2*. ( 3 > 3 ) 1+e — — 1-e 

For va lues of the lower boundary smal le r than 20. (E, ,r\ ) = 3 no 
so lu t i ons for (3.2) a re found, no e q u i p o t e n t i a l curve 4 4 w i l l 
l i m i t the motion of the t h i r d body. For any value of both boundaries 
g r e a t e r than 2fi(£ L ,'nL ), zero velocity curves exist and define forbidden regions for the 4 4 motion (Fig.2) 

m 2 =y=0.3 

2 . 

U.B.=4.5V 

171. i 1 
- 2 . 

/ 

/ ~ " \ / 

\ n 

•v \ \ \ 
^ „ — L . B . = 3 . 2 \ 

^ . 
m2 0 . m l 

1 1 

2 . t 
Fig.2: Equipotential curves for the lower and upper boundary of 
G(?,n»f), if greater then 2£H£ >nT )• 

L4 L4 

The constant C is calculated from the moment with f = o: 

C = 2°(g(0).n(0)) . [5.(0)2^.(0)2] 
1+e 

(3.4) 

3.A Boundaries for various values of the eccentricity e 

In the case e=0 the inequality (3.3) reduces to the known form 
G(£,n) = C 
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which defines the regions of motion once for all values of f. 

In the case e^O and C>0, the lower boundary decreases with 
increasing values of e, while the upper one increases. For large values 
of e(e<l) the equipotential curves G(£,ri,f) can vary within broad limits, 
defining small or no forbidden regions for the lower and large ones, 
becoming more and more closed around the primaries, for the upper 
boundary (Fig.3). It is clear that, if the body trespasses the 
restriction of inequality (2.1), these regions of motion are not 
valid and no predictions on their long time behaviour are allowed. 

We conclude that from a theoretical point of view and within the 
restrictions (2.1) for the motion, the larger the eccentricity is, 
the larger variations in the regions of motion may occur, permitting 
more possibilities for the orbit of the third body. 

Fig.3a: Zero velocity curves for small e. 

m2=u=0.3 

2. 

U.B.=5.5 

0. 

4n 

2. 5 

Fig.3b: Zero velocity curves for large e. 
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3.B Boundaries for long time intervals 

Since we chose the integration interval to have the length n(2ir), 
we consider the boundaries (3.3) for large values of the integer n. 
It is easily seen, that increasing the value of n causes the same effect 
as increasing the eccentricity e. The situation for long time intervals 
corresponds therefore to the one in Fig.3b: long time intervals can 
allow more possibilities of variation for the equipotential curves. 
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