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Mode-to-mode nonlinear energy transfer
in turbulent channel flows
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We investigate nonlinear energy transfer for channel flows at friction Reynolds numbers
Reτ = 180 and 590. The key feature of the analysis is that we quantify the energy
transferred from a source mode to a recipient mode, with each mode characterised by a
streamwise wavenumber and a spanwise wavenumber. This is achieved through an explicit
examination of the triadic interactions of the nonlinear energy transfer term in the spectral
turbulent kinetic energy equation. First, we quantify the nonlinear energy transfer gain
and loss for individual Fourier modes. The gain and loss cannot be obtained without
expanding the nonlinear triadic interactions. Second, we quantify the nonlinear energy
transfer budgets for three types of modes. Each type of mode is characterised by a specific
region in streamwise–spanwise wavenumber space. We find that a transverse cascade from
streamwise-elongated modes to spanwise-elongated modes exists for all three types of
modes. Third, we quantify the forward and inverse cascades between resolved scales and
subgrid scales in the spirit of large-eddy simulations. For the cutoff wavelength range that
we consider, the forward and inverse cascades between the resolved scales and subgrid
scales result in a net forward cascade from the resolved scales to the subgrid scales. The
shape of the net forward cascade curve with respect to the cutoff wavelength resembles
the net forward cascade predicted by the Smagorinsky eddy viscosity.
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1. Introduction

Turbulence involves energy transfer across a wide range of scales and is important for
many applications, such as combustion (Ertesvåg & Magnussen 2000), ocean engineering
(Hasselmann, Munk & MacDonald 1963) and the Earth’s climate (Richardson 1922).
It is generally understood that energy is transferred from large scales to small scales,
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known as the forward cascade (Richardson 1922; Kolmogorov 1941). But an inverse
cascade in which energy is transferred from small scales to large scales also occurs
(Domaradzki et al. 1994; Dunn & Morrison 2003; Cimarelli, De Angelis & Casciola
2013; Cimarelli et al. 2016). Both forward and inverse cascades are involved in vortex
regeneration in the self-sustaining process for wall turbulence (Hamilton, Kim &
Waleffe 1995; Waleffe 1997). In turbulence modelling and simulation, failure to consider
backscatter can result in inaccurate large-eddy simulations (LES) (Piomelli et al. 1991;
Härtel et al. 1994; Cimarelli & De Angelis 2014). The above considerations are all dictated
by the physics of the energy cascade across scales in wall-bounded turbulent flows.

This energy cascade can be viewed in either physical space or Fourier space. In
physical space, the energy cascade is characterised by high spatio-temporal intermittency
(Meneveau & Sreenivasan 1991). In Fourier space, for flow geometries (such as channels,
pipes, boundary layers) with at least one homogeneous spatial dimension, the energy
cascade can be interpreted as energy redistributed among different Fourier modes,
described by the nonlinear energy transfer term in the spectral turbulent kinetic energy
(sTKE) equation (Tennekes & Lumley 1972; Pope 2000). Here, a mode refers to scales
with a particular wavelength in the homogeneous direction. The nonlinear energy transfer
term in the spectral energy budget represents the net energy received by a particular mode
from all other modes through nonlinear interactions since the term is a convolution of
all wavenumber-compatible triadic interactions. Triadic interaction refers to the energy
transfer among three modes whose wavenumbers satisfy k + p + q = 0 (Domaradzki &
Rogallo 1990; Domaradzki 1992; Waleffe 1992; Domaradzki et al. 1994). However, we
merely know the net energy transfer for each Fourier mode, not the detailed contributions
to this net value from the nonlinear energy transfer term, because the convolution hides
the individual triadic interactions.

Compared to homogeneous isotropic turbulence, only a few studies have explored the
triadic interactions of nonlinear energy transfer for channel flows (Domaradzki et al.
1994; Webber, Handler & Sirovich 2002; Cho, Hwang & Choi 2018; Karban et al. 2023).
A single wavenumber triad could be interpreted as energy transfer from a source mode to a
recipient mode via an advective mode (Domaradzki & Rogallo 1990; Smyth 1992; Webber
et al. 2002; Alexakis, Mininni & Pouquet 2005; Jin, Symon & Illingworth 2021). To gain
more insight into the energy cascade in channel flows, we expand the convolution of
the nonlinear energy transfer term in streamwise–spanwise wavenumber space. Following
this, we formulate a variable M̂(sx,sy)(kx,ky) (defined in § 2.3) that represents mode-to-mode
nonlinear energy transfer in streamwise–spanwise wavenumber space. Compared to the
convolution term, which gives us only the net energy transfer for a specific Fourier mode,
with this variable, we are able to quantify the energy transfer between any two Fourier
modes.

We use this four-dimensional variable M̂(sx,sy)(kx,ky) (one source mode and one
recipient mode, with each mode consisting of a streamwise wavenumber and a spanwise
wavenumber) to explore three things using direct numerical simulations (DNS) datasets at
Reτ = 180 and 590. First, since the nonlinear energy transfer term in the sTKE equations
could give us only one value representing the net energy transfer for each mode previously,
we use this new variable M̂(sx,sy)(kx,ky) to obtain two additional values quantifying the
net energy transfer gain and loss due to nonlinear interactions for each mode. Second,
we investigate the nonlinear energy transfer budgets for three types of modes. Similar
to Jovanović & Bamieh (2005), each type of mode indicates a specific region in the
streamwise–spanwise wavenumber space. Third, we apply a cutoff wavenumber filter to
divide all the scales in the DNS into large and small scales. In the spirit of LES, the large
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scales are treated as resolved scales, while the small scales are treated as subgrid scales.
We quantify the forward cascade and inverse cascade between resolved and subgrid scales.
We further compare the net forward cascade calculated using M̂ with the forward cascade
calculated using the Smagorinsky eddy viscosity. The similarities and differences between
Reτ = 180 and 590 are discussed. It is worth noting that we integrate energy transfer in
the wall-normal direction and over time to obtain M̂. Although M̂ provides information in
the streamwise–spanwise wavenumber space, it does not capture wall-normal-dependent
and time-dependent information.

This paper is organised as follows. In § 2, the equations for the sTKE budget and variable
M̂(sx,sy)(kx,ky) representing mode-to-mode nonlinear energy transfer are derived. The DNS
datasets are described in § 3. Section 4 presents the results. Specifically, § 4.1 revisits
the previous study from Symon, Illingworth & Marusic (2021) about the wall-normal
integrated spectral energy transfer budget; § 4.2 uses two examples to interpret variable
M̂ and to illustrate energy transfer pathways; § 4.3 presents the positive and negative
nonlinear energy transfer spectra; § 4.4 investigates the nonlinear energy transfer for three
types of modes; and § 4.5 quantifies the forward cascade and inverse cascade between
resolved scales and subgrid scales in the spirit of LES. Conclusions are drawn in § 5.

2. Methods

In § 2.1, we describe the governing equations for plane Poiseuille flow and their
non-dimensionalisation. Then an introduction to the sTKE equation integrated across the
channel height is presented in § 2.2. In § 2.3, we introduce a four-dimensional variable
quantifying mode-to-mode nonlinear energy transfer and the pertinent properties.

2.1. Plane Poiseuille flow equations
Consider the non-dimensional incompressible Navier–Stokes equations for the fluctuation
velocities after a decomposition Ui = Ui + ui, where Ui, Ui and ui represent the
instantaneous velocity, streamwise–spanwise-averaged velocity and fluctuation velocity,
respectively:

∂ui

∂xi
= 0,

∂ui

∂t
+ uj

∂Ui

∂xj
+ Uj

∂ui

∂xj
+ ∂

∂xj
(uiuj − 〈uiuj〉xy) = − ∂p

∂xi
+ 1

Reτ

∂2ui

∂xj ∂xj
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

where the indices i = 1, 2, 3 represent the x (streamwise), y (spanwise) and z (wall-normal)
directions. The corresponding velocity components are denoted by u, v and w. Pressure
is denoted as p. Velocity scales are non-dimensionalised using the friction velocity uτ ,
length scales are non-dimensionalised using the channel half-height h, time scales are
non-dimensionalised using h/uτ , and pressure is non-dimensionalised using ρu2

τ , where
uτ = √

τw/ρ, ρ is the density, τw is the mean wall shear stress, and uτ is the friction
velocity. Then the friction Reynolds number Reτ = huτ /ν is defined using h, uτ and
the kinematic viscosity ν. Here, 〈 〉xy means averaging in the streamwise and spanwise
directions.
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2.2. Spectral energy transfer budget
Owing to the periodic assumption in the streamwise and spanwise directions, we
investigate energy transfer in two-dimensional streamwise–spanwise wavenumber space.
We define the inner product 〈c1, c2〉 = 1

2

∫ 1
−1 c∗

1c2 dz, where c1 and c2 are two complex
vectors, and ∗ denotes the complex conjugate. We use this inner product definition to
represent the wall-normal integrated kinetic energy at mode (kx, ky) (Reddy & Henningson
1993; Domaradzki et al. 1994):

Ê(kx, ky) = 1
2 〈û(kx,ky), û(kx,ky)〉 + 1

2 〈v̂(kx,ky), v̂(kx,ky)〉 + 1
2 〈ŵ(kx,ky), ŵ(kx,ky)〉, (2.2)

where kx is the streamwise wavenumber, and ky is the spanwise wavenumber. The
wavenumber is defined as k = 2π/λ, where λ is the wavelength. According to the
non-dimensionalisation rule, wavenumbers kx and ky are scaled with the channel height h.
Wavenumbers in viscous units are sometimes used: k+ = kν/huτ . The superscript refers
to the individual Fourier mode under consideration: û(kx,ky) is the Fourier coefficient of u
at wavenumber (kx, ky).

The spectral energy transfer budget can be obtained by first taking Fourier transforms
of (2.1) in the x and y directions, and then multiplying by the conjugate mode (û

(kx,ky)

i )∗ =
û
(−kx,−ky)

i . Then we integrate the energy transfer budget in the wall-normal direction and
obtain (Symon et al. 2021)

∂Ê(kx, ky)

∂t
= −

〈
û,

dU
dz

ŵ
〉

︸ ︷︷ ︸
P̂(kx,ky)

− 1
Reτ

〈
∂̂ui

∂xj
,
∂̂ui

∂xj

〉
︸ ︷︷ ︸

D̂(kx,ky)

−
〈

ûi,
∂̂uiuj

∂xj

〉
︸ ︷︷ ︸

N̂(kx,ky)

, (2.3a)

P̂(kx, ky) − D̂(kx, ky) + N̂(kx, ky) = 0, (2.3b)

with summation implied in the coordinate directions over the repeating index i or j. The
angle brackets denote the inner product definition provided at the beginning of this section.
This inner product involves integration in the wall-normal direction. The overbar denotes
time-averaging. Equation (2.3a) describes the wall-normal integrated energy transfer
balance for a single Fourier mode. The left-hand side is the time derivative of the turbulent
kinetic energy for a single Fourier mode; P̂ represents production, −D̂ represents (pseudo)
dissipation (Pope 2000), and N̂ represents the net nonlinear energy transfer (the net energy
that mode (kx, ky) receives through nonlinear interactions with all other modes). The size
of an eddy corresponding to a given Fourier mode can be defined using the isotropic
wall-parallel wavelength: λI = 2π/kI , where k2

I = k2
x + k2

y (Jiménez 2018; Lee & Moser
2019). For a statistically stationary flow, the left-hand side of (2.3a) is zero, meaning that
the wall-normal integrated production, dissipation and net nonlinear energy transfer reach
a balance for each mode, as shown in (2.3b). According to the normalisation described
in § 2.1, the energy transfer terms (P̂, D̂ and N̂ in (2.3a)) are non-dimensionalised by
u3
τ /h. Strictly speaking, production, dissipation and nonlinear energy transfer in (2.3a) are

energy transfer rates because it is the kinetic energy variation rate on the left-hand side of
(2.3a).

Throughout this paper, we use non-negative wavenumbers to describe a mode (kx, ky),
where kx ≥ 0 and ky ≥ 0. Energy transfer at mode (0, 0) is zero because of the chosen
decomposition of the velocities. The energy transfer at mode (kx, ky) with kx > 0 and ky >

0 contains the contributions from the wavenumber pairs (kx, ky), (−kx, −ky), (−kx, ky) and
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(kx, −ky). For example, production at mode (kx, ky) is equal to P̂(kx, ky) + P̂(−kx, ky) +
c.c., where c.c. represents complex conjugate terms. The energy transfer at mode (kx, 0)

with kx > 0 contains the contributions from the wavenumber pairs (kx, 0) and (−kx, 0).
For example, production at mode (kx, 0) is equal to P̂(kx, 0) + c.c.. The energy transfer at
mode (0, ky) with ky > 0 contains the contributions from the wavenumber pairs (0, ky) and
(0, −ky). For example, production at mode (0, ky) is equal to P̂(0, ky) + c.c.. Following
this, the energy transfer terms P̂, D̂, N̂ for each mode (kx, ky) with kx ≥ 0, ky ≥ 0 are real
numbers. The derivation of (2.3a) can be found in Pope (2000).

In (2.3a), N̂(kx, ky) is conservative:∫ ∞

0

∫ ∞

0
N̂(kx, ky) dkx dky = 0. (2.4)

Equation (2.4) states that the sum of the net nonlinear energy transfer across all Fourier
modes is zero. This implies that nonlinear energy transfer redistributes energy across
scales without adding or removing energy overall. This can also be seen from the
Reynolds–Orr equation: the only energy source for turbulence is production, and the only
energy sink for turbulence is dissipation (Schmid & Henningson 2001).

2.3. Mode-to-mode nonlinear energy transfer M̂(sx,sy)(kx,ky)

On the right-hand side of (2.3a), N̂(kx, ky) represents the net energy received by mode
(kx, ky) from nonlinear interactions between mode (kx, ky) and all other modes, without
giving information about the individual contributions to this net value. To illustrate, mode
(kx, ky) could potentially gain energy from mode (sx1, sy1), lose energy to mode (sx2, sy2),
gain energy from mode (sx3, sy3), lose energy to mode (sx4, sy4), and so on. But those
mode-to-mode nonlinear energy transfers are hidden because N̂ represents a sum over all
modes.

In (2.3a), N̂(kx, ky) can be expressed as a convolution composed of all
wavenumber-compatible triadic interactions:

N̂(kx, ky) =
∫ ∞

0

∫ ∞

0
M̂(sx,sy)(kx,ky) dsx dsy, (2.5)

where

M̂(sx,sy)(kx,ky) = −û
(−kx,−ky)

i û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

. (2.6)

A single set of triadic interactions involving three distinct modes can be understood
as the energy transferred nonlinearly from a source mode (sx, sy) to a recipient mode
(kx, ky) with the help of an advective mode (kx − sx, ky − sy) (Domaradzki & Rogallo
1990; Smyth 1992; Webber et al. 2002; Alexakis et al. 2005; Jin et al. 2021; de Salis
Young, Hao & Garcia-Mayoral 2024). Here, sx is the streamwise wavenumber and sy is
the spanwise wavenumber for another mode (sx, sy) different from mode (kx, ky). Thus the
four-dimensional variable M̂(sx,sy)(kx,ky) describes the energy transferred nonlinearly from
one Fourier mode (sx, sy) to another Fourier mode (kx, ky). Compared to N̂, M̂ provides
more detailed information about nonlinear energy transfer. However, it should be noted that
M̂ does not capture all details as M̂ measures the time-averaged wall-normal-integrated
energy transfer, condensing the information in the wall-normal direction and over time.
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Reτ Lx Ly nx × ny × nz �x+ �y+ �z+
max �z+

min �t+

180 2π π 112 × 112 × 150 10.00 5.05 3.77 0.04 0.36
590 2π π 384 × 384 × 500 9.65 4.83 3.71 0.01 0.12

Table 1. Parameter setup of the DNS: L is domain length, n is number of grid points, Δ+ is grid-spacing in
viscous units, and �t is the simulation time step.

Although the advective mode (kx − sx, ky − sy) is one component of M̂ (McKeon 2017;
Lozano-Durán, Bae & Encinar 2020; Bae, Lozano-Duran & McKeon 2021; de Salis Young
et al. 2024), this paper focuses on the source mode (sx, sy) and recipient mode (kx, ky).

As mentioned before, we consider modes composed with non-negative wavenumbers.
The full expressions for M̂(sx,sy)(kx,ky) with sx, sy, kx, ky ≥ 0 are discussed in detail in
Appendix A. Most result discussions in this paper centre on the mode-to-mode nonlinear
energy transfer M̂ in (2.6). For ease of reading, we sometimes omit the word ‘nonlinear’.
Apart from production and dissipation, energy transfer, gaining energy and losing energy
in the following discussions refer to M̂ in (2.6) due to nonlinear interactions.

Furthermore, M̂, which represents wall-normal integrated energy transfer, satisfies the
identities

M̂(sx,sy)(kx,ky) = −M̂(kx,ky)(sx,sy), (2.7)

M̂(kx,ky)(kx,ky) = 0. (2.8)

Equation (2.7) states that the nonlinear energy transfer from mode (sx, sy) to mode (kx, ky)
is equal and opposite to the nonlinear energy transfer from mode (kx, ky) to mode (sx, sy).
Equation (2.8) states that each mode transfers zero energy nonlinearly to itself. Equations
(2.7) and (2.8) arise from the continuity equation and the boundary conditions at the walls
(the proof is in Appendix B).

Here, P̂, D̂, N̂ and M̂ represent densities of energy transfer per unit time and per unit
volume.

3. Simulation parameters

The DNS are performed using a staggered-grid fourth-order finite-difference solver
(Chung, Monty & Ooi 2014). Table 1 summarises the simulation parameters. For Lx =
2π and Ly = π, the maximum wavenumbers resolved by the simulation are kx = ±55,
ky = ±110 for Reτ = 180, and kx = ±191, ky = ±382 for Reτ = 590; the minimum
wavenumbers are kx = ±1, ky = ±2 for both Reynolds numbers. The grids are evenly
distributed in the streamwise and spanwise directions. In the wall-normal direction,
the grid follows a Chebyshev distribution. The grid coordinate in the z direction is
z = cos(n/Nπ), z ∈ [−1, 1], where n is an integer from 0 to nz (in table 1), and nz is
the total number of grid point in the z direction.

For Reτ = 180, the total simulation time is 20h/uτ with time step 0.002h/uτ ; for Reτ =
590, the total simulation time is 10h/uτ with time step 0.0002h/uτ . Here, h/uτ is used
as the time unit for non-dimensionalisation. The time-averaged first- and second-order
statistics of the present DNS data show good agreement with Moser, Kim & Mansour
(1999), as shown in figure 1.
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Figure 1. Comparison between the DNS dataset represented by solid lines and the standard DNS dataset
(Moser et al. 1999) represented by discrete markers: (a) mean streamwise velocity; (b) turbulence stresses.
Here, blue indicates Reτ = 180, and black indicates Reτ = 590.

4. Results

4.1. Energy transfer distributions
This subsection revisits the wall-normal integrated energy transfer for a single mode, as
stated in (2.3a) (Symon et al. 2021). Different from Symon et al. (2021), we use two
full channel datasets, and visualise the premultiplied energy transfer spectra, as shown
in figure 2. The relationship between wavenumber and wavelength is λ = 2π/k, where λ
refers to wavelength, and k refers to wavenumber. We see that the wall-normal integrated
production spectra P̂ (figures 2a,d) show relatively Reτ -independent features at these
two Reynolds numbers: their peaks are nearly aligned. For the wall-normal integrated
dissipation spectra D̂ (figures 2b,e), we see that there is a small peak shift towards a smaller
streamwise wavelength from Reτ = 180 to Reτ = 590. The locations of the peaks are in
line with the previous study that the production peak occurs at λ+x ≈ 600, λ+y ≈ 100 (at
z+ ≈ 15), and the peak for dissipation caused by streamwise velocities occurs at λ+x ≈ 200,
λ+y ≈ 70 (at z+ ≈ 70) (Lee & Moser 2019). The energy transfer spectra integrated along
the wall-normal height at Reτ = 180 and 590 do not show significant differences, primarily
because of the short outer layers at low Reτ . The contribution from the large scales in
the outer layer would become more significant as Reτ increases (Hutchins & Marusic
2007; Lee & Moser 2019). The Reynolds–Orr equation states that the energy source
for turbulence is production, and the energy sink is dissipation (Schmid & Henningson
2001). However, the energy source and sink are characterised by different structures,
as large scales are responsible mainly for production and small scales are responsible
mainly for dissipation. When viewed in terms of individual Fourier modes, (2.3a) states
that the gap between production and dissipation is bridged by nonlinear energy transfer
that is conservative, as shown in (2.4). As for the nonlinear energy transfer spectra N̂
(figures 2c, f ), we see the same streamwise forward cascade in which energy is transferred
from large streamwise scales to small streamwise scales at Reτ = 180 and 590.

Recall that N̂ represents the net energy that one mode receives from all other modes
through nonlinear interactions. Observing figures 2(c, f ), we see that there is a band of
modes near λ+x ≈ 300 with near-zero net energy transfer N̂(kx, ky) ≈ 0. However, N̂ = 0
alone cannot distinguish these two possible cases: first, these modes do not participate in
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Figure 2. (a,d) Premultiplied production spectra kxkyP̂. (b,e) Premultiplied (negative) dissipation spectra
kxkyD̂. (c, f ) Premultiplied nonlinear energy transfer spectra kxkyN̂. Here, (a,b,c) Reτ = 180 and (d,e, f )
Reτ = 590.

nonlinear interactions; second, these modes gain and lose approximately the same amount
of energy, resulting in a near-zero energy transfer. Similarly, for modes for which N̂ /= 0,
N̂ provides only the net energy transfer for one mode without giving the detailed budget.
We see the same streamwise forward cascade at Reτ = 180 and 590 (figures 2c, f ) by
examining N̂. However, it is not the only piece of information that we can obtain from
the nonlinear interactions. In order to explore nonlinear interactions in more detail, we
investigate the mode-to-mode nonlinear energy transfer using the variable M̂(sx,sy)(kx,ky)

defined in (2.6).

4.2. Energy transfer pathways
We first use two examples to interpret the introduced four-dimensional variable
M̂(sx,sy)(kx,ky) that represents energy transferred nonlinearly from mode (sx, sy) to mode
(kx, ky), as shown in (2.6) and Appendix A. For each example, we first choose a streamwise
wavenumber and a spanwise wavenumber for mode (kx, ky), which remains fixed. Then
we vary the streamwise and spanwise wavenumbers for mode (sx, sy). Both examples use
the Reτ = 180 dataset. First, M̂ is visualised with linear axes because modes containing
zero wavenumbers cannot be shown on a premultiplied energy spectrum. Second, the
premultiplied spectrum sxsyM̂ is shown.

For the first example, we choose to fix mode (0, 6) corresponding to (λ+x = ∞, λ+y =
188). This mode has significant production at Reτ = 180, which means that this mode
gains significant energy from the mean flow. We would like to understand how this
streamwise-constant mode redistributes energy to other modes. Figure 3(a) shows
M̂(sx,sy)(0,6), which quantifies the energy that mode (0, 6) marked by the black cross
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Figure 3. Plots of (a) M̂(sx,sy)(0,6), where the black cross marks the fixed mode (0, 6), and (b) M̂(sx,sy)(1,6),
where the black cross marks the fixed mode (1, 6). Modes marked in orange boxes are used to illustrate the
property stated in (2.7). The data are calculated for the Reτ = 180 case.
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Figure 4. (a) The premultiplied spectrum sxsyM̂(sx,sy)(0,6), where the black cross marks the fixed mode (0, 6)

corresponding to (λ+x , λ+y ) = (∞, 188). (b) The premultiplied spectrum sxsyM̂(sx,sy)(1,6), where the black
cross marks the fixed mode (1, 6) corresponding to (λ+x , λ+y ) = (1130, 188). (c) The premultiplied spectrum
sxsyM̂(sx,sy)(3,6), where the black cross marks the fixed mode (3, 6) corresponding to (λ+x , λ+y ) = (377, 188).
The arrow in each plot marks the dominant energy transfer direction.

gains from modes in pink and loses to modes in green. We see that apart from gaining
energy from the wider mode (0, 4) (wider in the spanwise direction), it loses energy
to all other modes, including the even wider mode (0, 2). The colour intensity tells us
that local nonlinear energy transfer between mode (0, 6) and its neighbouring modes in
Fourier space is strong (Brasseur & Wei 1994; Domaradzki et al. 1994; Cho et al. 2018).
In particular, mode (0, 6) loses the most energy to the next smallest streamwise scales with
sx = 1 outlined in orange, representing a forward energy cascade. This forward cascade
can also be observed from the arrow in the premultiplied spectrum in figure 4(a). The
direction of the arrow is determined by identifying which mode receives the most energy
from mode (0, 6). In this case, mode (0, 6) loses the most energy to mode (1, 6), so the
arrow points from mode (0, 6) to mode (1, 6). The length of the arrow is proportional to
the magnitude of the energy transfer from mode (0, 6) to mode (1, 6).
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For the second example, we choose to fix mode (1, 6) corresponding to (λ+x =
1130, λ+y = 188). Figure 3(b) shows M̂(sx,sy)(1,6). From the first example, we see that mode
(0, 6) loses the most energy to this mode (1, 6). The two modes highlighted in orange
boxes in figures 3(a,b) have the same magnitude but opposite signs, respecting (2.7).
We see the similar forward energy cascade in which mode (1, 6) gains energy from the
next largest streamwise scale with sx = 0 and loses energy to the next smallest streamwise
scale with sx = 2 but larger spanwise scale with sy = 4. In general, inspecting the spanwise
wavenumbers, we observe that mode (1, 6) loses a significant amount of energy to scales
with larger spanwise wavelengths (sy < 6). This corresponds to a spanwise inverse energy
cascade in which energy is transferred from small spanwise scales to large spanwise scales
(Cimarelli et al. 2013, 2016; Cho et al. 2018), though this inverse spanwise energy cascade
is not obvious from the arrow in the premultiplied spectrum in figure 4(b).

Since the two selected modes (0, 6) and (1, 6) exhibit minimal energy gain, we further
examine mode (3, 6), which has a smaller streamwise wavelength. Figure 4(c) displays the
premultiplied spectrum for mode (3, 6). The results indicate that mode (3, 6) gains energy
from larger streamwise scales in the pink-coloured region and loses energy to smaller
streamwise scales in the green-coloured region, demonstrating a streamwise forward
cascade. It is worth noting that mode (3, 6) loses energy to a wide range of smaller
streamwise scales. The arrow indicates only the direction in which mode (3, 6) loses the
most energy.

For each example, we obtain one dominant energy transfer pathway from the fixed mode
(kx, ky) to the mode to which the fixed mode (kx, ky) loses the most energy (as shown by
the arrows in figure 4). We further sweep through a sufficient number of resolved modes as
source modes, and identify their largest recipient modes. For each case, we plot an arrow
pointing from the source mode to its corresponding largest recipient mode, with the length
of the arrow proportional to the magnitude of the energy transfer. The path of the nonlinear
energy transfer in streamwise–spanwise wavenumber space is shown in figure 5. For both
Reτ = 180 and 590, we see that there are large left-pointing arrows corresponding to
the forward streamwise energy cascade, and large bottom-pointing arrows corresponding
to the forward spanwise energy cascade. It should be noted that each arrow in figure 5
illustrates only the dominant energy transfer pathway for each fixed (kx, ky) case, without
showing other less dominant energy transfer pathways. In addition, the energy transfer
pathways describe only the statistical properties because the variable M̂ is a time-averaged
quantity (2.6).

The two examples (figure 3) illustrate the quantification of mode-to-mode nonlinear
energy transfer in streamwise–spanwise wavenumber space. For mode (0, 6), we can
further calculate how much energy mode (0, 6) gains in total due to nonlinear interactions
by summing all the modes in pink in figure 3(a). Similarly, we can calculate how much
energy mode (0, 6) loses in total due to nonlinear interactions by summing all the modes
in green in figure 3(a). The next subsection aims to calculate the net energy transfer gain
and loss due to nonlinear interactions for each mode in streamwise–spanwise wavenumber
space.

4.3. Decomposition of net nonlinear energy transfer N̂

With the introduced variable M̂ in (2.5), we can decompose N̂ for a given mode (kx, ky)
into positive and negative contributions:

N̂+(kx, ky) =
∫ ∞

0

∫ ∞

0
M̂(sx,sy)(kx,ky){M̂ > 0} dsx dsy, (4.1a)
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Figure 5. Dominant energy transfer pathways: (a) Reτ = 180, (b) Reτ = 590.

N̂−(kx, ky) =
∫ ∞

0

∫ ∞

0
M̂(sx,sy)(kx,ky){M̂ < 0} dsx dsy, (4.1b)

where { } is an indicator. An indicator is equal to 1 when the argument is true, and 0
when the argument is false. The positive energy transfer N̂+ quantifies the total energy
that mode (kx, ky) gains from other modes. The negative energy transfer N̂− quantifies
the total energy that mode (kx, ky) loses to other modes. According to (2.5), these two
variables are linked to the net energy transfer N̂ by

N̂(kx, ky) = N̂+(kx, ky) + N̂−(kx, ky). (4.2)

The triadic interaction in the streamwise–spanwise wavenumber space enables this
decomposition. However, it is important to note that N̂+ and N̂− do not provide a complete
picture of energy gain and loss, as M̂ is derived through wall-normal integration and time
averaging.

Figure 6(a,b) quantify the energy transfer gain and loss for each mode at Reτ = 180.
We see the dual characteristic of nonlinear energy transfer that each mode acts as an energy
source and energy recipient. The difference between the energy transfer gain and loss for
each mode results in the net nonlinear energy transfer spectrum N̂, as shown in figure 6(c)
and respecting equation (4.2). Figure 6(c) is the same as figure 2(c) and figure 6( f ) is
the same as figure 2( f ). We see that the mode marked by the black cross where N̂ ≈ 0
in figure 6(c) has non-negligible net energy loss and net energy gain as observed in the
corresponding locations in figure 6(a,b). This indicates that this mode gains and loses
approximately equal amount of energy, resulting in near-zero net nonlinear energy transfer.
The production and dissipation spectra show that large scales lose energy because they
gain the most energy through production, while small scales gain energy to dissipate it.
This results in intermediate scales with a net zero N̂. The N̂+ and N̂− spectra indicate
that energy gain and loss transition ‘smoothly’ across scales for the Reynolds numbers
considered. However, this is not necessarily true for high-Reynolds-number flows.

Now we answer the other question raised at the end of § 4.1. As mentioned previously,
the net energy transfer spectra N̂ reveal the same streamwise forward cascade at Reτ = 180
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Figure 6. Decomposition of the net nonlinear energy transfer: N̂− + N̂+ = N̂. (a,d) Premultiplied negative
nonlinear energy transfer spectra kxkyN̂−, where dashed lines mark the peak. (b,e) Premultiplied positive
nonlinear energy transfer spectra kxkyN̂+, where dashed lines mark the peak, (c, f ) Premultiplied net nonlinear
energy transfer spectra kxkyN̂. Here, (a–c) Reτ = 180, and (d–f ) Reτ = 590. The black crosses in (a–c) mark a
mode with N̂ ≈ 0 for explanation purposes.

and 590 (figures 6c, f ). At Reτ = 180, we see that the negative energy transfer spectrum
N̂− peak is at λ+x ≈ 600, λ+y ≈ 100, and the positive energy transfer spectrum N̂+ peak is
at λ+x ≈ 150, λ+y ≈ 70, indicated by the white dashed lines in figures 6(a,b). This indicates
that large streamwise scales lose the most energy, and small streamwise scales gain the
most energy. Thus figures 6(a,b) illustrate the streamwise forward cascade, which aligns
with the net energy transfer spectrum (figure 6c).

At Reτ = 590, we see that the negative energy transfer spectrum N̂− peak is at
λ+x ≈ 200, λ+y ≈ 90, and the positive energy transfer spectrum N̂+ peak is at λ+x ≈ 150,
λ+y ≈ 80, indicated by the white dashed lines in figures 6(d,e). From Reτ = 180 to 590,
there is a significant negative energy transfer spectrum peak shift to a much smaller λ+x .
The spectra of N̂+ and N̂− reveal the same streamwise forward cascade as N̂, because of
(4.2). The shift of N̂− peak cannot be deduced directly from the production and dissipation
spectra, because N̂− is obtained through the triadic interaction. The reason for this shift
remains unclear at this stage. Note that the above discussions are for the whole channel
since M̂ is wall-normal integrated nonlinear energy transfer that hides the nonlinear energy
transfer in the wall-normal direction.

4.4. Nonlinear energy transfer of three specific modes
Linear analysis explains the energy amplification mechanisms of different modes (Schmid
& Henningson 2001; Jovanović & Bamieh 2005), leaving the nonlinear part relatively
unexplored. Since nonlinear energy transfer is conservative, the nonlinear energy
transfer among different modes should be interpreted as energy redistribution. In this
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subsection, we use M̂ to investigate the energy redistribution of three different modes:
streamwise-constant modes, oblique 2 : 1 modes and spanwise-constant modes.

Following Jovanović & Bamieh (2005), we define the nonlinear energy transfer of the
streamwise-constant modes as

M̂(sx,sy)(kx=0) =
∑
kx=0

M̂(sx,sy)(kx,ky). (4.3)

Oblique waves are characterised by kx ≈ O(1), ky ≈ O(1). Considering the geometry of
the channel box used in this study, we define the nonlinear energy transfer of the oblique
2 : 1 modes (where 2 : 1 refers to Lx/Ly = 2 : 1) as

M̂(sx,sy)(ky=2kx) =
∑

ky=2kx

M̂(sx,sy)(kx,ky). (4.4)

We define the nonlinear energy transfer of the spanwise-constant modes as

M̂(sx,sy)(ky=0) =
∑
ky=0

M̂(sx,sy)(kx,ky). (4.5)

Figure 7 shows the nonlinear energy transfer of the three different modes at Reτ = 180
and 590. As for the interpretation of each subplot, the specific modes (indicated by the
black crosses) gain energy from modes in pink, and lose energy to modes in green. We
see that the streamwise-constant modes (figures 7a,d) lose energy to smaller streamwise
scales (sx > 0), exhibiting a streamwise forward cascade. This could be linked to streak
breakdown which is one phase of the self-sustaining process. Due to the instability of
long streamwise streaks, they break down into smaller streamwise streaks (Hamilton
et al. 1995). The breakdown of streamwise streaks has been observed both experimentally
(Blackwelder & Eckelmann 1979) and numerically (Hwang & Bengana 2016). For the
oblique 2 : 1 modes (figures 7b,e), we see that they generally gain energy from scales with
larger aspect ratios sy/sx (which is equivalent to ky/kx) (Symon et al. 2021), and lose
energy to scales with smaller aspect ratios, exhibiting a transverse cascade (Lee & Moser
2019; Symon et al. 2021). For the spanwise-constant modes (figures 7c, f ), we see that they
mainly gain energy from smaller spanwise scales, exhibiting a spanwise inverse cascade
(Cimarelli et al. 2013, 2016; Cho et al. 2018). If we think of the streamwise-constant
modes with infinite aspect ratio sy/sx → ∞ and the spanwise-constant modes with zero
aspect ratio sy/sx → 0, then we could conclude that there exists energy transfer from
scales with large aspect ratio to scales with small aspect ratio. In terms of the shapes of
scales, this transverse cascade refers to energy transfer from streamwise-elongated scales
to spanwise-elongated scales. It is also worth noting that the transverse cascade of the
three modes is not substantially influenced by the Reynolds number for this range.

The above discussion tells us that the transverse energy cascade is related to sy/sx
(which is equivalent to ky/kx). We can also visualise this same piece of information
on a log-polar coordinate in which sy/sx corresponds to a certain slope (Lee & Moser

2019), as shown in figure 8. Following Lee & Moser (2019), s#
x = ξsx/

√
s2

x + s2
y , s#

y =
ξsy/

√
s2

x + s2
y and ξ = log(

√
s2

x + s2
y/kref ), with kref = Reτ /50 000. From figures 8(a,d),

the streamwise-constant modes located on the s#
x = 0 axis lose energy to other modes,

corresponding to the finding that modes located on the s#
x = 0 axis have significant net

negative nonlinear energy transfer (Lee & Moser 2019). From figures 8(b,e), the oblique
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Figure 7. Plots of (a,d) M̂(sx,sy)(kx=0), (b,e) M̂(sx,sy)(ky=2kx), (c, f ) M̂(sx,sy)(ky=0), visualised using discrete
modes. Here, (a–c) Reτ = 180, and (d–f ) Reτ = 590. Black crosses mark the modes of the investigated
structures.

2 : 1 modes located on s#
y = 2s#

x gain energy from modes satisfying s#
y > 2s#

x , and lose
energy to modes satisfying s#

y < 2s#
x , corresponding to the transverse cascade mentioned

previously. From figures 8(c, f ), the spanwise-constant modes located on the s#
y = 0 axis

mainly gain energy but also lose a small amount of energy. We see that one advantage of
using log-polar premultiplied spectra over the traditional premultiplied spectra is that we
can visualise modes that contain one zero wavenumber (either sx = 0 or sy = 0).

Note that the above discussion concerns only the nonlinear energy transfer as one
component in the energy transfer balance (2.3a). One should not interpret this as saying
that energy merely originates from the streamwise-constant modes, goes through the
oblique 2 : 1 modes, and finally dissipates at the spanwise-constant modes. Equation (2.3a)
gives the energy transfer budget for each mode. To evaluate the overall energy transfer
balance comprehensively, we need to consider the production and dissipation as well.
Motivated by § 4.3, we decompose the net nonlinear energy transfer of each mode into
its positive and negative parts. According to (2.3a) and (4.2), for each mode, the energy
transfer budget is

P̂ + D̂ + N̂+ + N̂− = 0. (4.6)

The energy budgets (2.3a) for the three modes are shown in figure 9. For the
streamwise-constant modes, they receive a large amount of energy from the mean flow
through production, as seen from the blue bars, and they lose a large amount of energy
nonlinearly to other modes, as seen from the purple bars. For the oblique 2 : 1 modes, apart
from gaining energy from the mean flow and dissipating energy, they gain and lose energy
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Figure 8. Log-polar premultiplied energy spectra (a,d) ((s2
x + s2

y)/ξ) M̂(sx,sy)(kx=0), (b,e)
((s2

x + s2
y)/ξ) M̂(sx,sy)(ky=2kx), (c, f ) ((s2

x + s2
y)/ξ) M̂(sx,sy)(ky=0). Here, (a–c) Reτ = 180, and (d–f ) Reτ = 590.

Black crosses mark the modes of the investigated structures.

nonlinearly through interacting with other modes, as seen from the purple and yellow
bars. For the spanwise-constant modes, the only energy gain is through nonlinear energy
transfer, as seen from the yellow bars. The streamwise-constant modes and the oblique 2 : 1
modes gain energy from the mean flow (positive production), while the spanwise-constant
modes lose energy to the mean flow (negative production). Dissipation occurs for all three
modes as seen from the red bars. Although the values are different at the two Reynolds
numbers, different types of energy transfer show similar trends in the three modes.

Having discussed the three types of modes, we proceed to discuss a certain type of
structure. It has been found that streamwise-constant modes with spanwise wavelengths
λ+y ≈ 100 experience significant energy growth due to linear mechanisms (Pujals et al.
2009; Hwang & Cossu 2010). Using the variable M̂, we can investigate the nonlinear
energy transfer of this specific structure. We define the mode-to-mode nonlinear energy
transfer of streamwise streaks with λ+y ≈ 100 as

M̂(sx,sy)(streaks) =
∑

kx=0,λ+y ≈100

M̂(sx,sy)(kx,ky). (4.7)

Figure 10 shows the log-polar premultiplied energy spectra of streamwise streaks
at Reτ = 180 and 590. According to the definition in (4.7), the discussed streamwise
streaks have zero streamwise wavenumber kx = 0, corresponding to s#

x = 0. The discussed
streamwise streaks have spanwise wavelength λ+y ≈ 100, corresponding to s#

y = 3.49.
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Figure 9. Energy budgets for the streamwise-constant mode (kx = 0), oblique 2 : 1 mode (ky = 2kx) and
spanwise-constant mode (ky = 0). Here, (a) Reτ = 180, and (b) Reτ = 590.
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Figure 10. Log-polar premultiplied energy spectra of streamwise streaks ((s2
x + s2

y)/ξ) M̂(sx,sy)(streaks). Black
crosses mark the modes satisfying kx = 0 and λ+y ≈ 100. Here, (a) Reτ = 180, and (b) Reτ = 590.

We see that the streamwise streaks mainly lose energy to smaller scales at Reτ = 180
and 590. The main difference from figures 8(a,d) is that the streamwise streaks receive a
small amount of energy from large scales, as indicated by the pink colour.

4.5. Forward cascade and inverse cascade
In this subsection, we use M̂ to quantify the forward and inverse cascades between the large
scales and small scales in the spirit of LES. For channel flows, resolved scales could be
set by modes belonging to a rectangular region determined by the conditions kx ≤ kxC and
ky ≤ kyC, where kxC and kyC are cutoff wavenumbers (Germano et al. 1991; Domaradzki
et al. 1994; Härtel et al. 1994). These cutoff wavenumbers are determined by the choice of
a single variable nC:

kxC = 2πnC

Lx
, kyC = 2πnC

Ly
. (4.8a,b)
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0 kxC

kyC

kyDNS

kxDNS

S

Forward

Inverse

R

Figure 11. A sketch illustrating the forward cascade and inverse cascade between the resolved-scale region R

marked in dark grey and the subgrid-scale region S marked in light grey. Region R contains the resolved scales,
and region S contains the subgrid scales. Here, kxC and kyC are the cutoff wavenumbers, and kxDNS and kyDNS
are the maximum wavenumbers resolved by DNS.

One issue of subgrid-scale energy transfer modelling with eddy viscosity is that it assumes
that the subgrid scales only dissipate energy and neglects the energy transferred from the
subgrid scales to the resolved scales, also known as ‘backscatter’ (Piomelli et al. 1991).
Figure 11 illustrates the two-way energy transfer between the resolved scales and subgrid
scales. We aim to quantify the forward cascade and inverse cascade using mode-to-mode
nonlinear energy transfer M̂.

Recall that M̂(sx,sy)(kx,ky) represents energy transfer from mode (sx, sy) to mode (kx, ky).
For the forward cascade, energy is transferred from the resolved scales in region R to the
subgrid scales in region S, as indicated by the solid arrow in figure 11. Similar to (4.1a) and
(4.1b), for this forward cascade, we can calculate the energy lost by each mode (4.9b) in the
resolved-scale region R and the energy gained by each mode (4.9a) in the subgrid-scale
region S:

N̂+
F (kx, ky, nC) =

∫∫
M̂(sx,sy)(kx,ky){M̂ > 0, (sx, sy) ∈ R, (kx, ky) ∈ S} dsx dsy, (4.9a)

N̂−
F (kx, ky, nC) =

∫∫
M̂(sx,sy)(kx,ky){M̂ < 0, (sx, sy) ∈ S, (kx, ky) ∈ R} dsx dsy. (4.9b)

Figure 12 shows an example of the forward cascade from the resolved scales to the
subgrid scales at Reτ = 180. The choice of cutoff wavenumber nC = 5 corresponds to
the filtering width Δi satisfying Δi ≈ 5�xi (i = 1, 2) at Reτ = 180. Figure 12(a) shows
that streamwise-elongated modes with large ky/kx in region R lose the most energy.
Figure 12(b) shows that modes gaining energy in region S do not show significant
preference with respect to ky/kx.

For the inverse cascade, energy is transferred from the subgrid scales in region S to the
resolved scales in region R, as indicated by the dashed-line arrow in figure 11. Similar
to (4.1a) and (4.1b), for this inverse cascade, we can calculate the energy gained by each
mode (4.10a) in the resolved-scale region R, and the energy lost by each mode (4.10b) in
the subgrid-scale region S:

N̂+
I (kx, ky, nC) =

∫∫
M̂(sx,sy)(kx,ky){M̂ > 0, (sx, sy) ∈ S, (kx, ky) ∈ R} dsx dsy, (4.10a)

N̂−
I (kx, ky, nC) =

∫∫
M̂(sx,sy)(kx,ky){M̂ < 0, (sx, sy) ∈ R, (kx, ky) ∈ S} dsx dsy. (4.10b)
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Figure 12. An example of the forward cascade, where nC = 5 corresponds to (λ+x = 226, λ+y = 113) at Reτ =
180: (a) N̂−

F (kx, ky, 5) shows the energy lost by resolved scales in region R; (b) N̂+
F (kx, ky, 5) shows the energy

gained by subgrid scales in region S. Dashed lines mark the boundary between the resolved-scale region R

and the subgrid-scale region S. Note that the maximum wavenumbers in this figure are not the maximum
wavenumbers resolved in the DNS.
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Figure 13. Inverse cascade example: nC = 5 (λ+x = 226, λ+y = 113) at Reτ = 180. Here, (a) N̂−
I (kx, ky, 5)

shows how subgrid scales in region S lose energy; (b) N̂+
I (kx, ky, 5) shows how resolved scales in region R

gain energy.

Figure 13 shows an example of the inverse cascade from the subgrid scales to the
resolved scales at Reτ = 180. Figure 13(a) shows the asymmetry of modes losing energy
in region S: only streamwise elongated modes with large ky/kx lose energy. Figure 13(b)
shows that modes gaining energy in region R do not show significant preference with
respect to ky/kx.
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Figure 14. Quantification of the energy transfer between the resolved scales and subgrid scales: (a) cutoff
wavelengths are scaled in inner units; (b) cutoff wavelengths are scaled in outer units. Dashed lines indicate
forward cascade NF; dotted lines indicate inverse cascade NI ; solid lines indicate net energy cascade NF − NI .
Blue indicates Reτ = 180; black indicates Reτ = 590.

We further quantify the forward cascade and inverse cascade between the resolved scales
and subgrid scales determined by nC:

NF(nC) =
∫∫

S

N̂+
F dkx dky

(2.7)= −
∫∫

R

N̂−
F dkx dky, (4.11)

NI(nC) =
∫∫

R

N̂+
I dkx dky

(2.7)= −
∫∫

S

N̂−
I dkx dky. (4.12)

The forward cascade and inverse cascade calculated using (4.11) and (4.12) for Reτ =
180 and 590 are shown in figure 14. A general criterion for LES is to resolve a sufficient
amount of large scales that should contain 80 % of the total kinetic energy (Pope 2000).
By checking the DNS datasets, we know that scales with λ+x = 2λ+y > 162 need to be
resolved at Reτ = 180, and scales with λ+x = 2λ+y > 232 need to be resolved at Reτ = 590.
Therefore, we need to consider the energy transfer when the cutoff wavelengths satisfy
λ+xC = 2λ+yC < 162 at Reτ = 180, and λ+xC = 2λ+yC < 232 at Reτ = 590. We see that the
forward cascade is at least four times larger than the inverse cascade when λ+xC < 250,
indicating that the net energy transfer is from the resolved scales to the subgrid scales,
shown by the solid lines. This justifies why eddy viscosity considering only the forward
cascade is used in LES (Pope 2000). The net forward cascade from resolved scales to
subgrid scales could also be expected from figure 2. Large scales are mainly responsible
for production, and small scales are mainly responsible for dissipation. The imbalance
between production and dissipation in terms of each scale results in the net forward energy
cascade. However, the inverse cascade is not negligible when λ+xC > 100, so the negligence
of it has been proposed as a source of inaccuracy in LES (Anderson & Domaradzki 2012;
Cimarelli & De Angelis 2014).

When interpreting figure 14, two things should be noted. First, the results would be
different if the aspect ratio between the streamwise and spanwise cutoff wavenumbers
kxC/kyC = 1

2 were changed. Second, the above results represent only the wall-normal
integrated forward and inverse cascades. Due to the inhomogeneity in the wall-normal
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Figure 15. Forward cascade Nν predicted by the eddy viscosity (4.14) in (a) inner units, (b) outer units. Blue
indicates Reτ = 180, left-hand axis; black indicates Reτ = 590, right-hand axis.

direction of wall-bounded flows, the forward cascade and inverse cascade would vary with
wall-normal height.

Now we compare the energy cascade calculated using M̂ with the eddy viscosity method.
The forward cascade from the resolved scales to the subgrid scales Nν can be calculated
using the linear eddy viscosity model (Pope 2000)

Nν = νS̃2, (4.13)

where ν is the eddy viscosity, S̃ is the characteristic filtered rate of strain S̃ = (2S̃ijS̃ij)
1/2,

S̃ij is the filtered rate-of-strain tensor S̃ij = 1
2 (∂ ũi/∂xj + ∂ ũj/∂xi), and ũi is the filtered

velocity of the resolved scales.
We can use the Smagorinsky eddy viscosity (Smagorinsky 1963)

ν = (CsDzΔ)2S̃, (4.14)

where Cs is the Smagorinsky coefficient, set to be Cs = 0.067 (Moin & Kim 1982), and
Dz is the damping function that accounts for low-Reynolds-number subgrid-scale stress
near the wall, set to be Dz = 1 − exp(−z+/25) (Moin & Kim 1982). Since we do not
apply filtering in the wall-normal direction, the characteristic length scale of the largest
subgrid-scale eddies Δ is set to be Δ = (Δ1Δ2)

1/2. After we have obtained the filtered
velocity fields ũi using the cutoff wavenumbers (4.8a,b) in Fourier space, we calculate the
forward cascade Nν in (4.13) and the Smagorinsky eddy viscosity ν in (4.14) directly in
physical space.

Figure 15 shows the forward cascades from the resolved scales to subgrid scales
predicted by the eddy viscosity (4.14) at Reτ = 180 and 590. We see that the forward
cascade at Reτ = 590 is approximately 20 times higher than the forward cascade at
Reτ = 180. We do not put the forward cascades predicted from (4.14) and from M̂ on the
same figure because they differ in magnitude substantially. Nevertheless, both the eddy
viscosity (4.14) and M̂ are able to predict the forward cascades with respect to cutoff
wavelengths with the same shape. The forward cascade predicted by the eddy viscosity
(4.14) first increases as the cutoff wavelengths (λxC and λyC) decrease, and then decreases
to zero as the cutoff wavelengths approach the DNS grid sizes, aligning with the trends in
figure 14. The substantial mismatch in magnitude between the eddy viscosity (4.14) and

1002 A42-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1193


Mode-to-mode energy transfer in channel flows

M̂ is that M̂ represents the wall-normal integrated energy transfer and is a time-averaged
variable. Statistics of energy transfer has been averaged out in the wall-normal direction
and the time domain, which could be more prominent at Reτ = 590. That is the main
reason why NF − NI in figure 14 is substantially smaller than Nν in figure 15. Nevertheless,
M̂ could be extended to include the wall-normal coordinate, and NF − NI can be calculated
at each wall-normal height before being time and wall-normal averaged.

5. Conclusions and outlook

We investigate nonlinear energy transfer in turbulent channel flow in Fourier space
at Reτ = 180 and 590. We introduce a four-dimensional variable M̂(sx,sy)(kx,ky) that
describes the nonlinear energy transfer between any two modes in streamwise–spanwise
wavenumber space, by analysing the individual triadic interactions of the nonlinear energy
transfer term in the spectral turbulent kinetic energy equation.

We use this variable to explore three things. First, we decompose the net nonlinear
energy transfer N̂ into its positive and negative contributions: N̂+ and N̂−. This allows
us to separately quantify the total energy gained and total energy lost by each mode.
Second, we investigate the nonlinear energy transfer of three specific modes. We
observe that there exists energy transfer from streamwise-elongated structures to
spanwise-elongated structures, and that this transverse cascade is characterised by the
aspect ratio ky/kx. Third, we quantify the forward cascade and inverse cascade between
the resolved scales and subgrid scales in the spirit of LES. For both Reynolds numbers
considered, the forward cascade is significantly larger than the inverse cascade when
λ+xC < 250, justifying why eddy viscosity considers only the forward cascade used in
LES. However, the inverse cascade is not negligible when λ+xC > 100. We also compare
the energy cascade calculated using M̂ with the Smagorinsky eddy viscosity. The forward
cascades calculated from the two methods show a substantial deviation in magnitude and
a similar trend with respect to the cutoff wavelengths.

The pathways illustrated by M̂ represent a nonlinear energy transfer network in
two-dimensional Fourier space (Gürcan, Li & Morel 2020). A promising area for future
work would be to extend mode-to-mode nonlinear energy transfer M̂(sx,sy)(kx,ky) to include
another dimension, the wall-normal coordinate, to investigate the details of mode-to-mode
nonlinear energy transfer at any wall-normal height.
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Appendix A. Full expression for M̂(sx,sy)(kx,ky)

Mode-to-mode nonlinear energy transfer M̂ is formulated from N̂:

N̂(kx, ky) = −
〈

û
(kx,ky)

i ,
∂̂uiuj

∂xj

(kx,ky)
〉

continuity= −
〈

û
(kx,ky)

i ,
̂
uj

∂ui

∂xj

(kx,ky)
〉

. (A1)
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If we assign fi = −uj(∂ui/∂xj), then N̂ could be expressed according to three different
cases:

N̂(kx, ky)
(kx,ky∈R+)

= ( f̂
(kx,ky)

i û
(−kx,−ky)

i + f̂
(−kx,ky)

i û
(kx,−ky)

i + c.c.)

= 2 Real{ f̂
(kx,ky)

i û
(−kx,−ky)

i + f̂
(−kx,ky)

i û
(kx,−ky)

i }, (A2a)

N̂(0, ky)
(ky∈R+)

= ( f̂
(0,ky)

i û
(0,−ky)

i + c.c.) = 2 Real{ f̂
(0,ky)

i û
(0,−ky)

i }, (A2b)

N̂(kx, 0)
(kx∈R+)

= ( f̂ (kx,0)
i û(−kx,0)

i + c.c.) = 2 Real{ f̂ (kx,0)
i û(−kx,0)

i }, (A2c)

where c.c. represents complex conjugate terms; R refers to real numbers in Appendices A
and B.

From the dyadic interactions in the wavenumber space, f̂
(kx,ky)

i could be expressed as

f̂
(kx,ky)

i = −
∑

sx,sy∈R+

(
û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

+ û
(kx+sx,ky+sy)

j
∂̂ui

∂xj

(−sx,−sy)

+ û
(kx+sx,ky−sy)

j
∂̂ui

∂xj

(−sx,sy)

+ û
(kx−sx,ky+sy)

j
∂̂ui

∂xj

(sx,−sy)
)

−
∑

b∈R+

(
û
(kx,ky−sy)

j
∂̂ui

∂xj

(0,sy)

+ û
(kx,ky+sy)

j
∂̂ui

∂xj

(0,−sy)
)

−
∑

a∈R+

(
û
(kx−sx,ky)

j
∂̂ui

∂xj

(sx,0)

+ û
(kx+sx,ky)

j
∂̂ui

∂xj

(−sx,0)
)

. (A3)

Substitute (A3) into (A2a), (A2b) and (A2c). The mode-to-mode nonlinear transfer
between two modes for nine different cases is summarised here:

M̂(sx,sy)(kx,ky)

= −2 Real

{
û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

û
(−kx,−ky)

i + û
(kx+sx,ky+sy)

j
∂̂ui

∂xj

(−sx,−sy)

û
(−kx,−ky)

i

+ û
(kx+sx,ky−sy)

j
∂̂ui

∂xj

(−sx,sy)

û
(−kx,−ky)

i + û
(kx−sx,ky+sy)

j
∂̂ui

∂xj

(sx,−sy)

û
(−kx,−ky)

i

+ û
(−kx−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

û
(kx,−ky)

i + û
(−kx+sx,ky+sy)

j
∂̂ui

∂xj

(−sx,−sy)

û
(kx,−ky)

i

+ û
(−kx+sx,ky−sy)

j
∂̂ui

∂xj

(−sx,sy)

û
(kx,−ky)

i + û
(−kx−sx,ky+sy)

j
∂̂ui

∂xj

(sx,−sy)

û
(kx,−ky)

i

}
,

(A4a)
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M̂(0,sy)(kx,ky) = −2 Real

{
û
(kx,ky−sy)

j
∂̂ui

∂xj

(0,sy)

û
(−kx,−ky)

i + û
(kx,ky+sy)

j
∂̂ui

∂xj

(0,−sy)

û
(−kx,−ky)

i

+ û
(−kx,ky−sy)

j
∂̂ui

∂xj

(0,sy)

û
(kx,−ky)

i + û
(−kx,ky+sy)

j
∂̂ui

∂xj

(0,−sy)

û
(kx,−ky)

i

}
, (A4b)

M̂(sx,0)(kx,ky) = −2 Real

{
û
(kx−sx,ky)

j
∂̂ui

∂xj

(sx,0)

û
(−kx,−ky)

i + û
(kx+sx,ky)

j
∂̂ui

∂xj

(−sx,0)

û
(−kx,−ky)

i

+ û
(−kx−sx,ky)

j
∂̂ui

∂xj

(sx,0)

û
(kx,−ky)

i + û
(−kx+sx,ky)

j
∂̂ui

∂xj

(−sx,0)

û
(kx,−ky)

i

}
, (A4c)

M̂(sx,sy)(0,ky) = −2 Real

{
û
(−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

û
(0,−ky)

i + û
(sx,ky+sy)

j
∂̂ui

∂xj

(−sx,−sy)

û
(0,−ky)

i

+ û
(sx,ky−sy)

j
∂̂ui

∂xj

(−sx,sy)

û
(0,−ky)

i + û
(−sx,ky+sy)

j
∂̂ui

∂xj

(sx,−sy)

û
(0,−ky)

i

}
, (A4d)

M̂(0,sy)(0,ky) = −2 Real

{
û
(0,ky−sy)

j
∂̂ui

∂xj

(0,sy)

û
(0,−ky)

i + û
(0,ky+sy)

j
∂̂ui

∂xj

(0,−sy)

û
(0,−ky)

i

}
,

(A4e)

M̂(sx,0)(0,ky) = −2 Real

{
û
(−sx,ky)

j
∂̂ui

∂xj

(sx,0)

û
(0,−ky)

i + û
(sx,ky)

j
∂̂ui

∂xj

(−sx,0)

û
(0,−ky)

i

}
, (A4f )

M̂(sx,sy)(kx,0) = −2 Real

{
û
(kx−sx,−sy)

j
∂̂ui

∂xj

(sx,sy)

û(−kx,0)
i + û

(kx+sx,sy)

j
∂̂ui

∂xj

(−sx,−sy)

û(−kx,0)
i

+ û
(kx+sx,−sy)

j
∂̂ui

∂xj

(−sx,sy)

û(−kx,0)
i + û

(kx−sx,sy)

j
∂̂ui

∂xj

(sx,−sy)

û(−kx,0)
i

}
, (A4g)

M̂(0,sy)(kx,0) = −2 Real

{
û
(kx,−sy)

j
∂̂ui

∂xj

(0,sy)

û(−kx,0)
i + û

(kx,sy)

j
∂̂ui

∂xj

(0,−sy)

û(−kx,0)
i

}
, (A4h)

M̂(sx,sy)(kx,0) = −2 Real

{
û(kx−sx,0)

j
∂̂ui

∂xj

(sx,0)

û(−kx,0)
i + û(kx+sx,0)

j
∂̂ui

∂xj

(−sx,0)

û(−kx,0)
i

}
.

(A4i)

Appendix B. Proof of M̂(sx,sy)(kx,ky) = −M̂(kx,ky)(sx,sy)

Note that M̂(sx,sy)(kx,ky) = −M̂(kx,ky)(sx,sy) is satisfied only for wall-normal integrated M̂.
Two identities described below are used.

First, for three complex variables a, b and c, we have Real{abc} = Real{a∗b∗c∗}.
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Second, for any set of triadic interaction, there exists a relationship that involves
swapping the Fourier modes between the second and third terms:

−
∫

û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

û
(−kx,−ky)

i dz =
∫

û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(−kx,−ky)

û
(sx,sy)

i dz.

(B1)

Proof . We have

∫
û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(sx,sy)

û
(−kx,−ky)

i dz +
∫

û
(kx−sx,ky−sy)

j
∂̂ui

∂xj

(−kx,−ky)

û
(sx,sy)

i dz

=
∫

û
(kx−sx,ky−sy)

j
∂ û

(sx,sy)

i û
(−kx,−ky)

i
∂xj

dz

=
∫ ⎛⎝û

(kx−sx,ky−sy)

j
∂ û

(sx,sy)

i û
(−kx,−ky)

i
∂xj

+
∂ û

(kx−sx,ky−sy)

j

∂xj
û
(sx,sy)

i û
(−kx,−ky)

i

⎞⎠ dz

=
∫

∂(û
(kx−sx,ky−sy)

j û
(sx,sy)

i û
(−kx,−ky)

i )

∂xj
dz

= û
(kx−sx,ky−sy)

j û
(sx,sy)

i û
(−kx,−ky)

i

∣∣1−1

= 0. (B2)

We use the continuity equation and the boundary conditions at the walls.

We consider three different cases. For each case, we list the terms in
M̂(sx,sy)(kx,ky) in the left-hand column, and the terms in M̂(kx,ky)(sx,sy) in the right-hand
column. Then we compare the columns. For simplicity, we use Fourier modes
to represent the terms. For example, (kx − sx, ky − sy)(sx, sy)(−kx, −ky) means the

term û
(kx−sx,ky−sy)

j (∂ ûi/∂xj)
(sx,sy) û

(−kx,−ky)

i . The first identity indicates (kx − sx, ky −
sy)(sx, sy)(−kx, −ky) = (sx − kx, sy − ky)(−sx, −sy)(kx, ky), and the second identity
indicates (kx − sx, ky − sy)(sx, sy)(−kx, −ky) = −(kx − sx, ky − sy)(−kx, −ky)(sx, sy).

(i) For kx, ky, sx, sy ∈ R+, according to (A4a):

M̂(sx,sy)(kx,ky) M̂(kx,ky)(sx,sy)

1©(kx − sx, ky − sy)(sx, sy)(−kx, −ky) − 1©(sx − kx, sy − ky)(kx, ky)(−sx, −sy)

2©(kx + sx, ky + sy)(−sx, −sy)(−kx, −ky) − 2©(sx + kx, sy + ky)(−kx, −ky)(−sx, −sy)

3©(kx + sx, ky − sy)(−sx, sy)(−kx, −ky) − 5©(sx + kx, sy − ky)(−kx, ky)(−sx, −sy)

4©(kx − sx, ky + sy)(sx, −sy)(−kx, −ky) − 6©(sx − kx, sy + ky)(kx, −ky)(−sx, −sy)

5©(−kx − sx, ky − sy)(sx, sy)(kx, −ky) − 3©(−sx − kx, sy − ky)(kx, ky)(sx, −sy)

6©(−kx + sx, ky + sy)(−sx, −sy)(kx, −ky) − 4©(−sx + kx, sy + ky)(−kx, −ky)(sx, −sy)

7©(−kx + sx, ky − sy)(−sx, sy)(kx, −ky) − 7©(−sx + kx, sy − ky)(−kx, −ky)(sx, −sy)

8©(−kx − sx, ky + sy)(sx, −sy)(kx, −ky) − 8©(−sx − kx, sy + ky)(kx, −ky)(sx, −sy).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B3)
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(ii) For kx = 0, ky, sx, sy ∈ R+, according to (A4d):

M̂(sx,sy)(0,ky) M̂(0,ky)(sx,sy)

1©(−sx, ky − sy)(sx, sy)(0, −ky) − 1©(sx, sy − ky)(0, ky)(−sx, −sy)
2©(sx, ky + sy)(−sx, −sy)(0, −ky) − 2©(sx, sy + ky)(0, −ky)(−sx, −sy)
3©(sx, ky − sy)(−sx, sy)(0, −ky) − 3©(−sx, sy − ky)(0, ky)(sx, −sy)
4©(−sx, ky + sy)(sx, −sy)(0, −ky) − 4©(−sx, sy + ky)(0, −ky)(sx, −sy).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(B4)

Terms M̂(sx,sy)(kx,0) and M̂(kx,0)(sx,sy) could be listed similarly.
(iii) For kx, a = 0, ky, sy ∈ R+, according to (A4e):

M̂(0,sy)(0,ky) M̂(0,ky)(0,sy)

1©(0, ky − sy)(0, sy)(0, −ky) − 1©(0, sy − ky)(0, ky)(0, −sy)
2©(0, ky + sy)(0, −sy)(0, −ky) − 2©(0, sy + ky)(0, −ky)(0, −sy).

⎫⎬⎭ (B5)

Terms M̂(sx,0)(kx,0), M̂(kx,0)(sx,0), M̂(sx,0)(0,ky), M̂(0,ky)(sx,0) could be listed similarly.

Combining these three cases, we prove that the nonlinear energy transfer from mode
(sx, sy) to mode (kx, ky) equals the opposite of the nonlinear energy transfer from mode
(kx, ky) to mode (sx, sy):

M̂(sx,sy)(kx,ky) = −M̂(kx,ky)(sx,sy), kx, ky, sx, sy ∈ {R+∪0}. (B6)

In addition, there is no nonlinear energy transfer from one mode to itself. This could be
proved by setting sx = kx and sy = ky in (B6):

M̂(kx,ky)(kx,ky) = 0. (B7)

Properties (B6) and (B7) are for wall-normal integrated M̂.
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