
JFP 20 (3 & 4): 353–373, 2010. c© Cambridge University Press 2010

doi:10.1017/S0956796810000122 First published online 30 June 2010

353

Factorising folds for faster functions

GRAHAM HUTTON

University of Nottingham, Nottingham, UK

(e-mail: gmh@cs.nott.ac.uk)

MAURO JASKELIOFF

Universidad Nacional de Rosario, Rosario, Argentina

(e-mail: mauro@fceia.unr.edu.ar)

ANDY GILL

University of Kansas, Lawrence, KS, USA

(e-mail: andygill@ku.edu)

Abstract

The worker/wrapper transformation is a general technique for improving the performance of

recursive programs by changing their types. The previous formalisation (A. Gill & G. Hutton,

J. Funct. Program., vol. 19, 2009, pp. 227–251) was based upon a simple fixed-point semantics

of recursion. In this paper, we develop a more structured approach, based upon initial-algebra

semantics. In particular, we show how the worker/wrapper transformation can be applied to

programs defined using the structured pattern of recursion captured by fold operators, and

illustrate our new technique with a number of examples.

1 Introduction

The worker/wrapper transformation is a general technique for changing the type

of a recursive program to improve its performance. The basic idea is simple and

pervasive: given a recursive program of some type, we aim to factorise it into a

more efficient worker program of a different type, together with a wrapper program

that acts as an interface between the original program and the new worker.

Special cases of the worker/wrapper transformation have been used for many

years, particularly in optimising compilers. For example, the technique has been

used in the Glasgow Haskell Compiler since its inception, to replace the use of

boxed data structures by more efficient unboxed data structures when safe to

do so (Peyton Jones & Launchbury 1991). However, it is only recently that the

transformation has been formalised, proved correct, and presented as a general

technique for improving the performance of programs by improving the choice of

data structures (Gill & Hutton 2009).

The previous formalisation was based upon a simple fixed-point semantics of

recursive programs. In this paper, we take a more structured approach, based

upon initial-algebra semantics. In particular, we develop a general worker/wrapper

theory for changing the type of recursive programs defined using fold operators,

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

354 G. Hutton et al.

and show how it can be used in practice as an equational reasoning technique

for improving the performance of programs. More precisely, this paper makes the

following contributions:

• We show how the worker/wrapper transformation applies to programs defined

using folds, by generalising to a categorical view of types as initial algebras.

• We identify four conditions for the correctness of the transformation and show

that these conditions form a simple lattice structure.

• We illustrate our technique with a number of examples, including a correctness

proof for a new approach to implementing substitution efficiently (Voigtländer

2008).

The use of initial algebras also means that our worker/wrapper technique for

folds is generic in the underlying recursive type to which it applies (Backhouse et al.

1999). That is, the technique is defined and proved once for an arbitrary recursive

type, and can then simply be instantiated as required for each new type.

This paper is aimed at readers who are familiar with the basics of initial-algebra

semantics (in particular, the concepts of categories, functors, products, co-products,

and initial algebras), say to the level of chapter two of Bird & de Moor (1997),

but no previous experience with the worker/wrapper transformation is assumed.

An extended version of this paper that includes all the proofs is available from the

authors’ Web pages.

2 Initial-algebra semantics

The recursion operator fold encapsulates a common pattern for defining functions

that process values of a recursively defined type (Hutton 1999). In this section, we

review the categorical treatment of fold , and introduce our notation. For further

details, see, for example, Malcolm (1990), Meijer et al. (1991) and Bird & de Moor

(1997).

Suppose we fix a category C and a functor F : C→ C on this category. Then the

notion of an algebra is defined as a pair (A, f) comprising an object A and an arrow

f : FA → A. In turn, a homomorphism h : (A, f) → (B, g) from one such algebra to

another is an arrow h : A→ B such that the following diagram commutes:

FA
Fh ��

f

��

FB

g

��
A

h
�� B

Algebras and homomorphisms themselves form a category, with composition and

identities inherited from C. An initial algebra is an initial object in this new category,

and we write (μF, in) for an initial algebra, and fold f for the unique homomorphism

h : (μF, in) → (A, f) from the initial algebra to any other algebra (A, f). That is,

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 355

fold f is defined as the unique arrow that makes the following diagram commute:

FμF
F (fold f) ��

in

��

FA

f

��
μF

fold f
�� A

In the literature, fold f is sometimes written using the banana brackets notation (|f|),
and is termed a catamorphism . The above definition for fold f can also be expressed

as the following equivalence, known as the universal property of fold :

h = fold f ⇔ h ◦ in = f ◦ Fh

The ⇒ direction states that fold f is a homomorphism from the initial algebra

(μF, in) to another algebra (A, f), while the ⇐ direction states that any other such

homomorphism h must be equal to fold f. Taken as a whole, the universal property

expresses, in an equational manner, the fact that fold f is the unique homomorphism

from (μF, in) to (A, f).

The universal property can be used to verify the well-known fusion property

of fold , which states that the composition of a function and a fold can always

be re-expressed as a single fold , provided the function is a homomorphism of the

appropriate type:

h ◦ f = g ◦ Fh ⇒ h ◦ fold f = fold g

As a simple example of initial-algebra semantics, suppose we define a functor F

on the category SET by FA = 1 +A. Then F has an initial algebra, given by the set

� of natural numbers, together with a function [zero, succ] : 1+�→ � comprising

two constructors zero : 1 → � and succ : � → � for this set. In turn, given any

other set A and functions v : 1→ A and f : A→ A, the function fold [v, f] : �→ A

is uniquely defined by

h (zero ()) = v ()

h (succ n) = f (h n)

That is, fold [v, f] processes a natural number by replacing the zero constructor by

the function v, and each succ constructor by the function f. For example, a doubling

function can be defined by double = fold [zero, succ ◦ succ], and fusion can then be

used to show that double ◦ double = fold [zero, succ ◦ succ ◦ succ ◦ succ].

3 Worker/wrapper for folds

Consider the problem of changing the return type of a fold to improve its

performance. More precisely, suppose we are given a function fold f : μF → A

for some f : FA→ A, and we wish to change the return type from A to some other

type B. The worker/wrapper approach to this problem is based upon the use of

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

356 G. Hutton et al.

conversion functions

A

rep
��
B

abs

��

with the property that

abs ◦ rep = idA

This equation states that abs is a left inverse (or retraction) of rep, or in more

practical terms, that converting a value of the original type into the new type and

then back again does not change the value. In the terminology of data representation

(Hoare 1972), this means that the abstract type A can be faithfully represented by

the concrete type B. For example, in the case of the category SET, the equation

ensures that the set A is isomorphic to the subset of B given by the image of rep.

Given the above assumptions, we now seek conditions under which the following

diagram commutes:

μF

fold f

����
��

��
��

��
��

�

fold g

���
��

��
��

��
��

��

A B
abs

��

That is, in worker/wrapper terminology, we seek conditions that allow the original

recursive function fold f that produces a result of type A to be factorised as the

composition of a recursive worker function fold g that produces a result of type B,

and a wrapper function abs that converts the result back to the original type A.

One approach to solving this problem is to simply apply fusion. Even though this

property is normally viewed as being concerned with combining a function with a

fold , it can also be viewed in the opposite direction as providing a sufficient condition

for the factorisation or fission (Gibbons 2006) of a fold in the manner above, namely

that f ◦ F abs = abs ◦ g. However, given the assumption that abs ◦ rep = idA, we

can, in fact, identify four relevant conditions, given by the four possible ways of

completing the following commuting diagram that relates the argument algebras f

and g:

FA

f

��

F?
FB

g

��
A

?
B

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 357

by replacing each? in the diagram with either rep : A→ B or abs : B ← A:

(1) g = rep ◦ f ◦ F abs

(2) rep ◦ f = g ◦ F rep

(3) f ◦ F abs = abs ◦ g

(4) f = abs ◦ g ◦ F rep

What do these conditions express, and how do they relate? Equation (1) provides

an explicit definition for g in terms of f; (2) states that rep is a homomorphism

from f to g; (3) states that abs is a homomorphism from g to f (the condition that

directly arises from the use of fusion); and (4) provides a definition for f in terms

of g. Together, they form a simple lattice, with (1) as the strongest condition and

(4) as the weakest:

(4)

(2)

		����
����

(3)

����
����

(1)

����
����

		����
����

It is now straightforward to verify that each of the first three conditions implies

the desired factorisation result, namely that fold f = abs ◦ fold g. The situation

regarding (4) is more involved, and we will return to this shortly. In the meantime,

let us consider how the first three conditions are used in practice.

For some applications, the definition for the function g that forms the body of

the worker fold g will already be given, and our aim then is to verify that one of the

three conditions is satisfied, to ensure that the worker/wrapper factorisation holds.

For many applications, however, our aim will be to construct a suitable function g.

In such cases, condition (1) provides an explicit definition g = rep ◦ f ◦ F abs for the

body of the worker in a manner similar to Gill & Hutton (2009), and our aim then is

to simplify the definition. This simplification process is typically driven by the desire

to fuse together instances of rep and abs, to eliminate the overhead of repeatedly

converting between the concrete and abstract types. In contrast, conditions (2) and

(3) provide a specification for g, and our aim is then to calculate a definition that

satisfies the specification, again with the desire to fuse together instances of the

conversion functions between the two types.

Given that (1) is the strongest condition and provides an explicit definition for

g as a starting point, why would we ever wish to use the other conditions? In our

experience, using one of the weaker conditions often results in a simpler verification

or calculation process. In combination with the fact that (3) corresponds to the

familiar case of fusion, for the purposes of examples we will primarily focus on (2).

Nonetheless, it is interesting to consider the other conditions, and their relationships.

Let us now return to the remaining condition in our lattice:

(4) f = abs ◦ g ◦ F rep

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

358 G. Hutton et al.

Unfortunately, in general, this condition does not imply that fold f = abs ◦ fold g,

and is only sufficient to ensure the following more specialised worker/wrapper

factorisation in which the body g of the worker is composed with an additional

term:

fold f = abs ◦ fold (g ◦ F (rep ◦ abs))

The additional term F (rep ◦ abs) in the worker plays the role of a normalisation

function that is applied after each recursive call. In general, rep ◦ abs 	= idB , but

we can think of rep ◦ abs as normalising a value of type B by first converting to

the type A, which is typically a ‘smaller’ type, and then converting back to B. It is

natural to ask when does (4) imply that fold f = abs ◦ fold g. The answer is given

by the following condition, which states that rep ◦ abs is a homomorphism from g

to itself:

(5) rep ◦ abs ◦ g = g ◦ F (rep ◦ abs)

In particular, we then have the following equivalence:

(4) ∧ (5) ⇔ (2) ∧ (3)

That is, the combination of (4) and (5) is equivalent to the combination of (2) and

(3), either condition of which implies the worker/wrapper factorisation.

We conclude this section by noting that condition (5) also implies the following

property, which is precisely the worker/wrapper fusion property from Gill & Hutton

(2009) for the special case when the worker is defined using fold :

(6) rep ◦ abs ◦ fold g = fold g

That is, even though rep ◦ abs = idB does not always hold, given (5) this identity

does hold for the special case of values of type B that are produced by the worker

itself.

4 Worker/wrapper for lists

To illustrate our new worker/wrapper technique, we now move from the abstract

world of category theory to the concrete world of Haskell1 (Peyton Jones 2003).

Our first example concerns lists, for which the fold operator in Haskell is defined as

follows:

fold :: (a → b → b)→ b → [a]→ b

fold f v [] = v

fold f v (x : xs) = f x (fold f v xs)

That is, the function fold f v processes a list by replacing the empty list [] by the

value v , and each constructor (:) within the list by the function f . For example,

the function that sums a list of numbers can be defined by sum = fold (+) 0. The

Haskell definition above is equivalent to the categorical definition of fold for lists,

1 Technically, we view Haskell as a meta-language for the category SET, which admits simple equational
reasoning without the need to consider ⊥. However, using the ‘fast and loose’ approach of Danielsson
et al. (2006), our reasoning is also valid for the total fragment of CPO.

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 359

except that it uses two arguments f and v rather than combining these as a single

argument.

Now suppose we are given a function fold f v :: [a]→ b for some f :: a → b → b

and v ::b, and that we wish to change the return type of the fold from b to some other

type c. Moreover, we also assume that we are given conversion functions rep ::b → c

and abs :: c → b satisfying the equation abs ◦ rep = idb. Then instantiating our

general theory from the previous section, we find that any of the three conditions

(1) g x y = rep (f x (abs y))

(2) rep (f x y) = g x (rep y)

(3) f x (abs y) = abs (g x y)

is sufficient to justify the following factorisation of the original fold that produces

a result of type b into the composition of a worker fold that produces a result of

type c, and a wrapper function that converts the result back to the original type b:

fold f v = abs ◦ fold g (rep v)

4.1 Example: Fast reverse

Consider the problem of transforming a simple function that reverses a list into

a more efficient version that uses accumulation. This transformation is normally

achieved using more elementary techniques (Hutton 2007), but we now show that it

also fits naturally into our worker/wrapper paradigm based upon fold , and leads to

a simpler derivation than the previous worker/wrapper approach based upon fix .

Using explicit recursion, a reverse function can be defined by

rev :: [a]→ [a]

rev [] = []

rev (x : xs) = rev xs ++ [x]

or equivalently, using the fold operator for lists:

rev :: [a]→ [a]

rev = fold snoc []

snoc :: a → [a]→ [a]

snoc x xs = xs ++ [x]

However, because of the use of append (++), this definition for rev takes quadratic

time. We now show how our worker/wrapper technique for fold can be used to

derive a more efficient worker that uses an extra argument to accumulate the result,

together with a wrapper that takes care of the initial set-up. Using the notion of

currying, the introduction of an accumulator argument corresponds to changing

the return type of rev from a list to a function on lists, i.e. changing from the

original return type [a] to the new return type [a]→ [a]. The necessary conversion

functions between the two types, the latter of which is sometimes called Hughes lists

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

360 G. Hutton et al.

(Hughes 1986), are defined as follows:

type H a = [a]→ [a]

rep :: [a]→ H a

rep xs = (xs ++)

abs :: H a → [a]

abs h = h []

Note that rep is just a synonym for (++). It is straightforward to verify the

worker/wrapper assumption abs ◦ rep = id[a]. We also have the important property

that rep forms a monoid homomorphism from lists to Hughes lists, in the sense that

rep (xs ++ ys) = rep xs ◦ rep ys

rep [] = id[a]

In the case of reverse, it turns out that the most convenient condition to use as

the basis for constructing the worker function is condition (2):

rep (snoc x xs) = g x (rep xs)

We calculate a function g satisfying this equation as follows:

rep (snoc x xs)

= {applying snoc}
rep (xs ++ [x])

= {rep is a homomorphism}
rep xs ◦ rep [x]

= {applying rep}
rep xs ◦ (x :)

= {define g x h = h ◦ (x :)}
g x (rep xs)

Now that we have satisfied the necessary preconditions, applying the worker/

wrapper transformation for fold gives the following new definitions:

rev :: [a]→ [a]

rev = abs ◦ work

work :: [a]→ H a

work = fold g (rep [])

Finally, if we make the list arguments explicit, and expand out the component

functions, we obtain the expected linear time version of reverse that uses an

accumulator:

rev :: [a]→ [a]

rev xs = work xs []

work :: [a]→ [a]→ [a]

work [] ys = ys

work (x : xs) ys = work xs (x : ys)

We conclude with a number of observations about the above derivation. First of

all, in common with the previous derivation of fast reverse using the worker/wrapper

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 361

technique for fix (Gill & Hutton 2009), once we have made the decision to use

Hughes’ representation of lists, the rest of the derivation proceeds using simple

equational reasoning, without the need for induction. However, in contrast to the

previous derivation, the additional structure made explicit by using fold avoids the

need for the additional functions wrap and unwrap, the use of worker/wrapper

fusion, and the need to expand out the worker as an essential step in the derivation,

resulting in a simpler derivation.

4.2 Example: Fast reverse revisited

It is now interesting to return to our earlier question of why we do not always use

condition (1), which provides an explicit definition for g as a starting point. In the

case of the reverse example, the initial definition would then be as follows:

g x y = rep (snoc x (abs y))

The problem comes when we try and simplify this definition:

g x y

= {applying g}
rep (snoc x (abs y))

= {applying snoc}
rep (abs y ++ [x])

= {rep is a homomorphism}
rep (abs y) ◦ rep [x]

= {applying rep}
rep (abs y) ◦ (x :)

Now we appear to be stuck. We would like to fuse together rep and abs in the final

expression to give the definition g x y = y ◦ (x :), but unfortunately it is not the

case that rep ◦ abs = idH a. In order to make progress, we begin by rewriting the

worker

work = fold g (rep [])

by making the first list argument explicit, expanding out the fold , and using the

above simplification of g to give the following definition using explicit recursion:

work [] = rep []

work (x : xs) = rep (abs (work xs)) ◦ (x :)

While rep ◦ abs = idH a is not true in general, for the special case of values produced

by worker itself we do have rep ◦ abs ◦ work = work , the worker/wrapper fusion

property (6), which allows us to rewrite the worker as

work [] = rep []

work (x : xs) = work xs ◦ (x :)

which can then be expanded to give the expected definition:

work [] ys = ys

work (x : xs) ys = work xs (y : ys)

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

362 G. Hutton et al.

However, an unsatisfactory aspect of the above derivation is the need to rewrite

the worker using explicit recursion in order to make progress by applying worker/

wrapper fusion. Can the derivation also be performed at the fold level, without

expanding out the recursion? The key to achieving this is to observe that in this

context the second argument of g will always be of the form rep z for some list z ,

since both the base and recursive cases for the worker have an application of rep at

the outer level. Using this assumption, the definition for g can then be simplified as

follows:

g x y

= {previous simplification}
rep (abs y) ◦ (x :)

= {assuming y = rep z}
rep (abs (rep z)) ◦ (x :)

= {abs ◦ rep = id}
rep z ◦ (x :)

= {assuming y = rep z}
y ◦ (x :)

Avoiding the need for this kind of ad hoc additional reasoning is precisely the

benefit that we obtain by starting from condition (2) rather than (1). In particular,

using rep (f x y) = g x (rep y) as our specification for g makes explicit from the

outset that we can assume the second argument to g is always of the form rep y .

5 Worker/wrapper for expressions

For our next example we move from the type of lists to a simple language of

expressions comprising integers and addition, together with its associated fold

operator:

data Expr = Val Int | Add Expr Expr

fold :: (a → a → a)→ (Int → a)→ Expr → a

fold f v (Val n) = v n

fold f v (Add x y) = f (fold f v x) (fold f v y)

Now suppose we wish to change the return type of a function fold f v ::Expr → a

from the original type a to some other type b, and that we are given conversion

functions rep :: a → b and abs :: b → a such that abs ◦ rep = ida. In this context,

our general worker/wrapper theory states that any of the three conditions

(1) g x y = rep (f (abs x) (abs y))

(2) rep (f x y) = g (rep x) (rep y)

(3) f (abs x) (abs y) = abs (g x y)

is sufficient to justify the following factorisation of the original fold that produces

a result of type a into the composition of a worker fold that produces a result of

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 363

type b, and a wrapper function that converts the result back to the original type a:

fold f v = abs ◦ fold g (rep ◦ v)

Now consider the problem of transforming an evaluator for expressions into

continuation-passing style, the typical first step in deriving an efficient abstract

machine (Hutton & Wright 2006). Using explicit recursion, an evaluation function

can be defined by

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

or equivalently, using the fold operator for expressions:

eval :: Expr → Int

eval = fold (+) id

Rewriting this definition in continuation-passing style involves taking a function on

integers (the continuation) as an extra argument, which, using currying, corresponds

to changing from the original return type Int to the new return type (Int → Int)→
Int . The necessary conversion functions between the two types are defined as follows:

type Cint = (Int → Int)→ Int

rep :: Int → Cint

rep n = λc → c n

abs :: Cint → Int

abs f = f id

It is easy to show that abs ◦ rep = idInt . As with fast reverse, the appropriate starting

point for constructing the worker in this case is condition (2):

rep (x + y) = g (rep x) (rep y)

from which we calculate a function g satisfying this equation as follows:

rep (x + y) c

= {applying rep}
c (x + y)

= {abstracting over x}
(λn → c (n + y)) x

= {unapplying rep}
rep x (λn → c (n + y))

= {abstracting over y}
rep x (λn → (λm → c (n + m)) y)

= {unapplying rep}
rep x (λn → rep y (λm → c (n + m)))

= {define g a b = a (λn → b (λm → c (n + m)))}
g (rep x) (rep y)

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

364 G. Hutton et al.

Now that we have satisfied the necessary preconditions, applying the worker/

wrapper transformation for fold gives the following definitions:

eval :: Expr → Int

eval = abs ◦ work

work :: Expr → Cint

work = fold g (rep ◦ id)

which expand out to give the expected continuation-passing evaluator:

eval :: Expr → Int

eval e = work e id

work :: Expr → (Int → Int)→ Int

work (Val n) c = c n

work (Add x y) c = work x (λn → work y (λm → c (n + m)))

Once again, note that the derivation proceeds using simple equational reasoning

and does not require induction. Moreover, in contrast to our previous derivation

of such an evaluator using more elementary techniques (Hutton & Wright 2006),

using worker/wrapper condition (2) as the starting point results in a derivation

whose goal is made explicit from the outset, namely to construct a function g such

that rep (x + y) = g (rep x) (rep y), rather than this property being implicit in the

structure of the derivation itself.

6 Efficient substitution

For our final example, we consider a more challenging problem: improving the per-

formance of monadic substitution on trees. The example is taken from Voigtländer

(2008), but whereas the author only sketches a proof of correctness and conjectures

that a formal proof may require sophisticated techniques, we show that a simple proof

is possible using our worker/wrapper technique for fold . We begin by generalising

the type Expr from the previous section to the type Tree a of binary trees with

leaves of type a:

data Tree a = Leaf a | Node (Tree a) (Tree a)

Now recall that in Haskell, the categorical notion of a monad is captured by the

following class declaration, which states that a parameterised type m is a member

of the class Monad of monadic types if it is equipped with return and >>= functions

of the specified types:

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b

The two functions must also satisfy identity and associativity properties:

return x >>= f = f x

e >>= return = e

(e >>= f) >>= g = e >>= (λx → f x >>= g)

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 365

It is straightforward to make Tree into a monadic type by the following instance

declaration, and to verify that the required monad laws are satisfied:

instance Monad Tree where

return :: a → Tree a

return x = Leaf x

(>>=) :: Tree a → (a → Tree b)→ Tree b

(Leaf x) >>= f = f x

(Node l r) >>= f = Node (l >>= f) (r >>= f)

This declaration implements the well-known idea that substitution is monadic. In

particular, if we view values of type Tree a as terms with variables of type a , then

return converts a value into the corresponding term, and t >>= f is the term that

results from applying the substitution f to every variable in the term t . For example,

given the tree of characters

t = Node (Leaf ‘a’) (Leaf ‘b’)

and the substitution

f :: Char → Tree Int

f ‘a’ = Leaf 1

f ‘b’ = Node (Leaf 2) (Leaf 3)

the expression t >>= f produces the following tree of integers:

Node (Leaf 1) (Node (Leaf 2) (Leaf 3))

Now consider the following recursive function on natural numbers, which uses

substitution to produce a tree of integers of a specified depth:

fullTree :: Int → Tree Int

fullTree 1 = return 1

fullTree (n + 1) = fullTree n >>= λi →
Node (return (n − i)) (return (i + 1))

That is, a tree of depth 1 is produced by returning a leaf, and a tree of depth n + 1

by recursively building a tree of depth n , and then using substitution to replace each

leaf value i by a tree of depth 2 with leaf values n − i and i + 1. For example, the

first four trees produced by applying fullTree can be pictured as follows:

1 ·
��
� ��

�

0 2

·
��

�� 		
		

·
��
� ��

� ·
��
� ��

�

2 1 0 3

·

�������

·
��

�� 		
		 ·

��
�� 		

		

·
��
� ��

� ·
��
� ��

� ·
��
� ��

� ·
��
� ��

�

1 3 2 2 3 1 0 4

As we would expect from these examples, fullTree takes exponential time. Now

consider the function zigzag that follows a path down a tree that alternates between

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

366 G. Hutton et al.

moving left (zig) and right (zag), and returns the resulting leaf value:

zigzag :: Tree a → a

zigzag = zig

where

zig (Leaf x) = x

zig (Node l r) = zag l

zag (Leaf x) = x

zag (Node l r) = zig r

In a lazy language such as Haskell, evaluating zigzag (fullTree n) only builds as

much of the intermediate tree as necessary to produce the final result, which, in this

case, is a single path. However, due to the iterative nature of fullTree, in which the

complete tree is potentially traversed at each step in order to increase the depth by

1, such an evaluation still requires quadratic time, even in a lazy language. How can

this be reduced to linear time?

6.1 The codensity monad

Voigtländer’s (2008) solution is based upon changing the representation of trees,

using the notion of continuations. Recall that a continuation can be viewed as a

function that is applied to the result of another computation. Using this idea, we

can represent a value x as the function λc → c x that takes a continuation c, and

applies this function to x in order to produce the final result. This representation

gives rise to the type (a → r) → r of continuation computations of type a that

return results of type r:

type Cont r a = (a → r)→ r

It is easy to show that Cont r is a monadic type. Moreover, we can also parameterise

the declaration by another monad m to give a monad transformer (Liang et al. 1995):

type ContT r m a = (a → m r)→ m r

For the purposes of improving the efficiency of fullTree, we will use the following

variant, known as the codensity monad transformer (Jaskelioff 2009):

type CodT m a = ∀r . ((a → m r)→ m r)

That is, the result type r is moved from the left-hand side of the declaration to

the right-hand side, by exploiting Haskell’s notion of rank 2 types (Peyton Jones

et al. 2007). Moving the quantification in this manner means that whereas the

continuation monad ContT r m has a fixed result type r , the codensity monad

CodT m has a variable (polymorphic) result type. Making CodT into a monad

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 367

transformer proceeds as follows:

instance Monad m ⇒ Monad (CodT m) where

return :: a → CodT m a

return x = λc → c x

(>>=) :: CodT m a → (a → CodT m b)→ CodT m b

f >>= g = λc → f (λx → g x c)

Using the codensity monad transformer, we now define a new representation for

trees, together with the necessary conversion functions between the original and new

types:

type Coden a = CodT Tree a

rep :: Tree a → Coden a

rep t = (t >>=)

abs :: Coden a → Tree a

abs c = c return

It is interesting to note the similarity to the definitions rep xs = (xs++) and

abs f = f [] given earlier for lists. The above definitions for trees have the same

structure, except that the monoid operations ++ and [] are generalised to the

monad operations >>= and return . A simple calculation verifies the worker/wrapper

assumption abs ◦ rep = idTree a.

6.2 The term type

To improve the performance of fullTree, our aim now is to factorise this function into

the composition of a more efficient worker that produces a result in the codensity

monad, and a wrapper that converts the result back into the tree monad. That is,

we seek to define a function fullCoden that makes the following diagram commute:

Int
fullTree

��

fullCoden

��
Tree Int Coden Int

abs
��

Following the lead of our previous examples, we might expect to proceed by

defining fullTree as a fold over the type of natural numbers, and then applying our

worker/wrapper technique to derive the required worker. For this example, however,

it turns out to be preferable to begin by reformulating the problem in terms of a

more structured type than the natural numbers. Consider once again the definition

for fullTree:

fullTree :: Int → Tree Int

fullTree 1 = return 1

fullTree (n + 1) = fullTree n >>= λi →
Node (return (n − i)) (return (i + 1))

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

368 G. Hutton et al.

In this definition, the resulting trees are built using three functions:

return :: a → Tree a

(>>=) :: Tree a → (a → Tree b)→ Tree b

Node :: Tree a → Tree a → Tree a

Based upon this observation, we can define the following type of tree terms whose

values represent trees that are built using these functions:

data Term a where

Return :: a → Term a

Bind :: Term a → (a → Term b)→ Term b

Branch :: Term a → Term a → Term a

Reifying functions as data in this manner is sometimes called a deep embedding.

Note that because Bind involves terms of two different types, Term a is a GADT

(Peyton Jones et al. 2006). Categorically, defining a fold for such types requires

moving to a functor category, in which objects are functors and arrows are natural

transformations (Johann & Ghani 2008). In Haskell, the fold for terms can be

defined as follows:

fold :: (∀a . a → f a)→
(∀a b. f a → (a → f b)→ f b)→
(∀a . f a → f a → f a)→
(∀a . Term a → f a)

fold r b n (Return x) = r x

fold r b n (Bind t g) = b (fold r b n t) (fold r b n ◦ g)

fold r b n (Branch t u) = n (fold r b n t) (fold r b n u)

The use of quantifiers in the type for fold reflects the use of natural transformations,

which correspond to polymorphic functions in Haskell. To ensure the expected

universal property we also require that Term and f are functors, but we omit the

details here.

Using the fold operator for terms, the fact that terms represent trees can now

be formalised by defining an evaluation function that simply replaces the syntactic

constructors on terms by the corresponding semantic operations on trees:

eval :: Term a → Tree a

eval = fold return (>>=) Node

In turn, we can define a version of fullTree that produces a term rather than a tree,

by replacing the use of the tree operations by the appropriate term constructors:

fullTerm :: Int → Term Int

fullTerm 1 = Return 1

fullTerm (n + 1) = fullTerm n ‘Bind ‘ λi →
Branch (Return (n − i)) (Return (i + 1))

A simple inductive proof shows that fullTree = eval ◦ fullTerm .

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 369

6.3 Applying worker/wrapper

Having reformulated fullTree using an intermediate type of tree terms, we now seek

to complete the following expanded version of our commuting diagram from the

previous section, by defining appropriate functions work and fullCoden:

Int

fullTerm

��fullTree

fullCoden

��

Term Int

eval

����
��

��
��

��
��

work

��

Tree Int Coden Int
abs

��

Commutativity of the upper left triangle was established in the previous section.

The following definition ensures that the upper right triangle also commutes, by

construction:

fullCoden :: Int → Coden Int

fullCoden = work ◦ fullTerm

In turn, we define the function work using fold for terms, by simply supplying the

return and >>= operations for our codensity monad, and a suitable node operation:

work :: Term a → Coden a

work = fold return (>>=) node

node :: Coden a → Coden a → Coden a

node f g = λc → Node (f c) (g c)

To verify that this definition makes the lower triangle in the diagram commute, i.e.

eval = abs ◦ work , we begin by expanding out the definitions for eval and work to

give

fold return (>>=) Node = abs ◦ fold return (>>=) node

Note that return and >>= on the left-hand side of the equation are for the tree

monad, and on the right-hand side are for the codensity monad. We then apply

the worker/wrapper technique for fold . In particular, condition (2) for this example

expands to give three equations that are together sufficient to justify the above

factorisation:

(2.1) rep (return x) = return x

(2.2) rep (t >>= f) = rep t >>= rep ◦ f

(2.3) rep (Node l r) = node (rep l) (rep r)

The first two equations state that rep preserves the return and >>= operations

and is hence a monad morphism, while the last states that rep preserves the node

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

370 G. Hutton et al.

operation. Verifying these equations is simply a matter of expanding definitions

and using monad laws. We include all three proofs below to emphasise their

simplicity.

Proof : (2.1)

rep (return x) g

= {applying rep}
return x >>= g

= {monad law}
g x

= {unapplying return for Coden}
return x g

�

Proof : (2.2)

rep (t >>= f) g

= {applying rep}
(t >>= f) >>= g

= {monad law}
t >>= (λx → f x >>= g)

= {unapplying rep}
t >>= (λx → rep (f x) g)

= {unapplying rep}
rep t (λx → rep (f x) g)

= {unapplying >>= for Coden}
(rep t >>= rep ◦ f) g

�

Proof : (2.3)

rep (Node l r) g

= {applying rep}
Node l r >>= g

= {applying >>= for Tree}
Node (l >>= g) (r >>= g)

= {unapplying rep}
Node (rep l g) (rep r g)

= {unapplying node}
node (rep l) (rep r) g

�

Finally, because the three internal triangles in the diagram commute, the external

triangle also commutes, which verifies the desired worker/wrapper factorisation:

fullTree :: Int → Tree Int

fullTree = abs ◦ fullCoden

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 371

Returning to our original problem of improving the efficiency of zigzag (fullTree n),

if we now replace the original definition for fullTree by the new version obtained

using the worker/wrapper technique, the time complexity is reduced from quadratic

to linear. For example, in a simple experiment using the Glasgow Haskell Com-

piler, the time for n = 10, 000 was reduced from around 90 to 0.2 s. If desired,

the definition fullCoden = work ◦ fullTerm can also be fused to eliminate the

use of the intermediate term structure, further reducing the running time to

under 0.1 s.

We conclude with a few remarks about this example. First of all, despite using a

sophisticated optimisation technique in the form of the codensity monad, the proof

of correctness of the efficient version of fullTerm still only requires simple equational

reasoning. Secondly, our proof of the worker/wrapper factorisation eval = work ◦
abs is not specific to tree terms built using fullTerm , but shows how to optimise the

evaluation of any such terms. And finally, the use of tree terms also provides an

explanation for why the optimisation is correct, in the sense that it makes explicit

the key idea of implementing the return , >>=, and Node operations on expression

trees using the codensity monad.

7 Conclusion and further work

In this paper, we developed a general worker/wrapper theory for changing the

type of recursive functions defined using fold operators, and showed how it

can be used in practice as an equational reasoning technique for improving the

performance of functional programs. The approach requires only basic categorical

and equational reasoning principles, and using fold operators results in simpler and

more structured calculations than the previous worker/wrapper theory based upon

fixed-point operators.

It is also interesting to recount how this work was developed. Initially, we focused

on the special case of fold for lists, and identified conditions (1) and (2) for the

case of lists. However, it was not clear how these conditions were related, nor how

they related to fold fusion (3), or worker/wrapper fusion (6). It was only when

we generalised from lists to an arbitrary type using initial-algebra semantics that it

became clear that there were, in fact, four relevant properties, related by a simple

lattice structure. Focusing on lists made it difficult to ‘see the wood for the trees’,

and the move to a categorical approach revealed the simple underlying algebraic

structure of the problem.

There are many interesting topics for further work, including mechanising the

technique, other recursion operators such as unfold , weaker versions of the worker/

wrapper assumption abs ◦ rep = id , and other application areas. The monadic

substitution example also suggests a new approach to program optimisation that we

are particularly keen to explore, based upon a deep embedding of the operations

to be optimised and the use of the worker/wrapper technique to demonstrate

correctness of the optimised program.

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

372 G. Hutton et al.

Acknowledgements

We would like to thank Ralf Hinze and the four anonymous referees for their useful

comments. The last author would like to thank the Functional Programming Lab in

Nottingham for funding a one-week research visit during June 2009.

References

Backhouse, R., Jansson, P., Jeuring, J. & Meertens, L. (1999) Generic programming: An

introduction. In Advanced Functional Programming, Swierstra, D., Henriques, P. & Oliveira,

J. (eds), LNCS 1608. Springer-Verlag, Berlin, pp. 28–115.

Bird, R. & de Moor, O. (1997) Algebra of Programming. Prentice-Hall, Englewood Cliffs, NJ.

Danielsson, N. A., Gibbons, J., Hughes, J. & Jansson, P. (2006) Fast and loose reasoning is

morally correct. In Principles of Programming Languages. ACM Press, New York.

Gibbons, J. (2006) Fission for program comprehension. In Mathematics of Program

Construction, Uustalu, T. (ed), Lecture Notes in Computer Science, vol. 4014. Springer-

Verlag, Berlin, pp. 162–179.

Gill, A. & Hutton, G. (2009) The worker/wrapper transformation, J. Funct. Program., 19 (2):

227–251.

Hoare, T. (1972) Proof of correctness of data representations, Acta Inform., 1 (4): 271–281.

Hughes, J. (1986) A novel representation of lists and its application to the function reverse,

Inf. Process. Lett., 22 (3): 141–144.

Hutton, G. (1999) A tutorial on the universality and expressiveness of fold. J. Funct. Program.,

9 (4): 355–372.

Hutton, G. (2007) Programming in Haskell. Cambridge University Press, Cambridge, UK.

Hutton, G. & Wright, J. (2006) Calculating an exceptional machine. In Trends in Functional

Programming, vol. 5, Loidl, H.-W. (ed), Intellect, UK. Selected papers from the Fifth

Symposium on Trends in Functional Programming, Munich, Germany, November 2004.

Jaskelioff, M. (2009) Modular monad transformers. In Proceedings of the European Symposium

on Programming. LNCS, vol. 5502. Springer-Verlag, Berlin, pp. 64–79.

Johann, P. & Ghani, N. (2008) Foundations for structured programming with GADTs. In

Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. ACM Press, New York, pp. 297–308.

Liang, S., Hudak, P. & Jones, M. (1995) Monad transformers and modular interpreters. In

Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. ACM Press, New York, pp. 333–343.

Malcolm, G. (1990) Algebraic data types and program transformation. Sci. Comput. Program.,

14 (2–3): 255–280.

Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. In Proceedings of the Conference on Functional Programming

and Computer Architecture, Hughes, J. (ed), LNCS, vol. 523. Springer-Verlag, Berlin.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press, Cambridge, UK. Available at: www.haskell.org/definition

Peyton Jones, S. & Launchbury, J. (1991) Unboxed values as first class citizens in a non-

strict functional language. In Proceedings of the Conference on Functional Programming and

Computer Architecture. Cambridge, MA: Springer-Verlag, Berlin.

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

Factorising folds for faster functions 373

Peyton Jones, S., Vytiniotis, D., Weirich, S. & Washburn, G. (2006) Simple unification-

based type inference for GADTs. In Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming. ACM Press, New York, pp. 50–61.

Peyton Jones, S., Vytiniotis, D., Weirich, S. & Shields, M. (2007) Practical type inference for

arbitrary-rank types. J. Funct. Program., 17 (1): 1–82.

Voigtländer, J. (2008) Asymptotic improvement of computations over free monads. In

Proceedings of the 9th International Conference on Mathematics of Program Construction.

LNCS, vol. 5133. Marseille, France: Springer-Verlag, Berlin, pp. 388–403.

https://doi.org/10.1017/S0956796810000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000122

