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Abstract
In recent years, many countries have significantly increased military spending, mainly due to geopolitical instability in several regions and the
potential risk of armed conflicts spreadingworldwide. In this context, understanding the nutritional needs of soldiers in different climates (warm,
cold and high altitude) is important and directly impacts the performance and health of soldiers, especially in extreme environments. The amount
of liquids, calories, and macro- and micronutrients contained in military rations must be determined considering the type of exercise, duration
and environment. Military rations, in addition to being nutritionally adequate, must be practical, sustainable and easy to consume at any
temperature and situation. Given these considerations, this study aimed to review scientific knowledge regarding the convenience, sensory
attributes and nutritional components of military rations. Furthermore, this review studied the factors influencing soldiers’ appetite, gut
microbiota and nutritional needs during training or combat in extreme environments (warm, cold and high altitude). This exploration further
advances our understanding of contemporary nutritional strategies for military personnel, contributing to future research and highlighting areas
that must be developed.

Key words: extreme conditions: extreme environments: military rations: nutritional requirements

(Received 27 October 2023; revised 13 August 2024; accepted 29 August 2024; accepted manuscript published online 26 September 2024)

Introduction

The world’s military spending has continued to grow for eight
consecutive years, reaching a historical record of US$2240 billion
in 2022, signalling a global escalation in military expenditures(1).
The recent surge in military spending is attributed to three
primary factors: the Russian invasion of Ukraine, the heightened
military armament in Western and Central European nations as a
response to this conflict, and the increased military outlays of
Asian superpowers (India, China and Japan) due to rising
tensions and the elevated risk of military conflicts both regionally
and globally. In response to the deteriorating global security
landscape, Western and Central Europe have unveiled plans to
further elevate their military expenditures, with the most
substantial increases occurring in countries geographically close
to Russia and Ukraine(1,2). These geopolitical events and the
resulting strategic shift in resource allocation highlight the need
to ensure that soldiers are provided with appropriate nutrition
during field operations to enhance their performance and
resilience in challenging situations.

The potential spread of armed conflicts across the world
presents military personnel with the challenge of operating in

diverse scenarios and climates, with a primary concern being the
provision of adequate and nutritionally balanced sustenance to
troops. The dynamic nature of modern conflicts underscores the
necessity of understanding how nutritional support can be
optimised to sustain soldiers’ physical and cognitive capacities.
In this context, the significance of proper nutrition for optimising
military performance has been extensively investigated in recent
years(3–8). Although these studies lay the foundation for
recognising the crucial role that nutrition plays in the overall
readiness and effectiveness of military personnel, understanding
the nuanced relationship between nutrition, extreme environ-
ments and military demands requires a more comprehensive
assessment.

For example, engaging in training or combat within extreme
environments(9) under intense and demanding conditions can
result in significant energy deficits among soldiers, often leading
to reductions in body and muscle mass(10,11). Hence, ensuring
that soldiers maintain sufficient food and fluid intake during field
operations in such conditions is paramount. A significant
challenge lies in creating military rations comprising foods
tailored to the demands of physical activity in extreme
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conditions, stimulating appetite and thereby facilitating consis-
tent nutrient intake to maintain energy balance over time. The
design of military rations becomes a focal point for addressing
soldiers’ nutritional needs in various operational contexts,
contributing to their ability to sustain peak performance.
These physiological challenges underscore the need to identify
nutritional strategies that mitigate energy deficits and support
soldiers’ physical wellbeing, aligningwith the overarching aim of
optimising military performance.

Implementing controlled food consumption strategies
before, during and after field exercises can enhance military
performance(12), and within the Armed Forces, overseeing food
and drink consumption is a managerial responsibility. This
strategic approach tomanaging soldiers’ nutrition aligns with the
broader goal of ensuring their optimal performance during
missions and training exercises. In this context, also nutritional
content and requirements must be studied and improved to
satisfactorily meet the needs in different situations, especially in
extreme conditions. Therefore, the content of calories and
macro- and micronutrients contained in the military’s diet must
be determined by the type of mission, duration and environment
to avoid negative impacts on military performance and final
objective(13).

Nowadays, technological approaches have led to many
advances in military nutrition and packaging. Some examples of
approaches used to improve the quality of military rations
include (i) microencapsulation(6), (ii) omics approaches(14),
(iii) pulsed electric field(15), (iv) microwave-assisted thermal
sterilisation(16), (v) high-pressure processing sterilisation(17),
(vi) freeze-drying(18), (vii) osmotic dehydration(19), (viii) multi-
layer packaging(20), (ix) modified atmosphere packaging(21) and
(x) irradiation(22). Therefore, there are several strategies to make
the military ration safer, nutritious and with a longer shelf-life.
However, the focus of this present study is the impact of military
rations on the nutrition, health and performance of soldiers in
extreme environments.

Given these considerations, the present study aims to
comprehensively review the current state of scientific knowl-
edge regarding the convenience, packaging, sensory attributes
and nutritional components of military rations. This examination
aims to provide insights into how military rations have been
tailored to address soldiers’ nutritional requirements and
preferences, as well as what could be the possible improvement
areas, ultimately contributing to their physical and cognitive
capabilities in challenging environments. Additionally, the study
seeks to delve into factors influencing soldiers’ appetite, gut
microbiota and nutritional requirements during training or
combat scenarios in extreme environments (cold, warm and
high altitude). This exploration aims to uncover the intricate
connections between soldiers’ physiological responses, their
dietary needs and the unique challenges posed by different
operational settings, further advancing our understanding of
contemporary and future nutritional strategies for military
personnel, generating hypotheses to be tested in future research
and highlighting areas with lack of sufficient knowledge in
this field.

Methods

The topics covered in this review are shown in the Figure 1. The
systematic literature search was carried out according to Peters
et al.(23) utilising Web of Science, PubMed and Google Scholar
databases.

The words contained in the titles, abstracts and the index
terms were utilised to develop a full search strategy. Broad
inclusion criteria were initially employed to map the literature of
interest and to obtain a comprehensive quantity of articles. The
search strategy (Table 1), including all identified keywords and
index terms, was adapted for use across three databases: Web of
Science, PubMed and Google Scholar. The search was carried
out by combining the term military/combat rations and terms
presented in Table 1 (package, convenience, sensory parame-
ters, technology, history, shelf-life, nutrition, gut health,
metabolism, appetite, extreme, cold, warm, high altitude,
exercise, conflict, soldier, war, operation, mission).

After the complete search strategy, search results were
collated and exported to EndNote referencing software (version
X9.3.3; Clarivate Analytics, Philadelphia, PA, USA). Duplicates
were removed using the duplication detection tool of the
EndNote software. The review process consisted of three levels
of screening: (1) an initial title screening, (2) an abstract review
and (3) a full-text review.

The review selection process is described in Figure 2. In total,
more than 225 000 publicationswere found. Removing duplicate
publications, the number of unique publications was reduced to
342, from which 175 met the criteria for the review process. No
publication age restrictions were applied in the search.

Military rations from a historical perspective

Military rations aim to provide military units with long-lasting,
shelf-stable, safe and nutritious food, maintaining the troops’
physical performance, good health and cognitive function in any
field operations and environments, designed to withstand
multiple handling and to be used in severe conditions in all
combinations of terrain, humidity and temperature(24). The food
components, products and snacks in military rations are
commonly thermally processed and/or dehydrated. Some
rations require preparation in the field, while others can be
consumed straight from the packaging.

During World War I, the growing demand for food for
millions of soldiers in the field caused the food industry and the
military to work together to develop military rations(25). Hence,
the war stimulated collaborations between the military and
external laboratories, not only to develop new foods that could
be produced on a large scale, but also to develop new
techniques that guaranteed the quality of new processed and
shelf-stable foods.

After World War I, the food industry worked hard with the
army to further develop adequate and diverse foods for the
soldiers, making them shelf-stable over time. That food products
are shelf-stable over years is highly important in military
operations. Shelf-stable food can be planned and ordered well
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Fig. 1. Topics covered in this review article.

Table 1. Search strategy, including all identified keywords and index terms

Fixed terms

Concept 1 Concept 2 Concept 3 Concept 4

Food ration Nutrition Environment Military

Military rations Package Nutrition Extreme Conflict
Combat rations Convenience Gut health Cold Soldier

Sensory parameters Metabolism Warm War
Technology Appetite High altitude Operation
History Exercise Mission
Shelf-life

Fig. 2. Review selection process.
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in advance, be produced when the costs are low and be stored
until needed, thus avoiding last-minute deployment issues. With
this, shelf-stable military rations prepared the military well for
future wars(26). In addition to being shelf-stable, military rations
need desirable sensory qualities (taste, texture and aroma) and
packaging resistance to different situations and climates, such as
excess humidity and insect damage(27).

Fresh food, such as vegetables and meats, is highly valued by
soldiers. However, transporting these foods to the field is very
expensive, in addition to having a high risk of spoilage and being
space demanding. From the 1950s onwards, freeze-dried meals
have been developed and used as military rations(28).

With the advancement in food science and technology,
severalmilitary rations have nowbeen developed using different
packaging and technologies to assist soldiers in different climates
and situations, taking into account the demand for calories and
nutrients, in addition to cultural issues, cognitive function, and
physical and mental stress(5,6,29–31).

Convenience and packaging of military rations

Convenience foods can be defined as products from the food
industries where the degree of culinary preparation has been
carried out at an advanced stage and that are labour-saving
versions for the consumers of less processed products(32). They
are often regarded as among the least healthy and unsustainable
dietary options because of their sometimes wasteful packaging
and low nutritional value compared with traditional foods(33,34).
However, convenience foods, such as ready meals, are gaining
more importance in the market(35) and becoming more nutri-
tionally relevant(36) in addition to more efficient packaging with
less impact on the environment(37). Military rations must follow
this trend, mainly due to the nutritional needs of soldiers and
ease of use/disposal of packaging during operations that are
often in hostile areas.

Soldiers’ nutritional requirements are specific due to intense
physical activity and adversities. Moreover, in addition to a long
shelf-life and being shelf-stable, due to environmental con-
ditions and the particular performance, a military ration must
also have light weight (e.g. freeze-dried foods) and be easy to
cook and eat under extreme conditions. Convenience, packag-
ing and ease of preparation are thus crucial for developing
adequate military rations.

Convenience and practicality are important factors in military
rations because military missions usually require intense
physical activity and less time to eat, in addition to having less
motivation to do so. Field operations have several activities that
compete with or impair food intake. For example, Ahmed
et al.(38) stated that adequate energy consumption is impaired
under strenuous field conditions and even more challenging in
extreme climates.

In military rations, the packaging plays an important role in
the practicality and mainly in the preservation of food for long
periods. Normally, military rations are packaged in trilaminate
material under vacuumor utilising oxygen scavengers(39). Haque
et al.(20) concluded that multilayer film improves the conserva-
tion of military rations increasing the resistance to acidic foods.
According to Long et al.(17), biodegradable/edible films are more

appropriate for military rations. For example, the US military
used edible film in conjunction with modified atmosphere
packaging to achieve 3 years of shelf-life on sandwiches and
pizzas stored at room temperature(40). However, Kalpana
et al.(21) stated that modified atmosphere packaging can increase
the shelf-life of products but the variation in gas concentration
can result in undesirable effects on flavour, texture, nutritional
compounds and sensory acceptance. To assist the preservation
and/or increase the shelf-life of military rations, technologies
such as high-pressure processing sterilisation(17), microwave-
assisted thermal sterilisation(16), pulsed electric field(15), irradi-
ation(22) and freeze-drying(18) have been used with satisfactory
results in the final product quality.

To develop adequate new military rations, it is necessary to
consider the effect of unwanted events that may occur during the
preparation and consumption of ameal by introducingmeasures
to ensure that the product is easy to prepare in any situation and
that the package does not entail an additional load for the soldier.
One strategy could be an increased focus on consumer-friendly
packaging solutions and smart, functional materials that simplify
the preparation and reduce the product’s total environmental
footprint(41). In military rations, it can be crucial that the soldier
has his individual equipment that ensures independence for the
rest of the group. In addition, in modern conflicts, it must be
considered that heat sources can be easily detected by satellites,
drones and night vision, and the preparation and/or consump-
tion of the meal in some cases needs to be carried out without
heating/boiling water.

Nowadays, convenience, practicality and sustainability are
important factors to consider in developing any food product.
With this, military rations must be efficient in any situation,
especially in extreme ones, convenient and with minimal weight
and environmental impact.

Nutritional needs during physical military exercise

During military field operations, soldiers’ activity levels, and
nutritional needs increase. This becomes particularly prominent
during prolonged physical exertion under extreme climatic
conditions(13). In extreme conditions, the daily energy require-
ments of military personnel can reach more than 10 000 kcal(10).
Thus, the soldier’s ability to adapt their diets to such extreme
environmental conditions is essential to the success of any
operations(29).

An increased energy expenditure results in an increased heat
production, where the heat energy must be removed to avoid an
increase in the body’s core temperature(42). An increased blood
flow to the body surface combined with sweating is the major
pathway. Loss of body heat occurs via several mechanisms, such
as evaporation, conduction, radiation and convection from the
skin and evaporative loss from the respiratory tract(43). The
efficacy of these mechanisms is further determined by the
airspeed (wind), temperature, radiation (solar heat) and relative
humidity. In addition, the soldier must have enough time set
aside for food and drink breaks.

Studies performed among Canadian Armed Forces personnel
have reported that energy requirements in warm environments
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(10 °C to >25 °C) range from 3300 kcal/d to 6000 kcal/d(44,45).
Energy requirements in cold environments (temperature<10 °C,
including arctic conditions) were reported from 4000 kcal/d to
over 6000 kcal/d(29,45,46). High-altitude environments tend to
increase energy requirements because soldiers generally carry
more weight and engage in more exhausting activities(47). Hoyt
et al.(48) studied Special Operations Forces soldiers exercises at
high altitude (Mount Rainer, 4393me above sea level), observing
an average expenditure of 4558 ± 566 kcal/d. Several strategies
can be used to prevent energy deficits during military operations
(Table 2), including providing supplemental carbohydrates(49)

and fat(6) and nutritional education before an operation(50,51).
According to several authors, hot environments increase the

risk of suboptimal energy intake relative to energy requirements
due to loss of appetite(45,52,53). In contrast, appetite and energy
intake increases have been reported related to activities in cold
environments(45,52). Furthermore, adequate hydration and nutri-
tion are essential for success within all military operations(29,47).
In addition, micronutrient requirements might be altered under
extreme weather conditions owing to the environmental stress
impact on intestinal absorption and/or increased utilisation of
some nutrients(54). Sweating by hard physical exertion promotes
the loss of both fluid and essential minerals, not the least sodium,
but also calcium, magnesium, zinc and iron(42); replenishing
these will be essential to compensate. To determine the need for
vitamins and minerals for soldiers in the field, several national
recommendations and recommendations from specific organ-
isations have been used(55–57).

Body mass loss is a consequence in soldiers during training
and combat operations due to stressors conditions (cold, warm
and high altitudes)(11). For example, Norwegian soldiers doing
hard physical exertion during 7 d of field training lost an average
of 4 kg of fat-freemass(58). The loss of glycogen and its associated
water(59), fat loss(60,61) and subsequent mass loss during combat
operations results from altered protein kinetics that promote
catabolism(59), compromising the military personnel’s

performance(62). The soldiers’ need for proteins will also
increase to repair muscle fibres and increase metabolic
activity(63). Increased protein intake is critical to avoid an
unwanted reduction in skeletal muscle mass over time.
Furthermore, protein requirements will increase, which needs
to take into consideration that a significant relationship exists
between specific amino acids and total protein for increased
protein synthesis(64).

During demanding and continuous physical activity, the need
for carbohydrates and water is vital (the need will be guided by
the degree of physical activity). If these important micro- and
macronutrients are not compensated for with further food
intake, the performance can quickly be reduced(65).
Carbohydrates are the body’s most important source of energy
and are particularly important for contractile muscles to perform
at their maximum(63). Unless glucose is provided from the
digestive tract, glycogen is essential for producing energy during
anaerobic metabolism. Since the body lacks opportunities to
store large amounts of glycogen, a person who is regularly
engaged in high-intensity long-term physical activity must
replenish these stores regularly(63). The body has a significant
flexibility in long-term work with low physical load; thus, the
need for a specific composition of the main energy-providing
components carbohydrates and fat is limited. However, if the
activity level is increasing, the demandwill change (Table 3), and
with high physical activity, a higher proportion of carbohydrates
in the diet will be beneficial(63). According to Sotelo-Diaz and
Blanco-Lizarazo(13), there is a direct connection between
physical activity, environmental factors, calculation of energy
requirements, and the need for carbohydrates during military
operations. Furthermore, this study showed that military
personnel generally have a high intake of dietary supplements;
it will therefore be appropriate to consider including such
products in military rations for training and combat. This is
particularly important to ensure the intake of micronutrients that
cannot easily be included in traditional field rations owing to
their stability (oxidation, thermal denaturation, etc.) and
processing technology challenges. The data from the survey
on the consumption of dietary supplements by military person-
nel indicated that this is a niche worth considering when
designing military rations(13).

Microencapsulation has been proving to be an interesting
technology to improve and/or preserve the nutritional quality of
military rations(6). In addition, technologies such as omics
approaches have been successfully used to deeply assess the
impact of different processes on the nutritional parameters of
different foods(14).

Research on nutritional requirements for military rations
should optimise the amount of macro- and micronutrients and
their biological value according to physical activity and
environment, as well as maintaining their sensory quality, food
safety and durability by correctly choosing processing tech-
nologies and packaging.

Cold environments

As mentioned above, excess body heat is mainly removed by
sweating, resulting in greater blood flow to the body’s surface,

Table 2. Energy content (kcal/d) of general and special purpose rations of
eleven NATO countries

NATO country force Energy content (kcal/d)

GBR (Military ration) 4294
NLD (Artic ration) 5185
NLD (Military ration) 3683
NLD (Long-distance reconnaissance) 4187
DEU (Individual military ration light) 2198
DEU (Individual military ration) 3524
CZE (Ration of canned food stuffs) 3351
AUS (Patrol ration 1 man) 3800
AUS (Military ration 1 man) 3700
BEL (Long-range Recce patrol ration) 3300
BEL (Military ration) 3200
FRA (Military ration) 3200
CAN (Individual meal pack) 4395
ITA (Military ration) 3650
SVN (Individual ration) 3537
USA (Meal, cold weather) 4599
USA (First-strike ration) 2844
USA (Long-range patrol) 1533
USA (Meal, ready-to-eat) 3955

Source: NATO(24). Values are means.
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increased skin temperature and heat loss. One of the concerns of
operations in a cold environment (e.g. in the arctic field) is
avoiding unnecessary sweating. Increased blood flow to active
tissues and organs also results in increased heart activity with
consequent increased energy consumption and needs(42).

In cold environments, the heat loss from the body will
potentially be high(66). To prevent a reduction in core temper-
ature, the body will try to maintain the core body temperature
through three mechanisms. The first mechanism involves
constricting blood vessels, which reduces blood flow to the
skin and external tissues, with subsequent metabolic heat
production saved for vital organs. The second mechanism will
occur in parallel and increase muscle metabolic heat production
through behaviourally regulated physical activity or involuntary
shivering(66). The third mechanism is heat production by the so-
called brown fat tissue, which generates heat directly(67).

Haman et al. (2010) pointed out that lipids are generally
preferred as an energy substrate (contributing up to 80%) during
low-intensity shivering, while carbohydrates become more
important as the intensity of the tremor increases (up to 72%
contribution). This may indicate that energy intake during

extreme cold stress significantly impacts heat production. The
body’s potential to redirect energy internally in the muscles to
counter cold stress is highly individual, especially regarding the
oxidation of carbohydrates(68). This property is also considered
particularly important for survival when the body is exposed to
extreme cold stress(69).

The thermoregulatory response during activities in cold
environments is influenced by sex, age and acclimatisation(70–75).
However, these factors most likely have minor implications for
the nutritional requirements. Body composition is the most
important physiological factor influencing thermoregulation and
cold tolerance during activity in cold environments(76).

According to Johnsen and Gjeldnes(77), handling military
equipment during a state of exhaustion, mainly in extremely cold
conditions (e.g. polar environments) is an element of danger in
military exercises. Food and sleep deprivation are everyday
situations during cold environment military exercises, as well as
intense physical activity, including strenuous ski marches. Since
people’s diet in arctic climates is rich in fat and protein, it has
been suggested that the nutritional requirements under extreme
cold conditions should be similar(51). At the same time,

Table 3. Personnel recommendations of energy andmacro- andmicronutrient intake onNATO response forces during training and combat operations under
extreme environments*1.

Nutrient (unit)

NATO operations

Normal conditions Extreme conditions

Training Combat Warm (>30 °C) Cold (0 °C) High altitudes (>3050 m)

Energy (kcal) 3600 4900 4900 4900 4700
Carbohydrate (g) 494 675 675 675 711
Protein (g) 180 246 246 246 178
Fat (g) 110 150 150 150 132
Dietary fibre (g) 30 30 30 30 30
Vitamin A (μg) 900 900 900 900 900
Thiamin (mg) 1.2 1.2 1.2 1.2 1.2
Riboflavin (mg) 1.3 2.5 2.5 2.5 2.5
Niacin (mg) 16 16 16 16 16
Vitamin B6 (mg) 1.3 2.6 2.6 2.6 2.6
Vitamin B12 (μg) 2.4 2.4 2.4 2.4 2.4
Folate (μg) 400 400 400 400 400
Pantothenic acid (mg) 6 6 6 6 6
Biotin (μg) 30 30 30 30 30
Vitamin C (mg) 45 45 45 45 45
Vitamin D (μg) 5 5 5 5 5
Vitamin E (mg) 10 10 10 10 10
Vitamin K (μg) 70 70 70 70 70
Choline (mg) 550 550 550 550 550
Calcium (mg) 1000 1000 1000 1000 1000
Phosphorus (mg) 1000 1000 1000 1000 1000
Zinc (mg) 14 15 15 20 20
Iron (mg) 8 14 14 15 15
Magnesium (mg) 410 410 410 410 410
Iodine (μg) 150 150 150 150 150
Selenium (μg) 70 70 70 70 70
Molybdenum (μg) 45 45 45 45 45
Copper (mg) 1.7 1.8 1.8 1.7 1.7
Chromium (μg) 35 35 35 35 35
Manganese (mg) 5.5 5.5 5.5 5.5 5.5
Fluoride (mg) 4 4 4 4 4
Sodium (mg) 920 920*2 920*2 920*2 920*2

Potassium (mg) 3800 3800 3800 3800 3800

Source: NATO(24)

*1 Male NATO response force personnel, 79 kg, between 19 and 50 years, 175 cm.
*2 Depending on sweat rate.
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transitioning to a more fat-rich diet will require an adaptation
period, which will often be unfavourable(78,79).

Tharion et al.(47) studied the energy requirements of soldiers
in everyday garrison situations and during training in the field
under different conditions. They concluded that cold environ-
ments generally increased energy requirements in both sexes.
For the female soldiers, the energy requirement varied from 2332
to 5597 kcal/d with an average of 2850 ± 620 kcal over 9 d. For
themen in the same study, doing different activities andmissions
compared with female soldiers, the energy requirements varied
from 3109 to 7131 kcal/d with an average of 4610 ± 650 kcal over
12 d. Tharion et al.(47) further concluded that the sex differences
were mainly due to differences in body mass, lower metabolic
activity at rest and lower total physical activity. In another study
by Ahmed et al.(10), the energy balance was mapped in an arctic
field operation (infantry activity, −10 °C). This study reported an
average energy expenditure of 4917 ± 693 kcal/d, while the
intake was a modest 2377 ± 1144 kcal/d. This resulted in an
average weight loss of 2.7% over 5 d. However, it is important to
mention that the soldier’s daily ration consisted of 5685 kcal/d.
This study shows one of the main problems with field nutrition:
consuming enough food is challenging even if it is available.

It is known that soldiers experience a negative energy
balance during military operations. Margolis et al.(49) studied the
effect of supplementary foods on the intake of protein and
protein balance in the body during a 4-d arctic military training
(51 km ski march). Subjects with the highest protein intake had
the protein supplement and subjects with the highest carbohy-
drate intake had the carbohydrate supplement. Based on this,
consuming sufficient energy during periods of high energy
needs is essential to mitigate the consequences of negative
energy balance and protein deficiency. According to Margolis
and Pasiakos(51), who studied the energy requirements for cold-
weather military operations, suggested that, to improve energy
balance, fat intake should be increased to at least 35–40% of the
total daily energy consumption.

For training and military operations in cold environments,
military rations must contain more calories than usual due to the
increased energy demand required. An interesting strategy may
be the use of a higher levels of fat.

Warm environments

In the coming decades, extreme heat events will likely be more
frequent, severe and longer due to global warming(80). The
negative impact of heat stress on productivity and health during
physical exertion is well known and debated(12,81,82). Combat
units deployed are often exposed to warm environments, which
manifest as high temperatures, often heightened by high
humidity, resulting in heat-induced metabolic stress. Heat stress
affects several physiological systems, compromising physical
and potentially also cognitive performance(83–86). However,
Ashworth et al.(83) suggest that individuals could acclimate to
warmer environments within a few months.

The soldier’s health conditions and adaptation directly
influence physical and mental performance under heat-induced
stress during military operations(82). Increasing muscle mass,
high aerobic conditioning and previous adaptation to warm

environments improve physical and cognitive performance
under extreme heat(87). Other factors, such as dehydration and
psychological stress, can influence the thermo-physiological
response(88) of soldiers under heat stress and decrease their
operational capacity. Therefore, military units should be trained
in advance and adapt to hot environments such as deserts to
avoid or reduce the incidence of hyperthermia and decrease
operational productivity.

When repeatedly exposed to high temperatures, the human
body adapts to the environmental stress caused by better coping
with physiological demands. According to Foster et al.(87),
adaptation to heat is a reversible phenomenon that begins at a
genetic level and eventually results in whole-body physiological
adaptations. Physiological adaptations due to resistance training
directly improve thermoregulatory and cardiovascular perfor-
mance during military operations under heat stress(89). In
addition to the cardiovascular adaptations that are beneficial
to support warm conditions, physical activity also enhances
sweating function(89).

In a military context, heat-induced stress is exacerbated by
the combination of carried loads, physical exertion and
protective clothing, making them susceptible to heat illnesses.
As the operational environment is unpredictable and dynamic,
nutritional strategies to minimise the effects of heat should be
planned and conducted before deployment.

In intense exercises, in a warm environment, a person can
lose 10–15 litres of fluid daily(90). Although these high sweat rates
are unusual, high fluid losses can be tolerated with an adequate
rehydration strategy. There can also be substantial salt losses
when sweat rates are high, which must be replaced to maintain
the bodywater content(91). This requirement has implications for
the composition of the liquids to be consumed and the amount of
required liquid. According to Shirreffs et al.(92), to rapidly recover
the fluid lost through sweat, it is necessary to consume liquid
with electrolytes and food containing salt. Another critical factor
is that excess protein consumption can be a disadvantage in
warm environments owing to the increased volume of urine
required to excrete protein breakdown products(93).

The relative proportions of carbohydrate, fat and protein in
warm environments is not yet entirely known. However, the
high consumption of liquid/electrolytes (such as water and
sports drink) should be prioritised for the rapid replacement of
fluid loss caused by the high sweat rate. In addition, rehydration
and the type of beverage are influenced by troop culture and
availability in the environment.

High-altitude environments

High altitude is an extreme environment that challenges a
military unit’s operations. The combination of cold temperatures,
low oxygen pressure due to reduced atmospheric pressure, low
air humidity and high ultraviolet radiation levels may make
adaptation to this environment more challenging than cold or
hot environments(94). However, the main factor underlying the
physiological responses to high altitude is the low atmospheric
pressure and the consequent proportional reduction in the
partial pressure of oxygen in the inspired air (hypobaric
hypoxia)(95,96). Dunnwald et al.(97) concluded that short or long
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exposures to hypoxic environments promote comprehensive
physiological alterations. This occurs even if the relative
composition of the air remains the same as at sea level
(approximately 21% of oxygen content). The consequent
hypoxemia and tissue hypoxia trigger several regulatory
mechanisms, which in most cases favour adaptation but
occasionally evolve into pathological conditions such as chronic
or acute mountain sickness(95,98).

Military units often do not have adequate time to prepare
and/or acclimatise as top athletes(99,100). At high altitudes, troops
must often engage in physical exertion, such as travelling long
distances and climbing mountains(101). Exercising at high
altitudes is more challenging than at sea level owing to the
low oxygen availability(102). Due to hypoxia, training at high
altitudes requires a cardiovascular adaptation characterised by
increased ventilation and heart rate(103). Ensuring oxygen supply
to the tissue by hyperventilation is an essential factor in physical
exertion. Due to the low partial pressure of oxygen in the
inspired air, the physical capacity is reduced due to the increased
effort required due to the limitation ofmuscle oxygenation(95). As
a result, soldiers must have a unique and adequate nutritional
plan to maintain their performance.

In cold and dry environments, increased ventilation may be
accompanied by increased body water loss and ‘high-altitude
diuresis’(104). The cardiovascular and ventilatory adaptation
ensures that the metabolic demands of organs and tissues are
adequate at rest and during physical exertion at high altitudes(97).
Typically, hypoxic environments influence body composition
(i.e. reduction in fat mass, muscle mass and body weight)(105).
According to Kayser and Verges(106), these changes in body
composition occur due to increased basal metabolic rate and
negative energy balance, mainly due to lower caloric intake and
higher energy expenditure. Furthermore, military units have a
high energy expenditure due to the extra weight of specialised
equipment (i.e. helmet, weapons and vest). According to
Tharion et al.(47), the energy expenditure of troops at 2550 m
altitude is approximately 30% higher compared with the same
activities in cold environments at sea level.

At altitudes higher than 5000 m, a negative energy balance
may result from impaired intestinal function or reduced energy
intake due to a reduced appetite(97). Additionally, muscle
wasting seems to ensue predominantly at high altitudes, whereas
catabolic mechanisms may be of minor importance at moderate
altitudes with exposure to lower levels of hypoxia(107). Muscle
catabolism may arise in this environment owing to a negative
energy balance resulting from increased energy expenditure,
high levels of physical activity and inadequate nutritional
intake(108).

The effects of altitude on the intestinal microbiota have
gained attention in recent years, mainly due to the positive
results that intestinal microbes can promote to the host under
extreme conditions(109–112). Suzuki et al.(113) stated that the gut
microbiota profile changes according to altitude. It is expected
that microbiota functions related to food assimilation and/or the
host oxygen homeostasis regulatory system will be enriched in
high-altitude populations(114). Zhao et al.(115) concluded that diet
and high altitude strongly drive convergent adaptation of gut
microbiota to high-altitude environments, changing the diversity

of the microbiota and playing an essential role in the host’s
energy compensation and cardiovascular regulation and helping
the host adapt to the high energy demand and low oxygen
pressure of high-altitude environments. In addition,
Quagliariello et al.(116) found that the gut microbiota has the
potential to mitigate the effect of nutritional restrictions and
environmental pressures induced by high altitude by providing
metabolic functions able to supply compounds, such as
vitamins, ketone bodies and amino acids, which are helpful
for the host to cope with the challenging physiological stresses
and energy demand imposed by life in this extreme
environment.

Adequate gut health and gut microbiota profile are essential
for soldiers during intense high-altitude exercise. Military rations
or dietary supplements that improve these aspects can minimise
the adverse effects of high altitudes and positively influence
troop performance.

The importance of gut health for the absorption and
metabolism of essential nutritional components

The connection between diet and human health is well explored
and documented(117–121). Interest in the importance of the
frequency, quality and timing of food intake on human health
and the increase of risk of development of diseases has been
increasing over recent years.

The intestinal microbiota health is crucial to understanding
how food is digested and how the body can absorb nutrients.
The gut microbiota is a continuously changing ecosystem that
contains trillions of bacteria. The composition and function of
the intestinal biota are shaped by several factors, including
dietary habits, seasonal variations, lifestyle, age, external and
internal stress factors, inflammatory diseases and irritations, and
the use of antibiotics or infections(122). To maintain a healthy
intestine, characterised by a low degree of irritation, best
possible immune functionality and good digestion, it is essential
to have a good balance between the host organism (individual)
and the gut microbiota(123–125).

The host gut’s microbial communities influence several
aspects of the host’s health and carry the adaptive potential to
changes in extreme environments and diets(94). According to Lan
et al.(126), gut microbiota is essential in regulating high-altitude
adaptation and high-fat diets. Furthermore, Zhao et al.(115) stated
that genetic, altitude, dietary, season and other environmental
factors impact the structure and composition of gut microbiota.
With this, military rations must be optimised for extreme
conditions such as warm, cold and high-altitude environments.

Over the past few decades, modern diets have led to growing
health problems such as diabetes and cardiovascular disorders.
Many of these health challenges can be linked to a suboptimal
gut microbiota. The intestinal microbiota is further directly
influenced by individual components of the diet as macro-
nutrients (protein, fat and carbohydrates) and micronutrients
such as vitamins, minerals and amino acids(122,127,128). According
to Karl et al.(129), altitude directly affected the intestinal
microbiota with subsequent poorer appetite and nutrient
absorption. For a soldier, active in a field operation, a diet that
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favours good gut health will therefore be beneficial for adequate
nutrient intake owing to a direct connection between the
intestinal microbiota and the individual’s appetite(127).

The composition of the gut microbiota is the result of the
interaction and co-evolution of the host, as well as environ-
mental factors such as altitude(115), indirectly regulating host
energy intake efficiency and helping to optimise nutritional
assimilation and energy production in high-altitude
environments(130).

Several studies(131–134) support that physical activity affects
gut health and that the microbial community in the gut can be
used as an indicator of the individual’s immune function, being a
therapeutic tool to improve the soldier’s health, performance
and energy intake by controlling inflammation and oxidation
processes. Mach and Fuster-Botella(134) concluded that the gut
microbiota has a crucial role in preventing oxidative stress and
inflammatory responses, as well as improving the host’s energy
consumption and metabolism.

For soldiers who must perform physically and mentally,
over a long period, under extreme external stresses such as
cold, warm and high-altitude environments, factors in the diet
that can improve the soldier’s intestinal health will be of great
importance. This applies to appetite, nutrient absorption and
energy metabolism. One ingredient known to have a positive
effect on the gut microbiota is different varieties of
probiotics(135).

Probiotics are a popular dietary supplement for preventing
and potentially treating intestinal disorders(136,137). In general,
probiotics have a regulatory effect on the intestinal biota
composition and can influence the human gut microbiota(138),
improving immune function and digestive health while decreas-
ing inflammation(139–141). The probiotics consumption has been
suggested to down-regulate pro inflammatory cytokines(142,143)

and up-regulate production of IL-10 (an anti-inflammatory
cytokine)(144). Furthermore, improving immune function from
probiotic intake is associated with attenuating fatigue(145).

Intense military operations associated with physiological
stress has been reported to a significant increase in inflammatory
cytokine markers(146,147). With this, stimulation of pro-inflam-
matory cytokines contributes to a decrease in performance
during military exercises(148,149). Gepner et al.(150) reported that
elite male soldiers (20 ± 0.7 years) ingesting a combination of
β-hydroxy-β-methylbutyrate (metabolite of the amino acid
leucine) and Bacillus coagulans increased the muscle integrity
and reduced the inflammatory response promoted by intense
military exercise. According to Hoffman et al.(151), results from
2 weeks of Bacillus coagulans supplementation indicated a
positive effect on short-term speed performance in addition to
decreasing the inflammatory response during intense military
exercises. Noorifard et al.(152) stated that the consumption of
probiotics improves the health and immunity of soldiers during
intense activity.

The gut health of soldiers, especially in extreme conditions,
must be preserved and/or improved. Considering this factor,
including probiotics in military rations can be an interesting
strategy to ensure good intestinal functioning during training and
operations in extreme environments.

Sensory and external factors that affect soldiers’ appetite
and food intake

Taste plays a crucial role in soldiers’ food and nutrient intake. To
ensure soldiers’ adequate nutrition under extreme conditions, it
is important to consider eating patterns, psychosocial factors and
the sensory qualities of the food product itself(153). The activity
largely influences the soldier’s eating patterns. External factors,
such as temperature, environment, convenience, stressful
exercise regimen, conflict, aspects relating to available time to
prepare food and eat, the group’s internal routines and
complexity, and public facilities for preparation and social-
isation, impact the appetite and food intake of soldiers(154). Any
influence from one or more of the factors above will place a
significantly demand on the other factors as well as the product’s
excellence and sensory perception. At the same time, the
products must have rational acceptability to meet soldiers’
physiological and nutritional needs.

Military research results suggest that ambient temperature
may affect appetite and food intake, being high in cold and low
in hot environments(63,155). The link between exercise and
ambient temperature and human appetite is unclear. Some
studies suggest that appetite is reduced and that hormonal
responses associated with appetite suppression increase with
higher ambient temperature(156), while the reverse was observed
with lower ambient temperature(157,158). Johnsen et al.(158) and
Kojima et al.(53) state that environmental conditions affect
exercise-induced appetite-regulating hormonal responses.
Understanding how exercise under different temperatures
affects the appetite of military units in outdoor physical exertion
is very relevant. In military units, body weight loss due to under-
eating during field operations is not uncommon(55–57,159,160).
Rapid weight loss during operations can suppress immune
function and decrease cognitive and physical performance. This
rapid weight loss can be the result of insufficient time to eat,
extreme stress, food palatability, prolonged or difficult food
preparation(44,155), or lack of nutritional competence among the
soldiers, thereby impacting operational readiness and perfor-
mance(29). In addition, Ahmed et al.(29) concluded that, after a
physical exertion in extreme temperatures (warm or cold
environments), military personnel did not have the necessary
energy intake even when having time to eat properly.

Besides psychosocial and external factors, soldiers’ appetites
can be increased by focusing on the products’ sensory proper-
ties. Important factors that influence soldiers’ perception of the
product are the serving temperature(161), flavour and texture(162).

The preference for hot meals increases with decreasing
temperatures in the surroundings and the body(29). Although the
temperature is essential for product perception, the combination
of several factors makes the sensory quality hard to manage; for
example, the serving temperature of a tomato soup affects how
consumers perceive the product’s salt content(163). Salt is an
essential and necessary component for sensory quality and
regulation of water balance and sweating in peoplewho perform
hard physical exercise, being the amount primarily adapted to
the physiological needs of the soldiers(164). To adjust the sensory
perception of food, there are interesting alternatives to salt that
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can be used, including natural salt substitutes such as plant
extracts(165,166), umami flavour components(167–169) and bitter
tastes in combination with salt(170–172), and change in viscosity to
alter salt perception(173,174).

Another factor that regulates the sensory perception of a food
product and appetite is sweetness. During a long-term activity,
there is a need for simple carbohydrates to, among other things,
maintain blood sugar levels. Such an acute need for simple
carbohydrates should generally be covered by supplementary
‘grab & go’ products. Sugar, on the other hand, has a vital role in
balancing the taste of food products(175). Considering all these,
the ratio between different tastes, such as salty–sweet, is
essential for a soldier’s appetite, overall acceptance and
consumption of the military ration.

As mentioned above, numerous factors affect soldiers’
appetite and food intake. During exercise, it is common not to
have enough time to eat properly. Thus, for developing new
military rations, it is necessary to consider sensory parameters
and ingredients/additives that increase appetite in addition to
nutritional quality and convenience.

Conclusion

The military rations quality has been noticeably improved in
recent years owing to advances in knowledge about nutrition,
physiology, sensory parameters, and food science and technol-
ogy. Military rations must be practical, convenient, sustainable
and, above all, nutritionally adequate.

There are several factors that influence the nutritional needs
of military personnel. The type of environment, exercise and
duration directly impact the amount of liquids, calories, and
macro- and micronutrients needed for good performance and
maintenance of soldiers’ health. Therefore, developing a military
ration with specific characteristics for each environment and
situation is necessary. In cold environments (such as polar and
arctic), military rations must contain more calories than usual,
with a higher fat level being significant. In hot environments,
liquid/electrolyte consumption should be prioritised to avoid
excessive fluid loss caused by high sweat rate. An interesting
strategy to minimise the impacts of high altitudes on troops is the
maintenance/improvement of gut health and gut microbiota
profile.

Especially in extreme environments, soldiers’ intestinal
health is important. Adding probiotics to military rations to
improve the intestinal functioning of soldiers during combat
and/or training operations may be a good strategy.

For the coming years, the trend is for military rations that are
nutritionally optimised, sustainable, practical, convenient and
stable for long periods of time, and with desirable sensory
parameters considering cultural differences and aspects.
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