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MELLIN MULTIPLIERS AND RADIALLY SYMMETRIC RIESZ
POTENTIALS

by W. LAMB and S. E. SCHIAVONE
(Received 15th January 1993)

Riesz potentials with radially symmetric densities are examined from the standpoint of Mellin multipliers.
Various results are deduced from the underlying multipliers, including a decomposition of the potential into a
product of Erdélyi-Kober fractional integrals. Distributional versions of these results are also produced and
shown to be valid under less severe restrictions on the parameters than those required in a weighted L?
setting.

1980 Mathematical subject classification: 42A45, 46F 10.

1. Introduction

A number of operators which arise in fractional calculus have now been treated as
particular cases of more general theories of multiplier transforms. Prominent amongst
these are the Erdélyi~Kober operators which have been extensively studied from the
standpoint of Mellin multipliers, initially by Rooney [9], [10], and then later by
McBride [5], [6], [7] who extended Rooney’s LP-based results to spaces of test
functions and generalised functions. Other related operators have also received atten-
tion, including the Riemann-Liouville and Weyl fractional integrals which have been
investigated using Mellin multipliers in [5], and Fourier multipliers in [3]. More
recently, a theory of bilateral Laplace multipliers has been developed in [12] and used
to yield information on the two-dimensional Riesz fractional integral associated with the
wave operator.

In the present paper, we turn our attention to the Riesz fractional integral which is
linked with the n-dimensional Laplacian and demonstrate that the Mellin multiplier
theories of Rooney and McBride are applicable to this operator when restricted to
radially symmetric functions of the form ¢(|x|), xeR". In this case, the corresponding
Riesz potential is also radially symmetric and can be written as

(Rf“¢)(r)=Cn.za£"|x—)’|2“_"¢(l7)dy (1.1)

where r=|x|, p=|y| and
Cy2a=2" 21" "2T (n/2—a)/T(a). (1.2)
493
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Riesz potentials with radially symmetric densities have previously been studied by
Rubin [11], who established that the operator R2* defined by (1.1) is related to the
Riemann-Liouville and Weyl fractional integrals via the formula

(SR22p)(r)=2"22p! ~"2(J2p"2 2~ LK S P)(r) (1.3)

where
(S$)(r) = (/7). (L4)

Formula (1.3) enabled Rubin to deduce properties of R2%¢ for densities ¢ belonging to
certain weighted L? spaces.

Although not mentioned explicitly in [11], (1.3) can be expressed in the equivalent,
but simpler form

R3¢ =(r/) 132~ *K;**¢ (15)

where 72~ 1'% and K;** are Erdélyi-Kober operators. This decomposition of R?* into
one-dimensional fractional integrals, as well as other more familiar results, will be seen
to follow naturally from properties of the associated Mellin multipliers. In addition, we
shall demonstrate that restrictions required in the L? treatment of R2* may be relaxed
considerably when working within the framework of the spaces F, , and F), , introduced
by McBride.

2. The operator RZ on L?

As far as possible, we shall adhere to the notation and terminology of [5]. Thus, for
1£p<ooand peC,

LE={¢:r *¢ € L?(0, 0)}
and

F,,={¢eC®0,00):r*¢®¥e Lt for k=0,1,2,...}.

Equipped with the norm

® 1/p
[6lu=(T =0t ar) "

L? is a Banach space, while Fp:” is a Fréchet space with respect to the topology
generated by the seminorms yf** given by

(@) =l e®|,... k=0,1,2,....
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It is evident that the mapping r*, defined by
(Fo)r)=r'¢(r), r>0,
is a homeomorphism from Lf onto LE, ;, and from F, , onto F, ,,,, for each AeC.
Properties of the radially symmetric potential R2¢, for ¢ € LE, can be established by

routine application of integral inequalities for Mellin convolutions. Concentrating
initially on the case n=1, we rewrite (1.1) in the more suitable form

(R*$)N=C,, Zarza:f P(p)k(r/p)p ™" dp (2.1)

where

k(ry=r=2(r+ 12" +|r—1*""). (22
The behaviour of R2* on LE now follows directly from [9, Lemma 3.1].

Theorem 2.1. If 0<Re2x<1/p—Repu<1 then R3 is a bounded linear mapping from
L into L%, ,,.

Proof. First we note that
R3*=yp22T2a (2.3)

where
(TP} =C\, 24 (I) d(p)k(r/p)p~" dp. (2.4)
Now

Trv- Y|k(r)|dr (v=1/p—Re )
0

=11 +12+13,
where, for 0<Re2a<1/p—Repu<]1,
I=fr-Re2e-ipy)Re2e=lgr=p(v—Re2a,1—1/p+Rep), (2.5)
0
1
I,=frRe2e=1(1 —p)Re2e~1 dr= B(v—Re 2, Re 2a1), (2.6)
[
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Iy= rv Re2e=1(p_[)Re2a= 14— B(1 —1/p+ Re p, Re 20). (2.7)

1

Therefore, on applying [9, Lemma 3.1] (with u replaced by 1 —pu to conform with the
definition of L% used here; see [5 (I), Remark 2.2]) it follows that T3 is a bounded
linear mapping from Lf into L? under the stated conditions.

For the case n>1, we use polar coordinates and a suitable rotation (see [11]) to write

(1.1) as
(RY)(r) =r?*(T2¢)(r) (2.8)
where
(T2*¢)(r) =(§, (I) ki(r/p,0)¢(p)p~" dp db, (2.9)
ky(r,0)=C, ,,(sin 0"~ 2r=2%(r?> 4+ 2rcos 6+ 1)* "2, (2.10)
2a=2'"21" V2 (n/2 — a)/T(n/2—1/2)T (). (2.11)

To determine the behaviour of T2* on L5, we require the following generalisation of the
inequality used in the previous theorem.

Lemma 2.2. Let K be defined by
b
(Ko)r)=f | k(r/p,0)¢(p)p~" dpdb, r>0,
a0
where k is measurable on (0, 00) x (a, b) and

riip=Reu=1ik(r, 6)| dr df=C < 0.

Dty O
Ot §

Then K is a bounded linear mapping from Lf into L}, and

IKllp.u=Clléll. o VO eLE.

Proof. For ¢elLf, let

Y(r,0) = ? k(r/p, ) d(p)p~tdp, r>0,a<f<b.
0

Then
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(Kd)(r) =} Y(r,0)do, r>0,
and

b
|K&||,..= |if r“w(r,8)db

p.0
b
<{|lr=*¢(r.9)||,.0d6 (by [8, pp. 158-159])

@

(j; k(r/p,0)$(p)p~ ' dp| df

p.u

I

b
g(j [ riieReu=1\k(r, 9)| drde) ll#ll,.. (by[9, Lemma 3.1])
a o

= Cl¢ll.u-

Theorem 2.3. If O<Re2x<1/p—Reu<n then R?* is a bounded linear mapping from
LEinto L%, 2,.

Proof. The case n=1 has been dealt with in Theorem 2.1. To prove the result for
n>1, we apply Lemma 2.2 to the operator T23* given by (2.9). For Re2a<1/p—Reu<n
and v=1/p—Reyu, we have

a

f (r*+2rcos 0+ 1)Ream2pr=Re2a=1 dr = A(q, n, v) P}(cos B)(sin 6)”
0

by (1, p. 310 (22)], but see Note 2.4 below, where y=Rea+1/2—n/2, 5=v—Rea—
n/2—1/2, A(oe,n,v)=2""T(1/24+n/2—Rea)f(v—Re2a,n—v) and P} is the Legendre func-
tion of the first kind [2, p. 143].

Moreover, for Re a>0,
§ (sin8)"*"~2P}(cos 6) dO
1]

_ 2'aT (n/2~ 1/2)T(Re a)
C((n+y+8)/2T([n+y—6—11/2C(1+[6—v)/2T([1 —y—81/2)’

by [2, p. 172 (27)]. Combining these, we obtain
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[ § |kar,O)|r" ' drdf< oo
0o
and hence T?¢ is a bounded linear mapping from L? into L2 for 0O<Re2a<1/p—Repu<
n. This completes the proof.
Note 24. The term (sin6)*~ "2 in [1, p. 310 (22)] is incorrect and should be replaced
by (sin 9)'/2 v,
Our last result in this section is an identity involving the gamma function which will
be required later to simplify the Mellin multiplier associated with R2°.
Lemma 2.5. Let {a—b,b,1—a}cC—{0,—1,—-2,..}. Then
Bla—b,1—a)+B(1—a,b)+ B(b,a—>b) (2.12)

_/aT(1/2—a/2)T(b/2T(a/2—b/2)
T a/2)T(1)2=b/)T(1/2—aj2+b/2)

2.13)

Proof. We can express (2.12) in the form (N + N, + N;)/D, where
D=T(1-bI'(1—a+b)I'(a), N,=T(a—b)[(1—a+b)'(a)(1—a),
N,=T(@r(—-al(hI(1->b), N;=I'BI(1-bI'(a—bI(l1—a+b).

By repeated application of Legendre’s duplication formula,
D=27""g"321(1/2=b/2)[ (1 = b/2)[(a/2)T(1/2 + a/2)'(1 —a/2 + b/2)[(1/2 —a/2 + b/2).
Moreover, the identities
I'2)Ir(1—z=mn/sin(nz), I'(l/2+2)(1/2—z)=mn/cos(nz) (2.14)
can be combined to produce
rEri—-z2)r1/2+42)r(/2—z=2zrQ2z)rd -2z). (2.15)
If we assume that {a—b,b,1 —a} cC—Z, then (2.14) and (2.15) lead to

N, _T(1—a/2)T(1/2—a/2)T(a/2—b/2)T(1/2+a/2—b/2)
D 2./aC(1/2—b/2)T(1—b/2)

_ H(a,b)sin(nb/2)
" 2sin(na/2) cos(n(a—b)/2)’

(2.16)
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where H(a,b) is given by (2.13), and similarly
N,/D = H(a,b)sin (n(a— b)/2)/2 sin (na/2) cos (mb/2), 2.17)
N /D = H(a, b) cos (ra/2)/2 cos (n(a— b)/2) cos (nb/2). (2.18)

The result now follows on adding (2.16), (2.17) and (2.18), and using the fact that the
functions defined by (2.12) and (2.13) are analytic in C—{0, —1, —2,...}.

3. Mellin multipliers and R* on F,,

For completeness, we include one or two details of the theory of Mellin multipliers.
The Mellin transform .# ¢ of a function ¢ is defined formally by

(./Il¢)(s)=:\jr‘"¢(r) dr. (3.1)

When ¢elLf and 1<p<2, it is known that .#¢ exists almost everywhere on the line
Res=1/p—Re y, the integral in (3.1) being interpreted in terms of mean convergence. As
in [5], Q will denote a domain in the complex plane which is the union of a finite or
countably infinite collection of disjoint, open strips parallel to the imaginary axis. For
any such domain Q and pe[1, o), we let

Q,={u:1/p—ueQ}. (3.2)
Since we assume throughout that Res=1/p—Re p, it follows that
SeEQe=pueQ,. (3.3)

Definition 3.1. The complex-valued function g is an LE multiplier if

(a) g is analytic on a domain Q,
(b) there exists a (unique) linear operator R, depending on g, such that
(i) for each pe(1,00) and ueQ,, R is a continuous linear mapping from L} into
LE,
(ii) for 1<p<2, ueQ, and ¢pelLf,

(A (R))(5)) =g(s)(A )(5)- (34)

Note 3.2. (a) To obtain the corresponding definition of an F, , multiplier, we simply
replace L} by F, , throughout Definition 3.1.

(b) The operator R is referred to as the (Mellin) multiplier transform associated with
the multiplier (or symbol) g.
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(c) Sufficient conditions for a function g to be an L? multiplier are given in [7] and
[10]. Results on F, , multipliers can be found in [5] and [7]. For example, L%
multipliers are F, , multipliers [5 (II), Theorem 3.3]. Moreover, if g is an Lf
multiplier with associated transform R, and P is a polynomial, then Pg is the
symbol of P(—J6)R, where § =rd/dr; see [5, (II), Theorem 3.6].

To illustrate these ideas, and also introduce one or two results which are required
later, let us review some of the facts established on the Erdélyi-Kober operators I%* and
K?*, where

(I5°d)(r) =(m/r(a»§ (r/p) ™™ ="((r/p)"~1)*" 0™ b(p) dp, (3:5)
and

(KL29)(r)=(m/T’ (ot))ﬁfo (r/py™"(1 =(r/p)™*~'p~ ' (p) dp. (3.6)

Example 3.3. Rooney [9] has shown that the functions

gi(na,ms)=C(n+1—s/m)/T'(n+a+1—s/m), Res<mRen+m (3.7)
and

gx(n,a,m;s)=I'(n+s/m)/T'(n+a+s/m), Res>—mRen (3.8)

are L} multipliers with respective transforms I7%* and K%° defined by (3.5) and (3.6),
provided that Rea>0. The conditions on « and s (and hence on «, p and u) can be
relaxed considerably by working in F, , rather than LE. For example, formulae such as

gl(r”a’m;s)=Pl(s)gl(r’>a+lam;s) (l=1,2,,,.),

where

1
P(9)=TT tn+a+ j—s/m),

j=1

can be used to show that g; is an F,, multiplier for each aeC and has associated
domain

Q,={s:Res#mRen+km for k=1,2,..}. 39
Similarly, gk is an F, , multiplier for each ae C, and has domain

Qg={s:Res# —mRen—mk for k=0,1,...}. (3.10)
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Concrete representations for the corresponding multiplier operators are again given by
the Erdélyi~Kober operators. However, definitions in terms of integrodifferential
expressions have now to be used which guarantee the existence of I%* and K%* as
continuous operators on F,, whenever pe[l,0) and peC satisfy the respective
conditions 1/p—pue€;, and 1/p—peQy; see [4, Chapter 3] for details.

We now consider the operator R2* given by (1.1).

Theorem 3.4. If 0<Re2a<n then the function

2722 (s/2 — ) T(n/2 —5/2)
T(s/2)T(n/2—s/2 +)

gla,n;8)= , Re2a<Res<n, (3.11)

is an L? multiplier and has associated transform r~2*R2=.

Proof. A straightforward application of the results given in [9, p. 1203] shows that
g(a,n;*) is an L% multiplier. Moreover, from Theorem 2.3, r~22R2® is a bounded linear
mapping from L! into L? for 0<Re2x<1/p—Reu<n. To complete the proof, we
examine the cases n=1 and n> 1 separately and verify that

(# (r~ 2R $))(5)=g(at, 1; ) (A P)(s)
for 1<p=<2, O<Re2a<l/p—Repu<n and ¢eCg(0,0). The result will then follow
immediately from standard continuity arguments and the fact that C§(0, o) is dense
in L.
n=1: ForO<Re2a<Res<l],

(A (r~*R*¢))(s) = (A(TT*))(s) = Cy, 2o(MK)(5) (A $)(5)

where k and T2* are given by (2.2) and (2.4) respectively. If we now apply formulae
(2.5)12.7) and Lemma 2.5, then we obtain

Cy, 24 H k) (5)
=C,; 2 (B(s—2a, 1 —5)+ B(s— 2, 20) + (1 — 5, 201))
=g(a, 1;9).
n>1: The calculations used in proving Theorem 2.3 show that

(A (r~>*R2*$))(s) = h(e, n; s)(A $)(s),

where
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2172« /2T(n/2—o)[(n/2 +1/2—a)[ (s —2a)T(n—s)
[(n—20)0(s/2)[(s/2+1/2— ) T(n/2+1/2—5/2)T(n/2—s/2 + &)’

h(a,n;s)=
On applying Legendre’s duplication formula to I'(n—2a«), I'(s—2&) and I'(n—s), we find
that h(a, n;s)=g(a, n; s).
Corollary 35. If1<p<oo and 0<Re2a<1/p—Reu<n, then
RZ*p=2"2a2y2 - Lag Jaag (3.12)
for each ¢peLs.

Proof. This follows immediately from the fact that

gla,n;s)=2"22g,(n/2—1,0a,2;5)g(—a,a,2;5).

As in Example 3.3, the various restrictions on the parameters can be relaxed by
working in F, ,, and it is not difficult to show that the function g(a,n;s) is an F, ,
multiplier with associated domain given by the larger set

Qa,n)={s:Res#n+2l,Re2a~2! for 1=0,1,2,...}. (3.13)
If we continue to represent the corresponding multiplier transform by r~2*R2*=T?2¢

then (3.12) provides a concrete expression for R2* in terms of the more general versions
of the Erdélyi-Kober operators. More explicitly, for 1 £p<oo and

ﬂeg(aa",P)E{ﬂ: l/p—ueQ(a,n)}, (314)
we define R2* on F, , by
R2:¢=2"2%2ay2-Leg jasg  $eF, (3.15)

where I¥27'* and K;** are defined in accordance with the values of a,p,u and n. In
particular, when 0 <Re 2a < 1/p—Re g <n,R2* can be represented by (1.1).
The following properties of R2* on F ».u r€ Now easily derived.

Theorem 3.6. Let Q(a,n, p) be given by (3.14) for each aeC, pe[1, ) and neN.

(@) If peQ(a,n,p) then RZ" is a continuous linear mapping from F, , into F
(b) If ueQ(a,n,p) and u+2aeQ(B,n,p) then

p.pt2a

R2PR2*=R2*% (3.16)

as operators on F, ,.
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(©) If peQ(a,n,p) and p+2aeQ(—a,n,p) then R2* is a homeomorphism from F, , onto

Fo 4420 and
(R¥) " '¢=R,%¢ VPeF, .1 (3.17)
(d) Let
A"=;ldr—22+n:ldir' (3.18)

Then, as operators on F, ,,

AR?*=—R"? if peQa,n,p) (3.19)

and
R?A,=—R¥*™ % if u—2eQa,n,p). (3.20)

Proof. (a) This follows immediately from [4, Theorems 3.31, 3.34].

(b) Under the given conditions, each side of (3.16) defines a continuous mapping
from F, , into F, ,.,,25. Moreover, for ¢ € Cg(0, 00),

(A (r= 22" ¥R RI*D))(s) = (M (r~ **RIR*¢))(s —20)
=g(B,ms—20)(M(r” *Ri*$))(s) (for s—2aeQ(B,n))
=g(B,n;s —20)g(a, m; )AL P)(s) (for seQ(a, n))
=g(a+ B, n;s)(A P)(s)
=(M(r~ 227 PR G))(s),
and therefore, since C3(0, o0) is dense in F, ,,
R?»R¥p=R¥**¢ VY¢eF,,
(c) This can be deduced from (b) on setting B= —a and noting that R? is the identity

operator on F, , for ueQ(0,n, p).

(d) The proof is similar to that given for (b). Under the stated conditions, each side
of (3.19) defines a continuous linear mapping from F,, into F, ,.3,-,. To
establish that these operators are identical, we need only show that they agree on
C§(0, 0), and this follows since
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(A (r*~2*A,R2*9))(s) = (A (AR $))(s+2 —20)
=(s—20)(s +2—2a—n)(H (R2*¢))(s — 2a)
=(s—2a)(s + 2 —2x— n)g(a, n; s)(A P)(s)

= —g(a—1,n;s)(A P)(s)
= — (M (" =RE2))(s)
Equation (3.20) can be established in the same way.

Note 3.7. On comparing the index law (3.16) and inverse formula (3.17) with [5 (II),
Theorem 4.8], it would appear that the operator R2* is a suitable candidate for analysis
via the fractional power theory presented in [5]. Indeed, if we follow the terminology of
[5] and examine the triple '

h(s) = 2°I"(s/2)/T(n/2 —5/2)
Q={s:Res#2—2Ln+2l for 1=0,1,2,...}
y=2,

then the associated operator is given by

T(h,Q,9)=R3=(r/2?1§? "1 1K5 1.

Moreover,

h(s —20)/h(s) =g(a, n; s)
which suggests that, for suitable aeC,

R¥=(R2y (3.21)

where the right-hand side of (3.21) represents the ath power of R2. Unfortunately, a
problem arises when we attempt to identify the admissible set A, for this triple. As A
consists of all ae C for which the function

h(s — 2a)/h(s) =g(a, n; s)

is an F, , multiplier with associated domain Q, it follows that

Ar={aeC:Q<=Q(a,n)}.
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Clearly there are very few admissible values of a and this places severe restrictions on
the fractional power approach. Although it seems likely that the theory in [5] can be
modified to allow the domain of the multiplier associated with T° to vary with a, this
will not be pursued here.

4. Distributional results

The advantages of studying the operator R2* within the framework of F ».u Tather
than LF, have been highlighted in the previous section. Clearly these are achieved at the
cost of restricting the size of the domain of R2*. Fortunately, we can easily remedy this
by producing a distributional version of the F, , theory.

First we note that F, _, is a space of test functions for each ge[1, ) and ueC, and
so its dual F; _, can be regarded as a space of generalised functions. Moreover, when p
and q are related by 1/p+1/g=1, each function ne Lf generates a functional e F, _,
via the formula

* ¢)=Zn(r)¢(r) dr, $eF,

and therefore we obtain the chain of inclusions

FpucLicF
As a result, it is meaningful to discuss the extension of operators from Lf to F, _, and
also from F,, to F, _, For example, appropriate definitions of the Erdélyi-Kober
operators on F, _, are shown in [4, Definitions 3.45, 3.49] to be

(I f,9)=(fKu 1 mHmeg), (4.1)
(Knef,d)=(f 151 H1meg), “4.2)

where feF, _, and ¢eF, _,.
Multiplier transforms T=T(h,Q,y) of the type discussed in Note 3.7 can also be
extended from Lf to F;, _, by means of the formulae
(T)=(LT'9)
(T'9)(r)=r(UTUr'¢)(r)

(Ud)ry=r~t¢(r™"),

where feF, and ¢eF

o - see [5, (II),§6] for details. In particular, if we consider
the triple

q. —p—y
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h(s)=2°T'(s/2)/T(n/2—s/2), Q=Qa, n), y =20,

which has associated multiplier transform R2? then it follows from [5 (III), Theorem
4.17] that the operator (R2%) is also a multiplier transform with corresponding triple

h(s')=25"'C(n/2—1/2+5'/2)/T(1/2-5/2),
Q=Q(a,n)={s:Res’#1+2,1+Re2a—n-21 forl=0,1,...}

Yy =2a.
Routine calculations show that

(R:a)f¢=2——2u12—u—1/2,aK;/2—l/2.ar2a¢, ¢EF

q. —u—2w
and therefore, on using (4.1) and (4.2), we arrive at the expected result that

2a _n—2a.2apn/2-1l,a” —a,a
R;*=27*%*]} K,

as extended operators on F, _,.
It is now an easy matter to produce more general versions of the results stated in

Theorem 3.6. For example, R2* is a continuous linear mapping from F, q.unto Fo _ 5,
whenever peQ(a,n,p). Moreover if ueQ(a,n, p) and p+20eQ(f,n, p) then

(RZY(RIYP=(RI**Yp VYpeF, _, 1.-25
and therefore, from standard properties of adjoints,

RYRCf=Ry**f VfeF,

4. -n

under the same conditions on a, f and g Finally, (3.19) and (3.20) continue to hold in

F, -, when A, is defined as a continuous linear mapping from F, _, into F, ,_, by
(AL D) =(f,4:8), feFi_,,0eF, 5,
where
d> 1-nd
A =—s —.
" dr2+ rodr
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