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RELATIVE APPROXIMATIONS AND MASCHKE FUNCTORS

BIN ZHU

The notion of approximations relative to a functor is introduced and several char-
acterisations of relative (dual) Maschke functors are given by using them. As an
application, the injective objects in the category of comodules over a coring are de-
scribed.

The notions of approximations and of contravariantly finite subcategories were in-
troduced and studied by Auslander and Smal0[3] in the connection with the study of the
existence of almost split sequences in a subcategory. It turns out that these notions are
important in the study of representation theory of Artin algebras. For example, Auslan-
der and Reiten [1, 2] proved that certain contravariantly finite subcategories of a module
category are in one-to-one correspondence with tilting modules.

From Auslander and Reiten [1, 2], for any adjoint pair (F,G) from categories C
to V, the image of C under F, denoted by Im(F), is contravariantly finite in V, that
is, any object A in 2? has a right Im(.F)-approximation (for more general results and
applications, we refer to [6, 7]).

The aim of this note is to introduce the notion of approximations relative to a
functor, and, by using it, to give some characterisations of relative Maschke functors
which were recently introduced in [4, 5]. We shall first give the definitions of F-relative
approximations and F-contravariantly finiteness of a subcategory, and then, give some
new characterisations of F-Maschke functors. Finally, an application to the description
of injective objects in the category of comodules over a coring will be given.

Let C, V be categories and F : C -> V a covariant functor.

DEFINITION 1. Let T be a full subcategory of C and M €C. A map / : Mx -> M is
called an F-relative right T-approximation of M if Mi is an object of T and for any map
g:X-+M with X € T, there is a map h : FX -»• FMi in V such that F(g) = h • F{{).
Dually one can define the notion of F-relative left T-approximation of M.
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220 B. Zhu [2]

REMARK 1. If the functor F is the identity functor, then we come back to the usual
notion of right (or left) T-approximations introduced by Auslander and Smal0 in [2, 3].

LEMMA 1 . If f : Mx —• M is a right 7-approximation ofM, then it is an F-relative
right 7-approximation of M. The converse is not true in general.

PROOF: The proof of the first part is obvious. We present an example to show the
last part. Before doing this we first prove the following: Let A be a finite dimensional
algebra over a field k, C = A-mod, the category of finite dimensional left modules over
A and T a full subcategory of C. Let F : A — mod —> k - mod be the forgetful
functor. If T contains projective ^4-module A, then every .A-module M has an F-relative
right T-approximation. To prove this, let / : Mi —» M be a surjective with Mi £ T
(such surjective map exists for AA e T) . We claim that / is an F-relative right T-
approximation of M: Given a map g : X -> M with X € T, if we denote by 4> :
F(M) -¥ F(Mi) the right inverse of / in A;-mod, then g factors through / by <j> • g in
fc-mod. Therefore / is an F-relative T-approximation of M. In the rest of the proof, let
A be the finite dimensional algebra given by the quiver

I-J72
1

with relations yet = 0 = (^7 = ^ 7 . The subcategory P°°(A) consisting of .,4-modules with
finite projective dimension is not contravariantly finite in j4-mod (compare [2, Section 4]),
that is, there is at least one module M without right P°° (./^-approximations. But it has
F-relative P°° (^-approximations by the claim above. This finishes the proof. D

DEFINITION 2. A full subcategory T of C is said to be

(i) F-relative contravariantly finite in C-if for each object X in C, there is an

F-relative right T-approximation.

(ii) F-relative covariantly finite in C if for each object Y in C, there is an

F-relative left T-approximation.

(iii) ^--relative functorially finite in C if T is both ^"-relative contravariantly

and ^"-relative covariantly finite in C.

REMARK 2. If the functor F is the identity functor, then we arrive back to the usual
notion of contravariantly (or covariantly or functorially) finite subcategories introduced
by Auslander and Smal0 in [2, 3].

LEMMA 2 . If T is a contravariantiy finite for covariantly finite) subcategory in C,
then it is a F-relative contravariantly finite (respectively, F-relative covariantly finite)
subcategory in C. The converse is not true in general.

PROOF: By Lemma 1. the proof for the first part is obvious. For the proof of last
part, let A be the algebra in the proof of Lemma 1, T the subcategory P°°(A) and
F : A — mod —¥ k — mod the forgetful functor. Then P°°(A) is F-relative contravariantly
finite but not contravariantly finite in A-mod (compare [2, Section 4]). D
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Now we recall a result due to Auslander and Reiten (compare [l, Section 1], a more
general version can be found in [7]). This result is the starting point of this note.

LEMMA 3 . Let (F, G) be an adjoint pair from category C to V. Then lm(F) is
contravariantly finite in V and for any X € V, the counit map ex : FG(X) -¥ X is a
right lm(F)-approximation of X. Dually Im(G) is covariantly finite in C and for any Y
in C, the unit map IJY : Y -»• GF(Y) is a left Im(G)-approximation ofY.

We now recall the notions of relative injective and of Maschke functors from [5,
Section 3] or [4, Chapter 3].

DEFINITION 3. Let F : C ->• V and H : C -¥ £ be covariant functors. An object
M € C is called F-relative //-injective if the following condition is satisfied: for any
i : C -» C" in C with F(i) : F(C) -> F(C') a split monomorphism in V, and for every
/ : C -» M in C, there exists g : H{C') ->• H(M) in £ such that H(f) = g • H(i).

F is called an H-Maschke functor if any object of C is F-relative if-injective.

An F-relative lc-injective is also called an F-relative injective object. An lc-Maschke
functor is also called a Maschke functor.

P € C is called F-relative .H-projective if P is F^-relative if^-injective, where
pop . Cop _j. -pop is the functor opposite to F .

F is called a dual //-Maschke functor if any object of C is F-relative i/-projective.

Our next result gives some characterisations of (dual) //-Maschke functors.

Let F : C -> V, G : V -> C, H : C -¥ £ and H' : V ->• £' be covariant functors.
We denote by HDS(G) the subcategory of £ consisting of objects H(X), where X is an
object of C such that there is a morphism g : X -> G(Y) with H(g) a split monomorphism
from H{X) to H(G(Y)).

Similarly, H'DS(F) denotes the subcategory o f f consisting of objects H(X'), where
X' is an object of V such that there is a morphism g' : F(Y') -> X' with #'(5') a split
epimorphism from H'(F(Y')) to H'(X')).

U H = lc, then HDS{G) (denoted by DS(G) in this case) is the subcategory of C
consisting of direct summands of G(Y), Y E V. Similar remark applies to H'DS(F).

THEOREM 4 . Assume that the functor F : C -¥ V has a right adjoint G : V -> C
and H : C —>• £ is a covariant functor. Then the following statements are equivalent:

(1) M € C is F-relative H-injective;

(2) H(T)M) : H{M) -4 HGF(M) has a left inverse in £;

(3) There is a map f : M -> G(X) in C, such that H(f) : H(M) -> HG(X)

has a ieft inverse in £;

(4) H(M) 6 HDS(G).

In particular, F is an /f-Maschke functor if and only if every object X of #(C) is in

HDS{G), that is, H(C) =HDS(G).
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P R O O F : The equivalence between (1) and (2) is [5, Theorem 3.4]. The directions
(2)=>(3) and (3)=S>(4) are obvious. We prove the direction (4)=>(1): Since (F, G) is
an adjoint pair from C to V, by Lemmas 3 and 1, we have that TJM : M -> GF(M)
is an ^-relative left Im(G)-approximation of M, where M is any object of C. By (4),
we have a map / : M ->• G{Y) in C, such that H(/) : H(M) -> HG(Y) is a split
monomorphism, where Y eT>. Then there is a map g : H(M) -> HG{Y) in 5, such that
H(f) = 9 ' H{-qM)- Therefore the splitness of H{r)M) follows from the splitness of H(/).
By [5], we have (1). For the proof of last statement, we note that F is an //'-Maschke
functor if and only if every object M of C is .F-relative if-injective if and only if for any
object M of C we have H(M) € HDS(G) if and only if H(C) = HDS(G). D

Let us remark here that the equivalence between (1) and (2) in Theorem 4 is known
as Theorem 3.4. in [5]. The conditions (3) and (4) are new even in the case that H is
the identity functor on C.

Let H be the identity functor, we get a new characterisation of Maschke functors as
follows.

COROLLARY 5 . Assume that the functor F : C —> T> has a right adjoint G : V
—>• C. Then M € C is F-injective if and only if M G DS(G). Moreover, F is a Maschke
functor if and only if every object M 6 C is in DS(G), that is, C = DS(G).

Dually, we have the following

THEOREM 6 . Assume that the functor F : C -»• V has a right adjoint G : V -* C
and H' : V —> £' is a covariant functor. Then the following statements are equivalent:

(1) P eV is G-relative H'-projective;

(2) H'(eP) : H'FG{P) -> H'{P) has a right inverse in £';

(3) Tiere is a map g : F(X') -> P in V such that H'(f) : H'F(X') -> H'(P)
has a right inverse in £';

(4) H'(P) £ H'DS{F).

In particular, G is a dual #-Maschke functor if and only if every object M' of H'(T>)

is in H'DS(F), that is, H'(V) = H'DS(F).

Let H' be the identity functor, we get a new characterisation of dual Maschke functor

as follows.

COROLLARY 7 . Assume that the functor F : C -> V has a right adjoint G : V
->• C. Then Then N € X> is F-projective if and only ifN € DS{F). Moreover G is a duaJ
Maschke functor if and only if every object M € X> is in DS(F), that is, V -DS(F).

In the following we shall give an applications of Theorems 4 and 6.

Let A be a ring and C an >l-coring with comultiplication Ac and counit Ec- A right

C-comodule is a right ^l-module M together with a right ,4-module map pr : M -> M®AC
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such that
{pr

 ®A Ic) o pT = {IM ®A Ac) o pT

(JM ®A ec) o PT = IM-

Let Mc denote the category of all right C-comodules and MA the category of all right
A-modules. We look at the forgetful functor F : Mc -> MA- The functor F has a right
adjoint G = — (&A C. For details, we refer to [4].

PROPOSITION 8 . Let A be a semisimple ring and C an A-coring. Then M € Mc

is injective if and only if there is a right A-module Q such that M is a direct summand
ofQ®AC.

PROOF: Since A is semisimple, for any injective homomorphism / in Mc, F(f) is
a split monomorphism in MA- Then M e Mc is injective if and only if M is F-relative
injective. By Corollary 5, M is F-relative injective if and only if there is a right A-module
Q such that M is a direct summand of Q ®A C. This finishes the proof. D

REMARK 2. The proposition generalises in [5, Corollary 4.9].

We call an A-coring is semisimple if each right C-comdule is injective. As a conse-
quence of Proposition 8, we have the following.

COROLLARY 9 . Let A be a semisimple ring and C an A-coring. Then the following

statements are equivalent

(1) C is semisimple;

(2) Mc = DS(G);

(3) F is a Maschke functor.
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