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The motivation for this paper lies in the following
remarkable property of certain probability distributions. The
distribution law of the r.v. (random variable) X is exactly
the same as that of 1/X, and in the case of a r.v. with p.d. {.
(probability density function) f(x;a,b) where a,b are para-
meters, the p.d. f. of 1/X is {f(x;b,a). In the latter case the
p. d. f. of the reciprocal is obtained from the p.d.f. of X by
merely switching the parameters. The existence of random
variables with this property is perhaps familiar to statisticians,
as is evidenced by the use of the classical 'F' distribution.
The Cauchy law is yet another example which illustrates this
property. It seems, therefore, reasonable to characterize
this class of random variables by means of this rather
interesting property. In this paper we rmake an analytic study
of such random variables and discuss their character, confining
our attention to non-negative random variables with absolutely
continuous distributions.

1. The Functional Equation. Consider the r.v. X with
p.d. f. f(x) where f(x) =0 when x< 0. If we require that
X and 1/X have the same p.d.f{., then f(x) must satisfy the
following functional equation.

2
(1) flx) = (1/x) {(1/x) .
The problem now is to determine f(x). Let

(2) Y =log X .
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Then
(3) el fe?) = e 7 feY) .

From (3) it is clear that the p.d.f. g(y) of ther.v. Y is

symmetric with respect to the origin since g(y) = eyf(y) .
Conversely, whenever g(y) =g(-y), the r.v. X determined
by (2) will have the same distribution as its reciprocal and
f(x) =(1/x g(logex)) is then the solution of (1). We thus have

the following theorem.

THEOREM. A necessary and sufficient condition for a
non-negative r.v. X, with an absolutely continuous distribution,
to have the same p.d.f. as its reciprocal is that the p.d.f. of
Y given by the transformation Y = logeX be symmetric with

respect to the origin.
2. A Structural Property and Decomposability. In this

section we consider the construction of random variables with
the dual property mentioned in.the last section.

Suppose that two independent samples, X,Y, are drawn
from a distribution, and the ratio is formed of these samples,
say U =X/Y. Assuming that the p.d.f. of the samples is
f(*) for x>0, y> 0 the p.d.f. of U can be shown to be

0
(4) h(w) = [y f(y) f(uy)dy .
0
Writing V=Y/X, the p.d.f. of V is
0
(5) k(v) = [ x£(x) f(vx)dx .
0
Noting that V =1/U, X=UY, VX=Y, we obtain from (5)
]

(6) k(1/u) = [ uy fuy) f(y)u dy .
0
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Therefore, from (4), (5) and (6) we have

u2 h?u) k(1/u)

h(1/u) .

Thus we find that the p. d.f. of the ratio of two independent
samples from the same distribution satisfies (1). Conversely,
if X= (X1/X2) is a random variable whose p. d.f. satisfies (1),
then X can be decomposed as a ratio if X1 and X2 are not

required to be independent.

Suppose that the r.v. Y(Y > 0) is independent of the r.v.
X. Writing X, = YNX and X, =Y/NX, it follows that
X=X1/X2, and since X = X1/XZ for every Y which is

independent of X , this decomposition is not unique. However,
if X, and X  are to be independent, the ratio decomposition

1 2
will not be available. As an example we consider the following
problem.

Let Yi =logeXi (i=1,2), and define Y =IogeX=
.lc:og_eX1 - IogeXZ. Thus Y =Y1 - YZ, and if X = Xi/XZ'

Y1 and Y_ are independent of each other and have the same

2
distribution. If we now take the p.d.f. g(y) of Y as

-2

2 -

gly) =y e y /2/\/—211', it can be shown that although g{y) is

symmetric about the origin it cannot be expressed as the sum

of the p.d. f.'s of independent non-degenerate random variables.
A few examples of p.d.f.'s satisfying (1) are given below.

Examples:

(a) The zero-truncated Cauchy distribution

f(x) = (2/1r)/(1+x2) x>0.
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2
Indeed the p.d.f. f(x) =(1/7)/(1+x ), -0 < x < ®©, also satisfies

(1).
(b) The log-normal distribution .
2
f(x) = (o /xN27m)exp {- [(¢r logx) /2]}b0<x< .
4
(c) f(x) = 6x/(1+x) x>0.
2
(d) {(x) = 6x /(1+x6) x> 0.
(e} Let (Xi'Yi) have a bivariate normal distribution
2 2
with the same mean and variances cJ'1 s 0'2 for
, . 2 2 " =2
i=1,2,...,n. Defining s1 , s2 by the quantities X (Xi-X) /n
i=1

n
and _Zi(Y,—Y)Z/n respectively, the distribution of
1= 1

V=(s, /o M(s,/o,) is ([11, 2D,

_ 2(1_p2)(n—1)/2 n-2 (. 4p2v2 }-n/Z
B{(n;“ (n- 1)] (1+v n—i (1+v2)2

f(v)

(f) Consider the ratio V of two positive and independent
normal variables. If the means are the same, m, and the

2 2
variances are o'1 , 0'2 respectively, the p.d.f. of V is
2 2
o 2
foir 20 %) o A mley to, v exp (o 1=V) y
1072 2w @ 210 2532 P e 2 Z 2
1 2 oyt
(g) The Beta-distribution
f(x;a,b) = [1/B(a, b)]x (1+ ) x>0, a,b>0.
2
(h) f(x;a,b) = (2~ab/m)/(a+bx) x>0.
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(i) Let Xm, Xn be the largest members of two independerit

samples of sizes m and n respectively from a rectangular
distribution. The p.d.f. of U= (Xm/ Xn) is [3].

mn m-1
u O<ux<1
m+n -_
f(lu;m,n) =
mn -n-1
u 1i<u<w
m+n —

3. Remarks. From the functional equation (1) it becomes
clear the point x=1 is an invariant point, and that with a
knowledge of the probabilities from (0,1), the probabilities from
(1, ©) can be determined. The point x=1 plays the same role
as the point x =0 plays in the functional equation f£(x) = f(-x).
The p.d.f.'s satisfying (1) have median at x=1. For we have
F(1/x) =1-F(x), and for x to be the median F(x) = 1-F(x).
So F(x) = F(1/x) and we obtain x=(4/x) =1, since the range
of interest is the positive half line.

Suppose that the first k moments, about the origin, of
X exist. The (k-2) moments (about the origin) of 1/x also
exist and satisfy the following relation (except for k =2):
1 = ! A
Prx™" (k2),1/x
Finally let y =r(x) be a differentiable function of x with
r'(x) # 0. The p.d.f. of »(x) is r'(x) {(r(x)), where £f(x) is
the p.d.f. of X If 1/r(x) exists, the p.d.f. of 1/r(x) is

! (x)f(r(x))/(r(x))z‘ But since {(r(x)) = [1/(r(x))2] f(1/r(x)),
we have

> :
' (¥)f(r(x)) = [1/(r(x)) Jr' (x) {1/x(x)) .

Thus if P(y) denotes the p.d.f. of Y, we note that P(y)
satisfies the functional equation P(y) = (1/y ) P(1/y) .
Illustration (e) shows this property.
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