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Abstract

We prove a result on the existence and uniqueness of the solution of a new feature-preserving nonlinear
nonlocal diffusion equation for signal denoising for the one-dimensional case. The partial differential
equation is based on a novel diffusivity coefficient that uses a nonlocal automatically detected parameter
related to the local bounded variation and the local oscillating pattern of the noisy input signal.
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1. Introduction

Nonlinear partial differential equations (PDEs) can be used in the analysis and
processing of digital images or image sequences, for example, to extract features
and shapes or to filter out the noise to produce higher quality images (see, for
example, [3, 4, 14, 15] and the references therein). Arguably, the main application
of PDE-based methods in this field is the smoothing and restoration of images. From
the mathematical point of view, the input (grey scale) image can be modelled by a real
function u0(x), u0 : Ω→ R, where Ω ⊂ Rd represents the spatial domain. Typically,
this domain Ω is rectangular and d = 1, 2 or 3. The function u0 is considered as initial
data for a suitable evolution equation with some kind of boundary conditions. The
simplest (and oldest) PDE method for smoothing images is to apply a linear diffusion
process: the starting point is the simple observation that the so-called Gauss function
is related to the fundamental solution of the linear diffusion (heat) equation.

The flow produced by the linear diffusion equation spreads the information equally
in all directions. Although this property is good for a local noise reduction in the case
of additive noise, this filtering operation also destroys the image content such as the
boundaries of the objects and the subregions present in the image. This means that the
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Gaussian smoothing not only smooths noise, but also blurs important features in the
signal.

Recently, a new anisotropic diffusion model was introduced in [11] to analyse
experimental signals in neuroscience: the diffusivity coefficient uses a nonlocal
parameter related to the local bounded variation and the local oscillating pattern of
the noisy input signal. In [2], the model was extended to the multidimensional case
with an analysis for the existence of the solution in the two-dimensional case (images)
and the introduction of a suitable numerical scheme. In this note, we focus on the
one-dimensional case providing a complete analysis of the nonlocal diffusion equation,
including the uniqueness that was an open problem.

2. A one-dimensional nonlocal nonlinear model

There is a vast literature concerning nonlinear anisotropic diffusions with applica-
tions to image processing, which dates back to the seminal paper by Perona and Malik
[12], who considered a discrete version of the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t
− ∇ · (g(|∇u|)∇u) = 0 in ΩT = (0, T) ×Ω,

u(x, 0) = u0(x) on Ω,
∂u
∂�n

(x, t) = 0 on Γ × (0, T),

(2.1)

where Γ = ∂Ω, the image domain Ω ⊂ R2 is an open regular set (typically a rectangle),
�n denotes the unit outer normal to its boundary Γ, ∇· is the divergence operator, and
u(x, t) denotes the (scalar) image analysed at time (scale) t and point x. The initial
condition u0(x) is, as in the linear case, the original image. To reduce smoothing at the
edges, the diffusivity g is chosen as a decreasing function of the ‘edge detector’ |∇u|.
Here, we introduce a nonlocal diffusive coefficient that considers the ‘monotonicity’ of
the signal. In other words, a high modulus of the gradient may lead to a small diffusion
if the function is also locally monotone. At the same time, we want to reduce the noise
present, as in the case of linear diffusion. We focus on the one-dimensional case, more
precisely, where u : [a, b]→ R is a real function defined on a bounded interval [a, b],
and on a subinterval [c, d] ⊂ [a, b]. We define the local variation LV[c,d](u) of u on the
interval [c, d] by

LV[c,d](u) = |u(d) − u(c)|.

We also define the total local variation TV[c,d](u) of u on the interval [c, d] by

TV[c,d](u) = sup
P

nP−1∑
i=0

|u(xi+1) − u(xi)|

where P = {P = {x0, . . . , xnP} | P is a partition of [c, d]} is the set of all possible finite
partitions of the interval [c, d].
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FIGURE 1. An illustrative example of signal denoising using the new nonlocal and nonlinear diffusion
equation (2.2) with data from [1]. Solid line, original signal; grey line, signal with noise; dotted line,

reconstructed signal.

Let ε ∈ R+, ε � 1, ε > 0 and let δ ∈ R+. We define the ratio,

Rδ,u =
ε + LV[x−δ,x+δ](u)
ε + TV[x−δ,x+δ](u)

.

If the parameter δ is chosen appropriately, we can distinguish between oscillations
caused by noise contained in a range of amplitude δ. As in the Perona–Malik model
given by (2.1), we adapt the diffusivity coefficient by using the above ratio Rδ,u. For
small values of the latter, we have to reduce the noise, while for values close to 1,
the upper bound of Rδ,u, we have to preserve the signal variation (as the edges in
the image). The resulting diffusivity coefficient g(Rδ,u) becomes nonlocal. We assume
that g : [0,+∞)→ R is a positive, nonincreasing, Lipschitz continuous function such
that g(0) = 1 and g(1) = α > 0. In the following, we assume that the parameter
ε (0 < ε � 1) is fixed. In Figure 1, we show an illustrative example of a denoised signal
using our nonlocal and nonlinear diffusion filter. In particular, we have numerically
simulated (2.2) by adopting a semi-implicit method based on central finite differences
(see [2]) and with the following numeric values of the parameters (see also (2.3)):

g(s) =

⎧⎪⎪⎨⎪⎪⎩
1 if s = 0,

1 − s2e−3.315/(s/λ)8) if s � 0,
λ = 4, ε = 10−3, δ = 0.075,

and the time domain t ∈ [0, 0.6] and space domain x ∈ [0, 255]. The signal in Figure 1
was obtained from a simulation of a biophysical model of a neuron with an additive
Gaussian noise (mean equal to 0 and variance equal to 3) (see [1] for more details).
The MATLAB code and the details are available from the authors.

In the following, I = (a, b) ⊂ R denotes a bounded open interval and Hk(I), k ∈ N,
the Sobolev space of all functions u defined in I such that u and its distributional
derivatives of order 1, . . . , k all belong to L2(I). Let Ds denote the distributional
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derivative. Then Hk(I) is a Hilbert space for the norm

‖u‖k = ‖u‖Hk =

(∑
|s|≤k

∫
I
|Dsu(x)|2 dx

)1/2
, ‖u‖0 = ‖u‖L2 .

Let Lp(0, T; Hk(I)) be the set of all functions u, such that, for almost every t in (0, T)
with T > 0, u(t) belongs to Hk(I). Then Lp(0, T; Hk(I)) is a normed space for the norm

‖u‖Lp(0,T;Hk(I)) =

( ∫ T

0
‖u‖pk dt

)1/p
,

where p ≥ 1 and k ∈ N. Finally, we denote by (· , ·) the scalar product in L2(I).
We now establish our existence result. As initial conditions, we take the original

signal u0 but with some regularisation obtained with a standard smoothing filter, for
example, a Gaussian filter, and we assume homogeneous Neumann conditions at the
boundary.

THEOREM 2.1 (Existence). Let u0 ∈ H1(I) and T > 0, δ > 0. Then there exists u ∈
L2(0, T; H1(I))

⋂
C0([0, T]; L2(I)), satisfying u(x, 0) = u0(x) on I, ∂u/∂x = 0 at x =

a, b, and

∂u
∂t
− ∂
∂x

(
g(Rδ,u)

∂u
∂x

)
= 0, (2.2)

on (0, T] × I in the distributional sense.

PROOF. We show the existence of a weak solution of (2.2) by a classical fixed point
theorem of Schauder (see, for example, [7, Theorem 2.2]). We introduce the space

V(0, T) =
{
v ∈ L2(0, T; H1(I)),

dv
dt
∈ L2(0, T; (H1(I))′)

}
.

The space V(0, T) is a Hilbert space with the graph norm. Let v be a function in
V(0, T)

⋂
L∞(0, T; L2(I)) such that

‖v‖L∞(0,T;L2(I)) ≤ ‖u0‖L2(I).

We consider the following variational problem (Pv):
〈
∂u
∂t

(t), w
〉
+

∫
I
g(Rδ,v)

∂u(t)
∂x
∂w
∂x

dx = 0 for all w ∈ H1(I) (a.e.) in [0, T]

u(0) ∈ H1(I).

Here 〈· , ·〉 represents the duality product. A function u ∈ H1(I) has locally bounded
variation (see, for example, [10, Theorem 5.1]) and, moreover, is equal almost
everywhere (a.e.) to an absolutely continuous function and u′ exists a.e. and belongs
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to L2(I). The term Rδ,v can be represented as

Rδ,v =
ε +
∣∣∣∣ ∫ x+δ

x−δ u′(s) ds
∣∣∣∣

ε +
∫ x+δ

x−δ |u
′(s)| ds

(2.3)

and 0 < Rδ,v ≤ 1. So, g(Rδ,v) ≥ α > 0.
Using classical results about parabolic equations (see, for example, [8, Theorem

10.1] and [9, Theorem 7.3]), the problem (Pv) has a unique solution U(v) in V(0, T).
We can deduce the following estimates:

‖U(v)‖L∞(0,T;L2(I)) ≤ ‖u0‖L2(I),

‖U(v)‖L2(0,T;H1(I)) ≤ C1, (2.4)

‖U(v)‖L2(0,T;(H1(I))′) ≤ C2,

for suitable constants C1 and C2 depending only on u0, T and the Lipschitz constant of
the function g. We introduce the subset V0 of V(0, T) defined by functions v ∈ V(0, T)
such that these estimates are satisfied and v(0) = u0. Then U is a mapping from V0 to
V0. Moreover, V0 is a nonempty, convex and weakly compact subset of V(0, T).

To use the Schauder theorem, we have to prove that the mapping v→ U(v) is weakly
continuous from V0 to V0. Then, since V(0, T) is contained in L2(0, T; L2(I)) with
compact inclusion, this yields the existence of u ∈ V0 such that u = U(u).

Let (vj) be a sequence in V0 which converges weakly to v ∈ V0 and uj = U(vj). From
the classical theorems of compact inclusion (see, for example, [8, Theorem 9.16]), up
to sub-sequences,

uj → u weakly in L2(0, T; H1(I)),

duj

dt
→ du

dt
weakly in L2(0, T; (H1(I))′),

∂uj

∂x
→ ∂u
∂x

weakly in L2(0, T; L2(I)).

Moreover, uj → u in L2(0, T; L2(I)) and a.e. on I × (0, T) and uj(0)→ u(0) in (H1(I))′.
For the (vj), from (2.4), there is a subsequence such that vj → v in L2(0, T; L2(I))
and, from the Rellich–Kodrachov theorem (see, for example, [9, Theorem 5.1], and
(2.3)), g(Rδ,vj )→ g(Rδ,v) in L2(0, T; L2(I)). By the uniqueness of the solution of (Pv),
the whole sequence uj = U(vj) converges weakly in V(0, T). Thus, the mapping U is
weakly continuous from V0 into V0 and we can apply the Schauder theorem. �

REMARK 2.2. A similar proof could be carried through in a more general case by
considering a different measure of local variation, for example, using the absolute
value of the difference between the maximum and minimum value in subintervals of
length 2δ.

Under the hypotheses of Theorem 2.1, we have the following uniqueness result.
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THEOREM 2.3 (uniqueness). The solution u ∈ L2(0, T; H1(I))
⋂

C0([0, T]; L2(I)) of
(2.2), with u(0) ∈ H1(I) and homogeneous Neumann conditions, is unique.

PROOF. Let ū and û be two solutions of (2.2) and let u = ū − û. Then for almost all t
in [0, T],

dū
dt
− ∂
∂x

(
g(Rδ,ū)

∂ū
∂x

)
= 0, ū(0) = u0, (2.5)

dû
dt
− ∂
∂x

(
g(Rδ,û)

∂û
∂x

)
= 0, û(0) = u0. (2.6)

By subtracting (2.6) from (2.5),

d(ū − û)
dt

− ∂
∂x

(
g(Rδ,ū)

∂ū
∂x

)
+
∂

∂x

(
g(Rδ,û)

∂û
∂x

)
= 0.

Adding and subtracting the quantity ∂x(g(Rδ,ū)∂xû), we can rewrite the equation as

du
dt
− ∂
∂x

(
g(Rδ,ū)

∂u
∂x

)
=
∂

∂x

(
[g(Rδ,ū) − g(Rδ,û)]

∂û
∂x

)
. (2.7)

Multiplying (2.7) by u = (ū − û), integrating on the interval I, using the properties of
the function g and the lower bound g(1) = α > 0 and the estimates (2.4), we obtain

1
2

d
dt
‖u(t)‖2L2(I) + α

∥∥∥∥∥ ∂∂xu(t)
∥∥∥∥∥

2

L2(I)
≤ C‖u(t)‖L2(I)

∥∥∥∥∥ ∂∂x û(t)
∥∥∥∥∥

L2(I)

∥∥∥∥∥ ∂∂xu(t)
∥∥∥∥∥

L2(I)
,

for a suitable constant C. The term on the right-hand side can be estimated, using
Young’s inequality, by

2
α

C2‖u(t)‖2L2(I)

∥∥∥∥∥ ∂∂x û(t)
∥∥∥∥∥

2

L2(I)
+
α

2

∥∥∥∥∥ ∂∂xu(t)
∥∥∥∥∥

2

L2(I)
.

Subtracting the term (α/2)‖(∂/∂x)u(t)‖2L2(I) on both sides and using the a priori
estimates (2.4), we get the inequality

1
2

d
dt
‖u(t)‖2L2(I) +

α

2

∥∥∥∥∥ ∂∂xu(t)
∥∥∥∥∥

2

L2(I)
≤ C∗‖u(t)‖2L2(I), (2.8)

where C∗ = 2C2C1/α. Since ū(0) = û(0) = u0, by the inequality (2.8) and Gronwall’s
lemma (see, for example, [13, Theorem 1.8], we obtain the uniqueness of the
solution. �

REMARK 2.4. Similar nonlocal equations could be obtained as diffusive limits from
different kinetic microscale descriptions of the interactions of active particles (see, for
example, [5, 6]).
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