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Abstract. We present results on the oscillatory properties (periods, damping rates, and spatial
distribution of perturbations) for resonantly damped oscillations in a system of two inhomoge-
neous coronal slabs and compare them to the properties found in single slab loop models. A
system of two identical coronal loops is modelled, in Cartesian geometry, as being composed by
two density enhancements. The linear magnetohydrodynamic (MHD) wave equations for oblique
propagation of waves are solved and the damping due to resonant absorption is computed. Due
to the interaction between the loops, the normal modes of oscillation present in a single slab split
into symmetric and antisymmetric oscillations when a system of two identical slabs is consid-
ered. The frequencies of these solutions may differ from the single slab results when the distance
between the loops is of the order of a few slab widths. Oblique propagation of waves weakens
this interaction, since solutions become more confined to the edges of the slabs. The damping
is strong for surface-like oscillations, while sausage body-like solutions are unaffected.
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1. Introduction
In the last years, particular attention has been devoted to the phenomenon of transver-

sal coronal loop oscillations, first observed by instruments on-board TRACE spacecraft
(Aschwanden et al. 1999; Nakariakov et al. 1999; Aschwanden et al. 2002; Schrijver et al.
2002). The characteristic periods are of the order of minutes and oscillations are quickly
damped in a few periods. They have been interpreted by Nakariakov et al. (1999) as
the fundamental fast MHD kink mode of a flux tube. The identification of observed os-
cillations with theoretical MHD wave solutions is the key for coronal seismology, first
suggested by Uchida (1970); Roberts et al. (1984) and recently applied by Nakariakov
& Ofman (2001); Goossens et al. (2002); Andries et al. (2005); Verwichte et al. (2006);
Arregui et al. (2007a), for example. As for the nature of the damping mechanism(s)
there is little consensus yet and several mechanisms are currently under study. Resonant
conversion of wave energy (Hollweg & Yang 1988; Ruderman & Roberts 2002; Goossens
et al. 2002, 2006) is a viable mechanism and is the one considered here.

Observations very often show the excitation and damping of motions in groups of
coronal loops rather than in single, isolated structures (see for example Verwichte et al.
2004). However, most of the theoretical models are based on single loop models. For
this reason, it is important to fully understand the theoretical properties of MHD waves
in multiple-loop structures, to see under which conditions these differences in the os-
cillatory properties are important and, if important, to make reliable predictions and
determinations of unknown physical parameters in the corona.
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Figure 1. Schematic representation of the two density enhancements (light-shaded regions) of
half-width a, centred at ±x0 representing a system of two coronal slabs in the direction trans-
verse to the equilibrium magnetic field. These enhancements with internal density ρi connect
to the external medium, with density ρe , by transitional non-uniform layers (shaded regions) of
thickness l.

In this paper, we present the oscillatory properties of fast MHD waves in a system
of two Cartesian slabs when both oblique propagation of perturbations and transversal
inhomogeneity of the medium are included.

2. Equilibrium Model, Linear MHD Waves, and Numerical Method
We consider a system of two identical coronal loops as a one-dimensional model in

Cartesian geometry. The magnetic field is straight and pointing in the z-direction, B =
B ez . For applications to the solar corona, it is a good approximation to consider that
the magnetic pressure dominates over the gas pressure. This classic zero plasma-β limit
implies that the magnetic field is uniform and that the density, ρ(x), or Alfvén speed,
vA(x), profiles can be chosen arbitrarily. The system is then modelled by defining a
particular equilibrium density profile in the x-direction (see Figure 1), with two density
enhancements of half-width a located at ±x0 . The density in each of the slabs is uniform,
ρi , and connected to the uniform coronal environment, with density ρe , by transitional
non-uniform layers of thickness l.

The linear resistive MHD equations, with constant magnetic diffusivity, η, are consid-
ered. A spatial and temporal dependence of the form expı(ωt−ky y−kz z ) is assumed for all
perturbed quantities, with ω = ωR + ıωI the complex frequency and ky and kz the per-
pendicular and parallel wavenumbers. The photospheric line-tying effect is then included
by selecting the appropriate parallel wavenumber. This leads to a set of ordinary differ-
ential equations for the two components of the velocity perturbation, vx and vy , and the
three components of the perturbed magnetic field, bx , by , and bz . As the plasma-β=0, the
slow mode is absent and vz = 0. Numerical approximations to the solutions are obtained
using PDE2D (Sewell 2005), a general-purpose partial differential equation solver. As
for the boundary conditions, we impose the vanishing of the perturbed velocity far away
from the two-slab system, hence v → 0 as x → ±∞.
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Figure 2. Frequency as a function of the position of the slabs centres for different values of the
perpendicular wavenumber for the kink solutions (left), the sausage surface solutions (middle),
and the sausage body solutions (right).

3. Analysis and Results
When ky = 0 and l = 0, Luna et al. (2006) find that the kink transversal oscillation

of a single slab splits into symmetric and antisymmetric solutions with respect to x = 0.
In the limit of no separation between slabs, the symmetric mode frequency is equal to
the kink mode frequency of a single slab with double width. As the distance between the
slabs is increased, the interaction weakens and, for large separations, the frequency of
the whole system goes to the kink mode frequency of a single slab. When compared to
Luna et al. (2006), two new ingredients are included in this paper; the non-uniformity
of the equilibrium density and perpendicular propagation of perturbations. These two
ingredients produce the resonant damping of fast modes.

When only oblique propagation of waves (ky �= 0, l = 0) is considered solutions can be
obtained by solving an analytical dispersion relation. Arregui et al. (2007b) have shown,
for a single Cartesian slab, that the fundamental kink mode, which is body for values of
ky below certain value, becomes surface beyond that particular value. There is a sausage
surface wave, with its frequency always below the internal cut-off frequency, which only
exists when ky �= 0. The phase speed of these two solutions goes asymptotically to the
kink speed for quasi-perpendicular propagation (ky � kz ). The sausage body solution,
which is leaky in the long wave limit (kza � 1), becomes trapped when a non-zero
ky is included. This solution is always above the internal cut-off frequency and, hence,
keeps its body character in the limit of quasi-perpendicular propagation. When a second
density enhancement is included, the solutions described by Arregui et al. (2007b) split
into symmetric and antisymmetric solutions with respect to x = 0, giving six solutions.
Consider fixed values for the density contrast of the two-slab system, ρi/ρe=10, and for
the longitudinal wavenumber, kza=π/50. In Figure 2 we can clearly see that for the kink
symmetric and antisymmetric solutions, the range of distances for which the interaction
is strong and the deviation from the kink mode frequency of a single slab significant,
is large in the absence of perpendicular propagation (ky = 0). When perpendicular
propagation is included the single slab kink mode frequency is approached for much
smaller distances between slabs. Only for distances of the order of a few times a the
symmetric and antisymmetric solutions have frequencies that differ significantly from the
kink frequency of a single slab. As for the sausage surface and sausage body, symmetric
and antisymmetric solutions, a similar result is obtained regarding the splitting of the
single slab solutions and the deviation from the single slab frequencies as a function of the
slab separation and perpendicular wavenumber. For the kink solutions, and considering
for example x0 = 2a, the frequency of the symmetric mode is 15% smaller than the kink
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Figure 3. Real part of the transversal velocity component, vx , and imaginary part of the per-
turbed total pressure, PT , for the fundamental symmetric (left) and antisymmetric (right) kink
solutions, for several values of the perpendicular wave number: ky a = 0 (dashed lines), ky a = 0.5
(dotted lines), and ky a = 1 (solid lines). Note that the character of the eigenfunctions for the
symmetric mode changes from body-like to surface-like solution as ky is increased. In all figures
the light-shaded regions represent the density enhancements. These solutions have been obtained
with a uniform computational grid with Nx = 10 000 points in the range −80 � x/a � 80 (except
for the kink solutions with ky = 0 for which a range −200 � x/a � 200 has been used).

mode frequency of a single slab, when ky = 0. This difference decreases to 3% for kya = 1.
When the two-slab system is oscillating in the antisymmetric mode, its frequency is 13%
larger that the kink mode frequency for kya = 0.5, while it is only 4% for kya = 1. As for
the sausage surface solutions of the two-slab system, a deviation from the sausage surface
frequency of a single slab around 5% is found, in the case of the symmetric solution with
kya = 0.3 and x0 = 2a. Finally, for the sausage body solutions of the two-slab system with
x0 = 2a, the maximum difference occurs for the antisymmetric solution with kya = 0.5
and is around 10%.

Figures 3, 4, and 5 show the transversal component of the perturbed velocity and the
total pressure perturbation for the kink, sausage surface, and sausage body, symmetric
and antisymmetric solutions, for different values of the perpendicular wavenumber. When
oblique propagation is included, there is an improved confinement of the eigenfunctions
with a sharper drop-off rate in the external medium, a behaviour first found by Dı́az et al.
(2003), in the context of prominence fibril oscillations. The character of the solutions
inside the slabs change, becoming surface-like solutions, with a decreasing amplitude of
vx inside the slabs as ky is increased. This improved confinement of the solutions weakens
the interaction between the slabs. In Figures 4 and 5, we can appreciate that sausage
surface and body solutions have a similar spatial distribution of eigenfunctions. The main
difference is in the total pressure perturbation profiles. An increase in the perpendicular
wavenumber also produces an improved confinement, in the external regions, for these
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Figure 4. Same as Figure 3 for the sausage surface, symmetric (left) and antisymmetric
(right) solutions and two values of the perpendicular wavenumber: ky a = 0.3 (dotted lines)
and ky a = 0.5 (solid lines). These solutions are surface-like for all values of the perpendicular
wavenumber.

four types of modes, but in contrast to the kink solutions, now the transversal velocity
component inside the slabs is not affected by the increase in ky and the solutions keep
their surface or body character.

To study the damping of the normal modes described previously, we now include
non-uniform transitional layers at the edges of each slab (l �= 0). For the normal mode
analysis a small but finite value of the resistivity has to be provided when computing the
damping of oscillations. Figure 6 displays the damping per period of the six solutions as
a function of the perpendicular wavenumber, for a fixed value of the distance between the
slabs. For increasing ky , the damping for both symmetric and antisymmetric solutions
approaches the damping of the kink, sausage surface, and sausage body solutions of a
single slab, in the limit of quasi-perpendicular propagation. Surface-like solutions, kink
and sausage alike are strongly damped, within a few periods, for large values of ky , while
sausage body solutions are unaffected by resonant couplings (see Figure 6, bottom row).
The reason is that the frequencies of sausage body modes lie outside the corresponding
Alfvén continua. The difference in damping for the symmetric mode with respect to
the kink mode damping of a single slab is below 10%. The kink antisymmetric solution
damping is more than double that of the kink mode of a single slab. Also significant are
the differences between the sausage surface symmetric and antisymmetric damping and
the corresponding sausage surface mode damping of a single slab. The imaginary parts
for these two modes are 70% smaller and larger, respectively, than the value for the single
slab mode.
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Figure 5. Same as Figures 3 and 4 for the sausage body, symmetric (left) and antisymmetric
(right) solutions and two values of the perpendicular wavenumber: ky a = 0.5 (dotted lines) and
ky a = 1 (solid lines). Note that for these solutions vx is very similar to the ones depicted in
Figure 4, while the pressure perturbation in and around the slabs differ substantially. These
solutions are body-like for all values of the perpendicular wavenumber.

4. Summary and Conclusions
The normal modes of oscillation in a two-slab system are, in general, different to those

of a single and isolated slab, due to the interaction between the slabs. The single slab
fast kink and sausage normal modes split into symmetric and antisymmetric solutions.
The frequencies of these solutions are in general different from the single slab solutions.
They depend upon the distance between the slabs, but also on the magnitude of the
perpendicular wavenumber. The inclusion of oblique propagation of perturbations intro-
duces two new surface-like solutions, with sausage parity. It also decreases the effect of
the interaction between the slabs, since solutions are more confined to the neighbour-
hood of the density enhancements. Both the distance between slabs and perpendicular
propagation determine the difference in frequency between the single slab model solu-
tions and the modes described in this paper. These differences are of the order of 15%
at most and should, therefore, be taken into account in the modelling of these events.
They are, however, well below the observational uncertainties, which are of the order of
40% (Aschwanden et al. 2002). Surface-like solutions, both kink and sausage, are strongly
damped. On the other hand, the two sausage body solutions are unaffected by resonant
absorption. A comparison with the single slab model results reveals that differences in
damping are important for small values of the distance between the slabs. The most sig-
nificant differences arise for the kink antisymmetric solution and the two sausage surface
solutions, with differences in the imaginary part of the frequency of the order of 125%
and 70% with respect to the damping of the corresponding single slab modes. These
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Figure 6. Damping time over period as a function of the perpendicular wavenumber for the
same six types of solution, for the same parameter values and a fixed distance between the
slabs, x0 = 5a. In all the figures the solid lines correspond to the symmetric solution and
the dashed lines to the antisymmetric solution. A value for the magnetic Reynolds number
Rm = vA ia/η = 107 has been used in a non-uniform grid with Nx = 14 000 points (2 000 in
each of the four non-uniform transitional layers) in the range −80 � x/a � 80.

differences are of the order or larger than the observational uncertainties for the mea-
sured damping times in, which are around 60% (Aschwanden et al. 2002).
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d’Economia, Hisenda i Innovació of the Government of the Balearic Islands for the fund-
ing provided under projects AYA2006-07637, PRIB-2004-10145 and PCTIB2005GC3-03
(Grups Competitius). J. Terradas acknowledges the Spanish Ministerio de Educación y
Ciencia for the funding provided under a Juan de la Cierva fellowship.

References
Andries, J., Arregui, I., & Goossens, M. 2005, ApJ, 624, L57
Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., & Poedts, S. 2007a, A&A, 463,

333
Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2007b, Solar Phys., in press, DOI

10.1007/s11207-007-9041-3
Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002, Solar Phys., 206, 99
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ, 520, 880
Dı́az, A. J., Oliver, R., & Ballester, J. L. 2003, A&A, 402, 781
Goossens, M., Andries, J., & Arregui, I. 2006, Phil. Trans. Series A, 364, 433
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39
Hollweg, J. V. & Yang, G. 1988, J. Geophys. Res., 93, 5423
Luna, M., Terradas, J., Oliver, R., & Ballester, J. L. 2006, A&A, 457, 1071
Nakariakov, V. M. & Ofman, L. 2001, A&A, 372, L53
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., & Davila, J. M. 1999, Science, 285,

862
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857
Ruderman, M. S. & Roberts, B. 2002, ApJ, 577, 475
Schrijver, C. J., Aschwanden, M. J., & Title, A. M. 2002, Solar Phys., 206, 69
Sewell, G. 2005, The Numerical Solution of Ordinary and Partial Differential Equations (Wiley-

Interscience)
Uchida, Y. 1970, Pub. Astron. Soc. Japan, 22, 341
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006, A&A, 452, 615
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Solar Phys., 223, 77

https://doi.org/10.1017/S1743921308014786 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308014786

