
Bull. Aust. Math. Soc. 109 (2024), 316–326
doi:10.1017/S0004972723000461

LEFT AND RIGHT EIGENVECTORS OF A VARIANT OF THE
SYLVESTER–KAC MATRIX

WENCHANG CHU and EMRAH KILIÇ �

(Received 18 February 2023; accepted 19 April 2023; first published online 19 June 2023)

Abstract

As an extension of Sylvester’s matrix, a tridiagonal matrix is investigated by determining both left and right
eigenvectors. Orthogonality relations between left and right eigenvectors are derived. Two determinants of
the matrices constructed by the left and right eigenvectors are evaluated in closed form.
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1. Introduction and motivation

Tridiagonal matrices are an important class of matrices in mathematics and physics
(see [1, 8, 13, 17, 18, 21]). One particular case whose determinant evaluation was
conjectured (without proof) by Sylvester [19, page 305] is

det
0≤i,j≤m

[τi,j] =
m∏

k=0

(x + m − 2k),

where the matrix entries are given by

τi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if i = j,
j if j − i = 1,
m − j if i − j = 1,
0 if |i − j| > 1.

For this elegant result, there exist a number of generalisations and applications (see,
for example, [2, 4, 9–11, 14–16, 20]). However, eigenvectors have only been found for
a few related tridiagonal matrices (see [3, 6, 7, 12]).
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[2] The Sylvester–Kac matrix 317

The first proof of Sylvester’s determinant formula is attributed by Muir [17, page
442] to Francesco Mazza in 1866. However, Kac [14] was perhaps the first to give a
complete proof of the formula claimed by Sylvester and provided a polynomial char-
acterisation of the eigenvectors through the generating function approach. Therefore,
the matrix [τi,j] is also called the Sylvester–Kac matrix.

The first author [5] examined the following extended matrix (here, y has been
replaced by 2y to avoid rational expressions for the eigenvalues). For two free variables
x, y, we define the tridiagonal matrix of order m + 1 by

Ωm(x, y) = [σi,j(x, y)]0≤i,j≤m,

where

σi,j(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 2jy if i − j = 0,
m − j if i − j = 1,
j if j − i = 1,
0 if |i − j| > 1.

For instance, Ω5(x, y) is illustrated as follows (where zeros are omitted).

Ω5(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x 1
5 x + 2y 2

4 x + 4y 3
3 x + 6y 4

2 x + 8y 5
1 x + 10y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The eigenvalues of Ωm(x, y) were explicitly determined in [5]): that is,

P2n+δ(x, y) =
{
λk := x + (2n + δ)y + (2k − δ)

√
1 + y2

}n+δ

k=−n
,

where we write m = δ + 2n with δ = 0, 1, in accordance with the parity of m.
In mathematics, physics and applied sciences, it is important to determine, not only

determinants and eigenvalues, but also eigenvectors for certain classes of matrices.
The aim of the present paper is to determine the left and right eigenvectors of Ωm(x, y).
Our findings may potentially serve as testing samples (in the sense of [8]) to assess the
numerical accuracy of algorithms for computations on similar matrices.

The paper is organised as follows. In the next section, the eigenvectors of Ωm(x, y)
are determined explicitly by following the same approach as in [6]. In Section 3,
we prove orthogonality relations between the left and right eigenvectors. Finally in
Section 4, we evaluate, in closed form, the two determinants constructed, respectively,
by the left eigenvectors and the right ones.
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2. Left and right eigenvectors

For the sake of brevity, define the algebraic function ρ by

ρ = y +
√

1 + y2.

Then the eigenvectors of Ωm(x, y) are determined by the following theorem.

THEOREM 2.1. Let λk be an eigenvalue of Ωm(x, y) with −n ≤ k ≤ n + δ. Then the
following two statements hold.

(a) The vector uk = (uk(0), uk(1), . . . , uk(m)) is a left eigenvector corresponding to the
eigenvalue λk, where uk(j) is defined by the binomial sum

uk(j) =
j∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j.

(b) The vector vk = (vk(0), vk(1), . . . , vk(m)) is a right eigenvector corresponding to
the eigenvalue λk, where vk(i) is defined by the binomial sum

vk(i) =
i∑
�=0

(−1)i+�
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i.

PROOF. We begin by showing that uk is the left eigenvector corresponding to the
eigenvalue λk. It suffices to prove that, for each pair (k, j),

λkuk(j) =
m∑

i=0

σi,j(x, y)uk(i)

= σj,j(x, y)uk(j) + σj−1,j(x, y)uk(j − 1) + σj+1,j(x, y)uk(j + 1),

which can be, equivalently, restated as

(λk − x − 2jy)uk(j) = juk(j − 1) + (m − j)uk(j + 1). (2.1)

Observing the functional relations

ρ = y +
√

1 + y2 � y =
ρ2 − 1

2ρ
,

we can manipulate the expression

λk − x − 2jy = (2n − 2j + δ)y + (2k − δ)
√

1 + y2

= (2n − 2j − 2k + 2δ)y + (2k − δ)ρ,

which leads to the useful relation

λk − x − 2jy = (n − j + k)ρ − (n − j − k + δ)ρ−1. (2.2)
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According to the definition, the left-hand side of (2.1) can be written as

(λk − x − 2jy)uk(j) = P − Q,

where

P = (n − j + k)
j∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j+1,

Q = (n − j − k + δ)
j∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j−1.

Consequently, the equality (2.1) can be restated as

P − juk(j − 1) = Q + (δ + 2n − j)uk(j + 1). (2.3)

The two sums on the left can be combined as

P − juk(j − 1) =
j∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j+1

×
{
(n − j + k) +

(j − �)(1 + δ + 2n − j)
1 + δ + n − j − k + �

}

=

j∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j+1 (n + k − �)(1 + δ + n − k)

1 + δ + n − j − k + �

= (1 + δ + n − k)
j∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j

n + k − � − 1

)
ρ2�−j+1,

while, similarly, for the two sums on the right,

Q + (δ + 2n − j)uk(j + 1) =
j+1∑
�=0

(−1)j+�
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j−1

×
{
(n − j − k + δ) − (j + 1)(δ + n − j − k + �)

1 + j − �

}

=

j+1∑
�=0

(−1)j+�−1
(
j
�

)(
δ + 2n − j
n + k − �

)
ρ2�−j−1 �(1 + δ + n − k)

1 + j − �

= (1 + δ + n − k)
j+1∑
�=0

(−1)j+�−1
(

j
� − 1

)(
δ + 2n − j
n + k − �

)
ρ2�−j−1.

Shifting forward the summation index � → 1 + � for the last sum, we see that the above
two expressions for both sides of equation (2.3) coincide. This confirms item (a).

Likewise, (b) will be confirmed if we can show that vk is the right eigenvector
corresponding to λk. This can be done by showing, for each pair (k, i), that
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λkvk(i) =
m∑

j=0

σi,j(x, y)vk(j)

= σi,i−1(x, y)vk(i − 1) + σi,i(x, y)vk(i) + σi,i+1(x, y)vk(i + 1),

which can be, equivalently, restated as

(λk − x − 2iy)vk(i) = (m − i + 1)vk(i − 1) + (i + 1)vk(i + 1). (2.4)

Keeping in mind (2.2), we can express the left-hand side of (2.4) as

(λk − x − 2iy)vk(i) = P − Q,

where

P = (n − i + k)
i∑
�=0

(−1)i+�
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i+1,

Q = (n − i − k + δ)
i∑
�=0

(−1)i+�
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i−1.

Therefore, (2.4) can be reformulated as

P − (δ + 2n − i + 1)vk(i − 1) = Q + (i + 1)vk(i + 1).

According to the definitions, we first simplify the left-hand side of this equation,

P − (δ + 2n − i + 1)vk(i − 1)

=

i∑
�=0

(−1)i+�
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i+1 ×

{
(n − i + k) − (δ + 2n − i + 1)(i − �)

δ + n − k − i + � + 1

}

=

i∑
�=0

(−1)i+�
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i+1 (n + k − �)(1 + δ + n − k)

δ + n − k − i + � + 1

= (n + k)
i∑
�=0

(−1)i+�
(
n + k − 1
�

)(
1 + δ + n − k

i − �

)
ρ2�−i+1,

and then the right-hand side of the same equation,

Q + (i + 1)vk(i + 1)

=

i+1∑
�=0

(−1)i+�
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i−1 ×

{
(n − i − k + δ) − (i + 1)(δ + n − i − k + �)

1 + i − �

}

=

i+1∑
�=0

(−1)i+�−1
(
n + k
�

)(
δ + n − k

i − �

)
ρ2�−i−1 �(1 + δ + n − k)

1 + i − �

= (n + k)
i+1∑
�=0

(−1)i+�−1
(
n + k − 1
� − 1

)(
1 + δ + n − k

1 + i − �

)
ρ2�−i−1.
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The last two expressions become identical when the replacement � → 1 + � is made
in the latter one. This shows that vk is indeed the right eigenvector of the matrix
Mδ+2n(x, y) corresponding to λk. �

3. Orthogonality relations

For two vectors u and v of the same dimension, denote their usual scalar product by
〈u, v〉. The next theorem highlights orthogonality relations between the left and right
eigenvectors of Ωm(x, y).

THEOREM 3.1. Assume ui and vj as in Theorem 2.1. Then the following orthogonality
relations hold for all i and j subject to −n ≤ i, j ≤ n + δ.

〈ui, vj〉 = 2m (1 + yρ)m

ρ2m−2n−2k χ(i = j),

where χ is the logical function defined by χ(true) = 1 and χ(false) = 0.

PROOF. To prove these orthogonality relations, write the scalar product as the triple
sum

〈ui, vj〉 =
m∑

k=0

ui(k)vj(k)

=

δ+2n∑
k=0

k∑
ı=0

(−1)k+ı
(
k
ı

)(
δ + 2n − k
n + i − ı

)
ρ2ı−k

k∑
j=0

(−1)k+ j
(
n + j
j

)(
δ + n − j

k − j

)
ρ2 j−k. (3.1)

Observing that

uiΩm(x, y)vj = 〈uiΩm(x, y), vj〉 = λi〈ui, vj〉
= 〈ui,Ωm(x, y)vj〉 = λj〈ui, vj〉,

immediately, we have

〈ui, vj〉 = 0 when i � j for λi � λj.

When i = j = �, the scalar product (3.1) can be reformulated, by first making the
replacement j→ k − j and then interchanging the order of the triple sum, as

〈u�, v�〉 =
δ+2n∑
k=0

k∑
ı=0

(−1)k+ı
(
k
ı

)(
δ + 2n − k
n + � − ı

)
ρ2ı−k

k∑
j=0

(−1) j
(
n + �
k − j

)(
δ + n − �
j

)
ρk−2 j

=

δ+2n∑
ı, j=0

(−1)ı+ j
(
δ + n − �
j

)
ρ2ı−2 j

δ+2n∑
k=max{ı, j}

(−1)k
(
k
ı

)(
δ + 2n − k
n + � − ı

)(
n + �
k − j

)
.
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The inner sum with respect to k can be reformulated under k → κ + j and then
evaluated in closed form as

δ+2n− j∑
κ=0

(−1)κ+ j
(
n + �
j

)(
κ + j

ı

)(
δ + 2n − κ − j

n + � − ı

)
= (−1) j

(
n + �
ı

)
,

since the last sum results substantially, apart from an alternating sign, in the finite
differences of order n + � for a polynomial of the same degree n + �.

Therefore, the triple sum is reduced to a double one and can be evaluated further by
the binomial theorem: that is,

〈u�, v�〉 =
δ+2n∑
ı=0

(
n + �
ı

)
ρ2ı
δ+2n∑
j=0

(
δ + n − �
j

)
ρ−2 j = (1 + ρ2)n+�(1 + ρ−2)δ+n−�.

This is equivalent to the expression

〈u�, v�〉 =
(1 + ρ2)m

ρ2δ+2n−2� =
(2 + 2yρ)m

ρ2m−2n−2� . �

4. Two determinantal evaluations

Finally, we prove the two determinantal identities as in the following theorem.

THEOREM 4.1. Letting ui and vj be as in Theorem 2.1, define the matrices

Um = [uk−n(j)]0≤k,j≤m and Vm = [vk−n(i)]0≤i,k≤m.

Their determinants are evaluated in closed form as

det Um = det Vm = (4 + 4y2)m(m+1)/4.

PROOF. We first evaluate the determinant det Um. By making use of (2.2), we rewrite
the three-term relation (2.1) as

(2k − m)(ρ + ρ−1)
2(m − j)

uk−n(j) = uk−n(j + 1) +
j

m − j
uk−n(j − 1)

+
(2j − m)(ρ − ρ−1)

2(m − j)
uk−n(j). (4.1)

For the determinant of the matrix

det Um = det
0≤k≤m

[uk−n] = det
0≤j,k≤m

[uk−n(j)],

perform the following three operations:

• add j/(m − j) times the (j − 1)th row to the (j + 1)th row;
• add (2j − m)(ρ − ρ−1)/(2m − 2j) times the jth row to the (j + 1)th row; and
• after the above two operations, the entry at position (j + 1, k) in the (j + 1)th row

becomes ((2k − m)(ρ + ρ−1)/(2m − 2j))uk−n(j), in view of (4.1).
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Repeating this operation upwards for all the rows except the first one and then pulling
out the common factors in rows, we get the expression (with k indicating the kth
column)

det Un =

m−1∏
j=0

(ρ + ρ−1)
2(m − j)

× det
0≤k≤m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk−n(0)
(2k − m) uk−n(0)
(2k − m) uk−n(1)
(2k − m) uk−n(2)
· · · · · · · · ·

(2k − m) uk−n(m − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By carrying out the same operations in the above matrix (except for the first two rows),
we can further reduce the determinant: that is,

det Um =

2∏
i=1

m−i∏
j=0

(ρ + ρ−1)
2(m − j)

× det
0≤k≤m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk−n(0)
(2k − m) uk−n(0)
(2k − m)2 uk−n(0)
(2k − m)2 uk−n(1)
· · · · · · · · ·

(2k − m)2 uk−n(m − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Iterating the same procedure m times and extracting the common factors uk−n(0) in the
columns of the resulting matrix, we derive the simplified expression

det Un =

m∏
i=1

m−i∏
j=0

(ρ + ρ−1)
2(m − j)

× det
0≤j,k≤m

[(2k − m)j]
m∏

k=0

uk−n(0).

Keeping in mind that uk−n(0) =
(

m
k

)
and the determinant in the middle is of Vander-

monde type, we can evaluate separately

m∏
i=1

m−i∏
j=0

(ρ + ρ−1)
2(m − j)

=

m∏
i=1

(i − 1)!
m!

(
ρ + ρ−1

2

)m−i+1
=

(
ρ + ρ−1

2

)(m+1
2 ) m∏

i=1

(i − 1)!
m!

,

det
0≤j,k≤m

[(2k − m)k] =
∏

0≤j<k≤m

(2k − 2j) = 2(m+1
2 )

m∏
k=1

(k! ),

m∏
k=0

uk−n(0) =
m∏

k=0

(
m
k

)
=

m∏
k=1

m!
k! (k − 1)!

.

Multiplying these together, we find the closed formula

det Um = (ρ + ρ−1)(
m+1

2 ) = (4 + 4y2)m(m+1)/4.
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Finally, to evaluate the other determinant det Vm, rewrite, analogously, the
three-term relation (2.4) as

(2k − m)(ρ + ρ−1)
2(i + 1)

vk−n(i) = vk−n(i + 1) +
m − i + 1

i + 1
vk−n(i − 1)

+
(2i − m)(ρ − ρ−1)

2(i + 1)
vk−n(i). (4.2)

Similarly, for the determinant

det Vn = det
0≤k≤n

[vk] = det
0≤i,k≤n

[vk(i)],

make the following three operations:

• add (m − i + 1)/(i + 1) times the (i − 1)th row to the (i + 1)th row;
• add (2i − m)(ρ − ρ−1)/(2i + 2) times the ith row to the (i + 1)th row; and
• after the above two operations, the entry at position (i + 1, k) in the (i + 1)th row

becomes ((2k − m)(ρ + ρ−1)/(2i + 2))vk−n(i), taking into account (4.2).

Repeating this operation upwards for all the rows except the first one and then pulling
out the common factors in rows, we get the expression (with k indicating the kth
column)

det Vm =

m−1∏
i=0

ρ + ρ−1

2(i + 1)
× det

0≤k≤n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vk−n(0)
(2k − m) vk−n(0)
(2k − m) vk−n(1)
(2k − m) vk−n(2)
· · · · · · · · ·

(2k − m) vk−n(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By carrying out the same operations in the above matrix (except for the first two rows),
we can reduce this further: that is,

det Vm =

2∏
j=1

m−j∏
i=0

ρ + ρ−1

2(i + 1)
× det

0≤k≤n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vk(0)
(2k − m) vk−n(0)
(2k − m)2 vk−n(0)
(2k − m)2 vk−n(1)
· · · · · · · · ·

(2k − m)2 vk−n(m − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Iterating the same procedure m times and extracting the common factors vk(0) in the
columns of the resulting matrix, we find the following simplified expression.

det Vn =

m∏
j=1

m−j∏
i=0

ρ + ρ−1

2(i + 1)
× det

0≤i,k≤n
[(2k − m)i]

m∏
k=0

vk−n(0).
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Keeping in mind that vk−n(0) ≡ 1 and then evaluating the product

m∏
j=1

m−j∏
i=0

ρ + ρ−1

2(i + 1)
=

m∏
j=1

1
(m − j + 1)!

(
ρ + ρ−1

2

)m−j+1
=

(
ρ + ρ−1

2

)(m+1
2 ) m∏

j=1

1
j!

,

we derive, after substitution, the second determinantal evaluation

det Vm = (ρ + ρ−1)(
m+1

2 ) = (4 + 4y2)m(m+1)/4. �
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