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1. Introduction

In this note we discuss extensions of results [5], where transient random walks are
considered, whose transition matrix is compatible with a tree-structure of the underlying
discrete state space. Notation is generally as in [5], with the exception that instead of a
tree T we consider an arbitrary graph T, which is locally finite, connected, and whose
vertex set S is infinite. The edge set E is unoriented, there are no multiple edges. We
consider a transition operator P, given by a stochastic matrix (p(u,v))uveS, which gives
rise to a transient Markov chain ("random walk"), related to the graph structure by:

(i) if p{u, v)>0 then [u, v] e E,
(ii) there is an M>0 such that p(k\u,v)>0 for some k = k(u,v)^M whenever [u,v]eE

("uniform irreducibility").

Note that (i) yields no restriction: we can always redefine the edges so that this
condition holds.

We are interested in the cone H+ of positive harmonic functions, i.e. the functions h on
S satisfying

£ p(u, v)h(v) = h(u) for every u in S.
V

Recall that the Martin kernel is defined by

K(u,v) = F(u,v)/F(e,v), u,veS,

where e is a fixed reference vertex and F(u, v) is the probability that the random walk,
starting at u, reaches v at some instant n^O. The Martin compactification § is the
smallest compactification of S to which K extends continuously in the second variable,
and S* = S\S is the Martin boundary. By (i), each row of the transition matrix has only
finitely many nonzero entries. Hence K(-,x) is in H+ for every xeS*, and if heH+,
then the Poisson-Martin representation theorem says that

h=$K{;x)Vh(dx)

457

https://doi.org/10.1017/S0013091500037640 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500037640


458 MASSIMO A. PICARDELLO AND WOLFGANG WOESS

for some positive Borel measure vh on 5*. The reader is referred to [5] for a more
detailed exposition of the preliminaries and for references in addition to those given
below.

We intend to provide conditions under which the Martin boundary coincides (by
homeomqrphism) with the space of ends of F. Proofs will be only outlined, as they are
direct extensions of those in [5].

2. The space of ends

Following [3] and [4], we give a "combinatorial" description of the space of ends of
F, originally introduced in [2].

A (simple) path in F is a finite or one-sided infinite sequence of successively
contiguous vertices (without repetitions). The distance d(u, v) of two vertices is the length
(number of edges) of the shortest path between u and v. Two infinite simple paths are
equivalent if, for any finite t /cS, they can be connected by some finite path lying
outside U. An end of F is an equivalence class under this relation. The set of all ends is
denoted by Q. We endow Sufi with a topology: if we remove a finite 1/cS, then F
splits into finitely many connected components. We include into each of these
components also all ends which can be represented by some infinite simple path lying
entirely within the component. In this sense, if xe(S\l/)ufl, then C(t/,x) denotes the
component containing x. Now a basis of the topology on Sufi is given by all sets
C(U,x) which are obtained in this way from all finite UcS. This makes Sufi a
totally disconnected, compact Hausdorff space which contains Q as a compact subspace
and S as a discrete, dense subset.

Definition. We say that a sequence {(/„} of finite subsets of S is contracting towards
coefi, if

(1)
(2) {C(Un,co)} constitutes a neighbourhood basis at w.

Such a sequence exists for every coeO by the way the topology is defined.

3. Results

Define Fw(u,v) to be the probability that the random walk, starting at u, reaches veS
before hitting WczS. The following result can be obtained as a corollary of [7, Theorem
5 and Corollary 4]. We indicate a "discrete" approach to the proof.

Proposition. The identity on S extends to a continuous surjection 5—>Sufi, which
maps S* onto fi.

Proof. By local finiteness, S is discrete in S. By compactness of S and Sufi it is
enough to prove the following: if {«„}, {vn} are sequences in S, converging to xeS*, and
un-*at, vn—*co' for co, co'eCl, then co = a>'.

Assume co#(w'. Then there is a ball BN = {weS\d(e, w)^N} such that
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d(C{BN,w),C(BN,co'))>M. Set U = BN+lnC(BN,co), V = BN+lnC(BN,(o>). As
d{U, V)>M, Fv(u,u')>0 for u,u'eU and Fu(v,v')>0 for v,v'eV: this follows from
assumptions (i) and (ii). If Qv and Qy denote the "first hitting" operators of U and V
[5, §3], and fn = K(-,«„), gn = K(-,vn) f=\imfn = \imgn, then

n F and gn = Qvgn on U for large n

In the limit, we obtain

f = QuQvf on V and f = QvQvf on I/.

Now [5, Proposition 1] applies and yields a contradiction. •

Next, we exhibit a condition, under which the above surjection becomes a
homeomorphism. For U <= S, define

0 = {ueS\d(u,D)|M/2 for some vertex p on a shortest path between two points of U}.

Theorem. Suppose that for each coeCl there is a sequence {Un} of finite sets
contracting towards co, such that UnnUn + l=Q for all n, and

£min {FUII+I(U, v)\u,veUn} = oo.
R

then (a) the Martin boundary S* coincides with the space Q of all ends of F, and (b) all
ends are extreme points of the boundary.

Proof. To prove (a), in view of the Proposition we must show that for every ueS,
{K(u, vn)} converges, if {vn} converges to some end co, and that the limit is independent
of the particular choice of this sequence. This can be done in the same way as in [5, §4],
once an equivalent of [5, Theorem 1] has been established in the present setting.

For neN, consider the "intermediate" matrix An=(an(u,v))ueUn,veVn+l, where an(u,v) =
Q.Un+l5B(u), see [5, §3]. Its zeros are disposed in columns (as UnnUn+l=%, and by
[6, §3.1] and [1], its Birkhoff contraction coefficient is

with
aa(u',v)txn(u,v')'

where the minimum ranges over all nonnegative entries of An. Now, convergence of
{K(u,vn)} will follow from projective convergence of the matrix products AlA2...An,
as n->oo. The latter holds if T(/4t ...An)-+0, which in turn is true if ^n N/0(XJ = oo. (In
[6, Theorem 3.2], this is stated for "allowable" square matrices but carries over to the
present setting as in [5].) Now it is easy to see that

<*„("> v)/an(u', V)^FUII+fau') for u,u'eUn,veUn+1,
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so that

<tXAa)2:(mm {FVn+i(u,u')\u,u'e Un})2.

This proves (a), and (b) is proved exactly as in [5, Proposition 4]. •
If / is any real function of the finite subsets of S, then liminf^mf(U) denotes the

infimum among all numbers liminf'nf(Un), taken over all sequences {Un} of finite sets
contracting to a> e Q. In this sense,

diam(co) = lim inf diam( V) and 5(co) = lim inf S(co),
l/CO)

where d(U) = min{p(u,v)>0\u,ve 0}, S(U)= I if #17=1.

Corollary. Each of the following conditions implies statements (a) and (b) of the
Theorem:

(I) For each coed there is a sequence {[/„} contracting towards a>, such that
C 0

(//) For each coeil, diam(a>) < oo and d((o) > 0.

As an application of (I), consider the following example: let S be the set of integers,
equipped with edges [n,n+ 1] and [n, —«], neZ (Fig. 1), p(i, j)>0 iff [i, f] is an edge.

- 2 - 3

FIGURE 1

- 4 - 5

This graph has only the end cu = oo, and the sets Un = { — n,n}, neN contract towards
oo. Furthermore Un = Un, diam(Un)=-l, and 8(Un) = min{p(n, — n), p( — n,n)}. If the
random walk is transient and £<5(t/n) = oo, then the Martin boundary consists of the
single point oo, that is, all positive harmonic functions are constant. On the other hand,
it is easy to construct examples where d(Un) decreases exponentially and there are
nonconstant functions in H+.

Condition (II) applies, for example, for the (transient) simple random walk on a graph
F, whose vertices have bounded degree, and whose ends all have finite diameter. One
may ask which finitely generated groups have Cayley graphs with the latter property:
they are just the finite extensions of free groups [8].
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