
ON FELLERS KERNEL AND THE DRICHLET NORM
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§ 0. Introduction

Recently J. L. Doob [2] evaluated the Dirichlet integral of the BLD harmonic

funtion on a Green space in terms of its fine boundary values and 0-kernel

of L. Naϊm.

On the other hand, the general theory of additive functionals of Markov

processes enables us to define the concept of the Dirichlet norm of functions

with respect to Markov processes.

In § 1 we shall prove that Nairn's kernel is equal to the kernel £7, a gener-

alization of the kernel introduced by W. Feller [3], on the Martin exit boundary

of a Green space.

In §2 we shall treat the case of a multidimensional diffusion process cor-

responding to a self-adjoint elliptic differential operator. In this case we shall

define the Diricblet norm of the harmonic function and represent it in terms

of Feller's kernel Z7, under certain regularity conditions.

The kernel U plays an essential role in the investigation of the boundary

problems concerning Markov processes ([3], [8]).

The author wishes to express his thanks to Prof. N. Ikeda and Prof. T.

Watanabe for their kind suggestions and encouragement.

§ 1. Feller's kernel and Nairn's kernel

Let p(t, xyy) be the Brownian transition density on a Green space R. For

Λ J G R , put G«(x,y) = [ e~*cp(t,x,y)dt (αr^O), and G{x,y) = G*(x,y).

Let M be the totality of the minimal points of the Martin boundary of R,

and put R ^ R U M . To each point yeR, there corresponds the Martin K-

function K(x9y), JCGR, which will sometimes be written as Ky(x). When

K(x, y) =. ^r—'-¥-, where x0 is a fixed reference point of R.
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168 MASATOSHI FUKUSHIMA

F o r ^ e R - {#<>}, we denote by %y = {Ω, B, PS, *e=R', Xti f > 0 } the conditional

K (z)
Brownian motion on R' whose transition density is py(t, xf z) = -^γ~τp(tt x, z),

Άy{X)

U>0, *, zeR'), where R' = R-{;y}.

We adopt the notation Xσ^Λw) = lim Xt(w) where σm is the life time of
t f Oca

the path w. It holds that Xo*Λw) =*y with Pi'-measure 1. ([1]). The follow-

ing definition is due to Kunita and Watanabe [6].

DEFINITION 1. We call jyeM an exit boundary point if and only if there

exists at least one point x of R such that P%(a<o < + oo ) > 0. If /**(</» < °o) = 0

for every point x of R, then we call jyeM a passive boundary point.

The totality of the exit boundary points will be denoted by (M)«*. Put

R1 = RΓΊ {M)eχ. Then we can check that Py

x{a«>< + °°) = 1 holds for

- {#o}, x €= R'.

Now put

Ka(xίy)=K(xyy)Ey

x{e-"n°3), for ^ e R - {*0}, xεR', and α:>0.

(1)

(2)

(3)

LEMMA

i)

ii)

For

For

1.

any

K

any

R

- {#O}, α:>0, fftβ following equation holds.

,j)έfe + ΛΓβ(Λr,̂ ) for

I - {ΛΓ0}, α:>0, iί /w/ds ίΛαf

= A G(x, z)K*(z,y)dz+ KΛx,y) for

limA«Uy)=0 for

iii) // 3̂  in M is α passive boundary point,

ϋΓα(Λ;,̂ ) = 0 /or Λ/23̂

Proof. We only sketch the proof of ii). If

where El denotes the expectation with respect to P*-measure. According to

the Markov property of 23* and the fact that <?«> is a Markov time, we find
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that the last term is equal to

Pl(o» < 4- oo ) - Ey

x(e-*°«) = 1 -

Thus the equation (2) holds. Further we have

lim K£{*'£ = lim £?(«-"-) = f*?(*. = 0) = 0,
J \ X )

ot-*+oo J\.\Xt jy) «-*•+ oo

for any # in R'.

From (1) and the resolvent equation, it follows that K*(x, y) = ̂  x>y for
G(ΛΓo jy)

DEFINITION 2. For ^ , v e ^ - {#0} Λ«J αr>0, U*(x,y) is defined by

(4) U*{x,y)=a\ K(zy x)K*(z,y)dz.
a

By the next lemma, we find that UΛ is non-decreasing in a. We put U{x,y) =

lim U*(x,y), and we shall call it Feller's kernel with respect to the Brownian
cί-*+co

motion on R.

UΛx,y) has the meaning even if x is a non-minimal boundary point. There-

fore we can regard it as a /^-potential as a function of x in the sense of Nairn.

LEMMA 2.

i) Ua(x,y) is not identically infinity, and

(5) if cc<β, then Ua(x, y) £ U,(x, y) for x,ytER-{xQ}.

ii) If

(6) UΛ{x,y)=a\ KΛ(z, x)K(z,y)dz = Ua(y, x).

Proo/.

i) When y is the passive boundary point, Ua is zero. If jye Ri - {xo)> by

(2), we can see that for * e R ' - {xQ}

(7) ^ ( ^ ^ =

Further this equation shows that the inequality (5) holds for x^Rf - {x0}, there-

fore according to one of the principal properties of the ϋί-potential ([7] p. 200),

(5) is true for any X G R - {XQ}.
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ii) For jt e R j - ί ^ } and the compact subset D of R, let Kχ~D(z) be the

extrέmah of Kx(z) relative to R - D ([7] p. 192). Kχ~D(z) can be written in

the potential form,

f G(z,z')M?-D(dz'),

where βχ~D is a non-negative measure on R. We note that

K^'D(z) t Kx(z) when D t R. Putting Ki^(z) = f GΛz, zf)μ?"D(dz')9

we find, by the resolvent equation and (1), that

lim κ2r?(z)=KΛz,x).

On account of (1) and (2),

αf KTΌ{z)KMy)dz^A K*;x

D(z)K(z,y)dz

for any ̂ e ^ - {χ0}.

Applying Fatou's lemma,

C/«U^) = αf ϋΓ(2, x)Ka(z,y)dz>*{ KΛ{z, x)K(z,y)dz = i7rt(^ x).

Since ΛΓ and ^ are arbitrary in Rj — {ΛΓ0}, we have

which was to be proved.

Now, for x,y&R — {xo}, let θ(x,y) be Nairn's kernel. By definition, it is

equal to ~^π—^^-r when ΛΓ^R — {#oh JV^R — {̂ 0K and equal to
QLr\Xθy X)

lim f θ(z,y)G(xo, z)μTΌ{dz) when ΛΓ, ̂ G R - {x*).X)

Obviously θ(x,y) is symmetric in x,jy. We shall prove the following theorem.

THEOREM 1. For any x,y^Ri - {#0},

(8) ί / U , ^ ) = |

1} We denote by q either 2π (if 7V=2) or the product of N—2 and the unit ball bound-
ary area (if N>2), where N is the dimension of R.
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Proof. Let y be fixed arbitrarily in Ri-{#o} If #eR-{# 0 } on account

of (3) and (7),

(9)

When #e(M) θ x, according to the principal properties of ϋΓ-potintial and 0-kernel

([7] p. 214), we find that

o, x)

Thus we have

U(x,y)S~γd(x,y) for * e ( M ) e x and ye-Ri- {x<>}.

On the other hand,

f U*(x,

Letting α tend to infinity, we find that

f U(x, z)G(xo, z)μTΌ(dz) S U(x,y).
^ R

But since U(x, z) in the integrand of the left member is equal to -γθ(z, x) by

(6) and (9), letting the compact subset D tend to R, we obtain the following

inequality.

). for Λτe(M)ex and yt=Ri~ {x0}.

Remark. Assume that M= (M)θx and that there is no non-minimal bound-

ary point. According to Doob [2], the above theorem implies that, for any

BLD harmonic function u on R, the Dirichlet integral Ό(u) of u can be re-

presented in the following form.

D(w) = f ί {u'{x)-u'(y))2U(x,y)μ(dx)μ(dy),

where u' is the find boundary value of u and μ(E) is the harmonic measure

of a subset E of M relative to the reference point xQ.
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§ 2. The Dirichlet norm in the case of ̂ 4-diffusion

Let D be a bounded domain of the iV-dimensional Euclidean space, whose

boundary 3D is a (N— 1)-dimensional hypersurface of class C3.

Consider the self-adjoint elliptic differential operator A expressed in terms

of the local coodinates as

where atJ(x) is the contra variant tensor on D which is strictly positive definite

on D, and a(x) =aet(aiJ(x))~\2) We assume that aυ(x) is a function of class

C3 on D.

Let pit, x,y) be the fundamental solution of the diffusion equation

du(*lx) =Au(t,x) for *eD,at

with the boundary condition, u(t, x) =0 for x<=dD.

Let {Ω, B, PX) ΛΓGD, Xt, t^O) be a continuous strong Markov process with

the transition probability p(t,x,y)άy and it will be called an absorbing barrier

A-diffusion [4].

According to S. Ito [5] and Ikeda, Ueno, Tanaka and Sato [4], we can

verify the following related facts to this diffusion, We first note that pit, x,y)

ί -f 00

e~atp(t, x,y)dt, (a>0) and G(x,y)~
0

G*(x,y), for xty^Όf and put h*(x, ξ) = hΛ(ξ, xi = -^-GJx9ξ) (α>0) and h(x,ξ)
oyi*

= ftoUf) for Λ eD, ίeaD. Further we define £/*(£, ? ) = α f h*(ξ, z)h(ztτ})dz

for ξ,τ}^dΌ. Then we have

(10) h(x,ξ)=cc[ G(x,z)ha(z,ξ)dz+hAx,ξ) for Λ G D , £e3D and α:>0,

(11) ί/Jf.^aΓd-Γ'l^--P(t,ξ,rι)dt for ί^eaDand α>0.

We call

2> We denote by ί/̂ , dξ and — the volume element in D, surface element in dD and

normal derivative to the boundary point ξ respectively, each of which is determined by

the fundamental tensor aίj{x). Here the summation sign 2) is omitted as usual.
i
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U(ξ, y) = lim £/«(?, -η) = f ^ - ^ — pit, ξ, y)dt
a t +» ^0 Uiΐχθttr\

Feller's kernel for our diffusion.

For the continuous function u on 3D, we define Hu by

Hu(x) = f AU ξ)u(ξ)dξ.

We have lim Hu(Xt) = u{Xo^.) and Hfi(#) = Ex{u(XaιaJ) for ̂ εD, where <7OT is the
ίtσoo

life time of the path and Xσoo. = lim Xt^dΌ. In our case Px(σ«> < oo ) = 1 holds

for any

Now let us show that v(x) =Ex((u(Xo«,J ~ HuiXo))2) is a potential.

Put

Since St is an additive functional and Ex(S+a>) =0, we obtain the equality,

v(x)=Ex(SU;

which implies that v is an excessive function.

Moreover if DM, w = l, 2, . . . , are open subsets of D such that Dn<=Drt+1,

Όn t D(w t + oo) and if σn is the first leaving time from Όn of the path, then

Ex{υ(Xan)) = v(x) -EΛSln)— ^0 (w-> + oo ).

Thus v is a potential, that is, there exists a non negative measure v on D such

that

(12) v{χ) = \ G(x,y)p(dy).

Denote by Ώ(u) the total mass of v which is uniquely determined by u?'

LEMMA 3. It holds that

(13) D(«) = lim A f h*(ξ, x)v(x)dxdζ.
α->+oo JdDJD

Proof. By (10> and (12), we can see that

a\ f h*(ξ9x)v(x)dxdξ** ί ί (h(ξ, x) - h*(ξ,x))p(dx)dξ

ί ( f h{ξ,x)v{dx)dξ =
v 3D J D

v(dx)=aiHx)dH"(x) dH"[x)dx at least when « is the function of dass C3.
oxz ox3
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THEOREM 2. If Hu is the function of class C1 on, D, then

(14)

Proof. We find by simple calculations,

(15) [ f (u(ξ)-u(y))2U*{ξ, y)dξdV-a[ f h*iξ, x)υ{χ)dxdξ

(Hu(x)-u{ξ)yhΛ(ξ,x)dxdς,

for the continuous function u on 9D.

According to Lemma 3, (14) is true if and only if the right side of (15)

tends to zero as a tends to infinity.

Take a fixed Euclidean coodinate, by which we represent xy ξ as (xι, x2

- - x*)9 (ξ\ ξ2, . . . , ξN) respectively. When Hu is in the class C1 on D, there

exists a positive constant C such that

I Hu(x) - u(ξ) I ̂  C Σ I x{ ~ ? I, for any X G D and any ξeaD.
t = l

Further relying upon the following estimate of the fundamental solution given

in [4],

N

-§j£p(t,ξ,x)£ (CiΓI/2 + C2)ΓΛ72 exp

(Ci, C2, C3 are some positive constants),

we can see for each j, (l^j^N),

O 5( - 3 "

a{ ha(ξ,x)\xi-ξi\tdxίdx* • • • dx"

+ % •£-p(t,ξ,x)\xi-ξi\tdxιdx*

where C' is a positive constant independent of ξ and α:.

Therefore the right side of (15) vanishes as a tends to infinity.
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