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Department of Mathematics and Institute for Research and Applications of Fuzzy Modeling, University of

Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic
e-mail: hancl@osu.cz, janstepnicka@centrum.cz

(Received 23 June, 2006; accepted 31 July, 2007)

Abstract. The paper deals with a criterion for the sum of a special series to be a
transcendental number. The result does not make use of divisibility properties or any
kind of equation and depends only on the random oscillation of convergence.
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1. Introduction. Erdös [2] proved that if {an}∞n=1 is an increasing sequence of

positive integers such that limn→∞ a
1

2n
n = ∞ then the number S = ∑∞

n=1
1
an

is irrational.
In [4] it is shown that if limn→∞ log3 log2 an > 1 and an ∈ � for all n ∈ � then S is a
transcendental number. Many other criteria for S to be transcendental can be found in
[1], [5], [6] or [8] but divisibility properties or fullfilling special equations are necessary.
It seems to be the case that in general it is not easy to decide when S is a transcendental
number if lim supn→∞ log3 log2 an < 1 holds and divisibility properties or fullfilling
certain equations are not required. In this paper we give conditions on sequences
{an}∞n=1 with lim supn→∞ log3 log2 an < 1 such that S is transcendental. We prove the
following.

THEOREM 1.1. Let {an}∞n=1 be an eventually non-decreasing sequence of positive

integers such that an > 2n for every sufficiently large n. Suppose that an < 23
1
4 n

and that

a2n > 23
3
4 (2n)

for infinitely many n. Then the number
∑∞

n=1
1
an

is transcendental.

EXAMPLE 1.1. Let a1 = a2 = 1. For every s = 0, 1, 2, 3, . . . set

an =
{

2[3
1
4 (5n−423s

)] + 3 if 23s
< n ≤ 2.23s

2[3
6
4 23s

] + 2[3
1
4 n] + 3 if 2.23s

< n ≤ 23s+1
.

Then the number
∑∞

n=1
1
an

is transcendental.

It is unclear to the authors if there exists a sequence {an}∞n=1 of positive integers
such that

∑∞
n=1

1
an

is an algebraic number and an > 2( 5
2 )n

for all n ∈ �.

2. Main results. In the sequel, for a real number x we use [x] to denote the greatest
integer less than or equal x. Theorem 1.1 is an immediate consequence of the following
theorem.
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THEOREM 2.1. Let α, β, γ and ν be real numbers with 0 < β < α < log2 3, 0 ≤ ν <

1 and γ > 0. Assume that {an}∞n=1 and {bn}∞n=1 are sequences of positive integers with
{an}∞n=1 eventually non-decreasing such that for every sufficiently large n

bn < aν
n logγ

2 an (1)

and

an > 2n . (2)

Suppose that there exists a positive real number k with

k <
(α − β)

log2( 2
1−ν

+ 1) − α
(3)

such that for infinitely many n

an < 22βn
(4)

and

an+[k.n] > 22α(n+[k.n])
. (5)

Then the number
∑∞

n=1
bn
an

is transcendental.

As an immediate consequence of Theorem 2.1 we obtain the following corollary.

COROLLARY 2.1. Let α, β and γ be real numbers with 0 < β < α < 1 and γ > 0.
Assume that {an}∞n=1 and {bn}∞n=1 are sequences of positive integers with {an}∞n=1 eventually
non-decreasing such that for every sufficiently large n

bn < logγ

2 an

and

an > 2n .

Suppose that there exists positive real number k with

k <
(α − β)
1 − α

such that for infinitely many n

an < 23βn

and

an+[k.n] > 23α(n+[k.n])
.

Then the number
∑∞

n=1
bn
an

is transcendental.

REMARK 2.1. Let the sequences {an}∞n=1 and {bn}∞n=1 satisfy all conditions (1)–(5).
Then Theorem 2.1 implies that the number

∑∞
n=1

bn
an

is transcendental. If in addition
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there exists a fixed ε > 0 such that

an < 2(2−ε)n

holds for all sufficiently large n then there exists a sequence {cn}∞n=1 of positive integers
such that

∑∞
n=1

bn
cnan

is a rational number. For more information see [3].

3. Proof. Proof. (of Theorem 2.1) Let N be a sufficiently large positive integer
satisfying (4) and (5). Assume that δ is a sufficiently small positive real number.

Let us define the finite sequence {ct}N+[k.N]
t=N by

ct =
⎧⎨
⎩

at
t, if t = N

a

1

( 2
1−ν

+1+δ)t−N

t , if t = N + 1, N + 2, . . . , N + [k.N].

Set

cT = max
t=N,N+1,...,N+[k.N]

ct . (6)

If cT = cN then from (4) and (5) we obtain

2N2βN
> aN

N = cN ≥ cN+[k.N] = a
1

( 2
1−ν

+1+δ)[k.N]

N+[k.N] > 2
2α(N+[k.N])

( 2
1−ν

+1+δ)[k.N] = 22α(N+[k.N])−[k.N] log2( 2
1−ν

+1+δ)

.

Applying log2 twice to the above inequality we get

log2 N + βN > α(N + [k.N]) − [k.N] log2

(
2

1 − ν
+ 1 + δ

)

and this is a contradiction with (3).
Therefore cT �= cN and thus

cT ≥ max
j=N,N+1,...,T−1

cj .

From this and from the fact that the sequence {an}∞n=1 is eventually non-decreasing
we obtain that

aT ≥
(

max
j=N,N+1,...,T−1

cj

)( 2
1−ν

+1+δ)T−N

>

T−1∏
i=N

(
max

j=N,N+1,...,T−1
cj

)( 2
1−ν

+δ)·( 2
1−ν

+1+δ)i−N

. (7)

Here the second inequality comes from the fact that

( 2
1−ν

+ 1 + δ
)T−N( 2

1−ν
+ 1 + δ

) − 1
>

( 2
1−ν

+ 1 + δ
)T−N − 1( 2

1−ν
+ 1 + δ

) − 1
=

(
2

1 − ν
+ 1 + δ

)T−N−1

+
(

2
1 − ν

+ 1 + δ

)T−N−2

+ · · · + 1 .

https://doi.org/10.1017/S0017089507003989 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003989


36 JAROSLAV HANČL AND JAN ŠTĚPNIČKA

The fact that {an}∞n=1 is the eventually non-decreasing sequence and inequality (7)
yield

aT >

(
T−1∏
i=N

(
max

j=N,N+1,...,T−1
cj

)( 2
1−ν

+1+δ)i−N
) 2

1−ν
+δ

≥
(

T−1∏
i=N

c( 2
1−ν

+1+δ)i−N

i

) 2
1−ν

+δ

=
(

aN
N

T−1∏
i=N+1

ai

) 2
1−ν

+δ

≥
(

T−1∏
i=1

ai

) 2
1−ν

+δ

.

This implies that

a1−ν
T =

⎛
⎝a

1+ δ
2 (1−ν)

1+ δ
2 (1−ν)

T

⎞
⎠

1−ν

= a
1−ν

1+ δ
2 (1−ν)

T · a

δ
2 (1−ν)2

1+ δ
2 (1−ν)

T > a

δ
2 (1−ν)2

1+ δ
2 (1−ν)

T ·
(

T−1∏
i=1

ai

)2

. (8)

Now we will prove that for every sufficiently large N

∞∑
n=N+1

bn

an
<

2 log2
2 aN+1

a1−ν
N+1

. (9)

From (1), (2) and the fact that {an}∞n=1 is an eventually non-decreasing sequence of
positive integers we obtain that

∞∑
n=N+1

bn

an
<

∞∑
n=N+1

logγ

2 an

a1−ν
n

=
∑

N<n≤log2 aN+1

logγ

2 an

a1−ν
n

+
∑

log2 aN+1<n

logγ

2 an

a1−ν
n

<
log1+γ

2 aN+1

a1−ν
N+1

+
∑

log2 aN+1<n

logγ

2 an

a1−ν
n

<
log1+γ

2 aN+1

a1−ν
N+1

+
∑

log2 aN+1<n

n
2n(1−ν)

≤ 2 log1+γ

2 aN+1

a1−ν
N+1

.

Let T satisfies (6). Inequalities (8) and (9) imply that for every sufficiently large T

∣∣∣∣∣
∞∑

n=1

bn

an
−

T−1∑
n=1

bn

an

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

bn

an
−

∏T−1
n=1 an

∑T−1
n=1

bn
an∏T−1

n=1 an

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=T

bn

an

∣∣∣∣∣ ≤ 2 log1+γ

2 aT

a1−ν
T

<
2 log1+γ

2 aT

a

δ
2 (1−ν)2

1+ δ
2 (1−ν)

T ·
(

T−1∏
i=1

ai

)2 = 2 log1+γ

2 aT

(
a1−ν

T

) δ
2 (1−ν)

1+ δ
2 (1−ν) ·

(
T−1∏
i=1

ai

)2

<
2 log1+γ

2 aT

a

δ2
4 (1−ν)3

(1+ δ
2 (1−ν))2

T ·
(

T−1∏
i=1

ai

)2+ δ(1−ν)

1+ δ
2 (1−ν)

.
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Set qT = ∏T−1
n=1 an, pT = ∏T−1

n=1 an
∑T−1

n=1
bn
an

and ε = δ(1−ν)
1+ δ

2 (1−ν)
. Because

2 log2
2 aT

a

δ2
4 (1−ν)3

(1+ δ
2 (1−ν))2

T

tends to zero when T tends to infinity

we obtain the inequality ∣∣∣∣∣
∞∑

n=1

bn

an
− pT

qT

∣∣∣∣∣ <
1

q2+ε
T

(10)

which holds true for all sufficiently large T .
The fact that we can find infinitely many pairs (pT , qT ) satisfying (10) and the

Roth’s Theorem [7] imply that the number
∑∞

n=1
bn
an

is transcendental.
�
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3. J. Hančl, Expression of real numbers with the help of infinite series, Acta Arith. LIX (2)
(1991), 97–104.
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