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Abstract. We show that two metacyclic groups of the following types are
isomorphic if they have the same character tables: (i) split metacyclic groups, (ii) the
metacyclic p-groups and (iii) the metacyclic {p, q}-groups, where p, q are odd primes.
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1. Introduction. A group G is metacyclic if it has a cyclic normal subgroup K
such that G/K is cyclic. Equivalently, the group G has cyclic subgroups S and K , with
K normal in G, such that G = SK . If we can find such H, K with H ∩ K = {1}, then we
say that G is split metacyclic. It was shown by Hölder [11, Theorem 7.21] that a group
is metacyclic if and only if it has a presentation of the form

G = Gα,β,γ,δ = 〈a, b | aα = bδ, bβ = 1, ba = bγ 〉,

where gcd(β, γ ) = 1, β | (γ α − 1) and β | δ(γ − 1). However, in general the parameters
α, β, γ , and δ are not invariants of the group G. Note that if δ = 0, then G is split
metacyclic.

One says that two groups G, G′ have the same character tables if there is a bijection
χ ↔ χ ′ of their irreducible characters and a bijection (g)G ↔ (g′)G′

of their classes such
that χ (g) = χ ′(g′). This amounts to saying that their character tables are the same up
to permuting rows and columns.

In this paper, we are interested in the question of when a metacyclic group is
determined by its character table (see [2] for a nice account of the character table).
This is not always the case, as, for example, the quaternion and dihedral groups Q8 =
G2,4,3,2, D8 = G2,4,3,0 of order 8 are metacyclic and have the same character table. Note
that here D8 is split metacyclic, while Q8 is not. We prove:

THEOREM 1.1. Any two split metacyclic groups with the same character tables are
isomorphic.

More generally, it is well-known that the dihedral group D2n and the generalized
quaternion group Q2n of order 2n, n ≥ 3, have the same character tables [4, p.64].
Presentations for these groups are

D2n = G2,2n−1,−1,0; Q2n = G2,2n−1,−1,2n−2 .

We prove:
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THEOREM 1.2. Among metacyclic p-groups, the only pairs having the same character
tables are D2n and Q2n , n ≥ 3.

We conjecture that no two non-isomorphic metacyclic groups of odd order have
the same character tables. In further support of this we show:

THEOREM 1.3. Any two metacyclic {p, q}-groups, p, q odd, can be distinguished by
their character tables.

Here, for primes p, q, a {p, q}-group is a group whose only prime divisors are the
primes p, q.

These three results are proved in the next three sections. All groups are assumed
to be finite.

2. Split metabelian groups. We first note the following facts about metacyclic
groups: subgroups and quotients of metacyclic groups are metacyclic, however
subgroups and quotients of split metacyclic groups need not be split metacyclic. A
metacyclic group may have the same character table as a non-metacyclic group (e.g.
extra-special p-groups).

The ambiguity of the choice of parameters α, β, γ, δ for Gα,β,γ,δ is exemplified by
the isomorphism G6,36,19,0

∼= G18,12,7,0 of split metacyclic groups. This isomorphism
arises from the fact that the Sylow three-subgroup has the form C3 × C9 (where Cn is
the cyclic group of order n) and is a direct factor of the metacyclic group. We address
this difficulty in the next result:

LEMMA 2.1. Let G be a group with a central Sylow p-subgroup P. Then G has P as a
direct factor and we write G = P × H. Both the isomorphism type of P and the character
table of the complement H are determined by the character table of G.

Proof. If G has a central Sylow p-subgroup P, then P is normal in G and so it is
the unique normal subgroup of its order. Thus, the the conjugacy classes comprising P
can be located using the character table of G. Since P is central, and the multiplication
table of Z(G) is determined by the character table of G, from this we can determine the
isomorphism type of P. Since P is a normal Hall subgroup, the group G splits over P
by the Schur–Zassenhaus theorem [7, p.75], and we write G = P � H for some H. But
since P is central, this product is direct, and we have G = P × H. The character table
of the quotient H = G/P can be obtained from the character table of G. Furthermore,
since G = P × H, and we know the isomorphism type of P, the isomorphism type of
G is determined by the isomorphism type of H. �

Suppose that G has a central Sylow p-subgroup P, and let αp and βp be the powers
of p dividing α and β. Then P = 〈aα/αp〉 × 〈bβ/βp〉, and so we have the presentation

G/P ∼= 〈a, b | aα/αp = bβ/βp = 1, ba = bγ 〉,
which shows that G/P is split metacyclic. It follows from Lemma 2.1 that if we are able
to determine the isomorphism type of G/P from its character table, then we will be
able to determine the isomorphism type of G from its character table. From now on
we assume that no Sylow p-subgroup of G is central. We will need:

LEMMA 2.2. ([10, Lemma 2.7]) Let G be a group with a metacyclic factorization G =
SK. Let S = 〈a〉 and K = 〈b〉 � G. Let γ be an integer with ba = bγ . Let s = ord|K|(γ )
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and t = |K|/ gcd(|K|, γ − 1). Then

G′ = 〈bγ−1〉 ∼= Ct, Z(G) = 〈as, bt〉.

By Lemma 2.2, we know that

G′ = 〈bγ−1〉 ∼= Ct, Z(G) = 〈as, bt〉,
where s = ordβ(γ ) divides α, and t = β/(β, γ − 1). Thus t can be determined from the
character table. Since G is split, the subgroups generated by as and bt intersect trivially,
and so Z(G) = 〈as〉 × 〈bt〉 ∼= Cu × Cv, where

u = |as| = α/s and v = |bt| = β/t.

LEMMA 2.3. With the above assumption on central p-subgroups, the character table
of Gα,β,γ,0 determines α, β, s, t, u, and v.

Proof. So far we have been able to determine

|G| = αβ, |Z(G)| = uv, |G′| = t, and s = |G|
|Z(G)| · |G′| .

We note that if at any time we are able to determine one of the parameters α, β, u,
or v, then we will be able to determine them all. Also, if we are able to determine the
power of a prime p which divides one of these, we can determine the power of p which
divides each of them.

We can determine from the character table the isomorphism types of the following
abelian groups in terms of the parameters given above:

Z(G) ∼= Cu × Cv,

G/G′ ∼= Cα × Cv,

Z/(G′ ∩ Z(G)) ∼= Cu × Cv/(t,v).

Thus, we know the invariant factors of each, and in particular we can determine the
power of p which divides the order of each direct factor of these groups, up to the
ordering of the factors. Let p be a prime. For a positive integer x, we write xp to denote
the power of p that divides x. Then

Ap = {up, vp}, Bp = {αp, vp}, and Cp = {up, vp/(tp, vp)},
are the sets of invariant factors for the p-primary parts of the above groups, and these
sets are determined by the character table.

If |Ap ∩ Bp| = 1, then Ap ∩ Bp = {vp} and we are done. Thus, we assume that
|Ap ∩ Bp| = 2, so that

up = αp 
= vp.

Next, if |Ap ∩ Cp| = 1, then Ap ∩ Cp = {up} and we are done. Thus, we also assume
that |Ap ∩ Cp| = 2, so that

vp = vp/(tp, vp) and (tp, vp) = 1.
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If tp 
= 1, then we have vp = 1 and we are done. We now assume that tp = 1. But now
βp = tpvp = vp, and so (αβ)p = αpβp = upvp = (uv)p. Therefore, a Sylow p-subgroup of
G is central, which contradicts our assumption. �

We show how to determine γ , by first noting that it is sufficient to find the subgroup
of (�/β�)× generated by γ :

LEMMA 2.4. ([1, Lemma 7]) If Gi = Gα,β,γi,0, i = 1, 2, are split metacyclic groups
such that 〈γ1〉 = 〈γ2〉 as subgroups of (�/β�)×, then G1 and G2 are isomorphic.

There is a classical combinatorial method for constructing the irreducible
representations of the symmetric groups Sn. This method makes use of Young tableau
in order to construct elements of the group algebra �Sn, called Young symmetrizers,
which generate all the minimal ideals of �G. These ideals correspond to the irreducible
representations of Sn. For more information about this, see [5, Ch 4] or [3, Ch 28].
In [9], Munkholm uses similar methods to construct the irreducible representations of
metacyclic groups. Here is a statement of this result.

THEOREM 2.5. [9, Theorem 5.1] Let G = Gα,β,γ,δ be a metacyclic group where

gcd(β, γ ) = 1, δ(γ − 1) ≡ γ α − 1 ≡ 0 (mod β), β > 0, γ > 0, α > 0, δ ≥ 0.

Let si be the order of γ as an element of the group of units in �/
(

β

(β,i)

)
�. In {0, 1, . . . , β −

1} we define an equivalence relation ∼ by: i ∼ i′ if and only if there is a v with i ≡ i′γ v

(mod β), and we let I be a set of representatives of the classes modulo ∼. For each i ∈ I
we let {qi,1, qi,2, . . . , qi,α/si } be a full set of pairwise incongruent integers modulo α/si with
−iδ/β ≤ qi,k < α − iδ/β, and we put

ji,k = iδ/(β, δ) + qi,kβ/(β, δ).

Finally, we choose a primitive βth root of unity ζ and a primitive nth root of unity η

(n = αβ/(β, δ)) such that ζ (β,δ) = ηα. Then some of the Young-elements are:

ei,jk,i =
β−1∑
m=0

α−1∑
n=0

ζ miηnji,k ambn, k = 1, 2, . . . , α/si, i ∈ I,

and

{(�G)ei,ji,k ; k = 1, 2, . . . , α/si, i ∈ I},

is a full set of pairwise inequivalent, irreducible left �G-modules. The representation
Rik afforded by (�G)ei,ji,k is of degree si and it is induced from the linear representation
Tik : Gi → � where Gi is the subgroup of G generated by the elements asi and b, and where
the action of Tik is given by the formulae:

Tik(asi ) = ηsiji,k , Tik(b) = ζ i.

�

Let

ζ = e2π i/β, η = e2π i/α, L = �(ζ ) and H = 〈γ 〉 ≤ (�/β�)×.
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Since (�/β�)× = Gal(L/�), there is a Galois correspondence between the subgroups
of (�/β�)× and the subfields of L. Thus by Lemma 2.4, we will be done if we are able
to determine the fixed field LH from the character table of G.

We restate Theorem 2.5 specialized to the situation of a split metacyclic group.
Let I be a complete set of representatives of the orbits under the multiplicative
action of 〈γ 〉 on �/β�, and for each i ∈ I let si denote the order of γ as an
element of (�/

β

(β,i) �)×. Then a complete set of inequivalent irreducible complex
representations of G is obtained by inducing certain linear representations Tik of
the subgroups Gi = 〈asi , b〉 to G. Explicitly, these representations of Gi are given by the
formulae

Tik(asi ) = ηsik, Tik(b) = ζ i,

where 0 ≤ k < α/si. We induce the characters Tik to G to obtain characters χi,k which
vanish off of the (normal) subgroup Gi = 〈asi , b〉. We use the transversal 1, a, . . . , asi−1

for Gi in G to compute the values of χi,k as follows:

χi,k(asiσ bτ ) =
si−1∑
�=0

Tik((asiσ bτ )a�

) =
si−1∑
�=0

Tik(asiσ bτγ �

)

=
si−1∑
�=0

ηsiσkζ iτγ � = ηsiσk
si−1∑
�=0

ζ iτγ �

.

From now on, we will only need to consider the characters χi,k of maximal degree
s, so when we refer to “the χi,k” we will only mean these. These characters are those
with si = s, and they take the values

χi,k(asσ bτ ) = ηsσk
s∑

�=1

ζ iτγ �

. (2.1)

For i ∈ I , let

ξi = TrL
LH (ζ i) =

s∑
�=1

ζ iγ �

.

We will call these periods, as they are the same as Gaussian periods when i ∈ (�/β�)×.
As traces over LH these periods are contained in LH . More importantly, they generate
the whole fixed field LH , as is proved in the following lemma.

LEMMA 2.6. Let L/K be a finite extension of fields with basis B, and let H be a
subgroup of Aut(L/K). For λ ∈ L, let Cλ denote the orbit of λ under the action of H, and
let ξλ = ∑

μ∈Cλ
μ (so that the periods ξi above are ξζ i ). Then the set {ξλ : λ ∈ B} spans

LH as a K-vector space.

Proof. For λ ∈ L, let ξ ′
λ = ∑

σ∈H λσ . Then ξ ′
λ is a positive integer multiple of ξλ,

and so any set of ξλ span the same subspace of L as the corresponding set of ξ ′
λ.

Let λ ∈ LH , and write λ = ∑
μ∈B cλ,μμ with cλ,μ ∈ K . Then for any σ ∈ H, we have
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λ = λσ = ∑
μ∈B cλ,μμσ . It follows that

λ = 1
|H|

∑
σ∈H

λσ = 1
|H|

∑
σ∈H

∑
μ∈B

cλ,μμσ = 1
|H|

∑
μ∈B

cλ,μ

∑
σ∈H

μσ = 1
|H|

∑
μ∈B

cλ,μξ ′
μ,

and so LH is spanned by the ξ ′
μ, μ ∈ B. �

COROLLARY 2.7. The periods ξi, i ∈ I, span �(ζ )H.

Let Li,k be the field obtained by adjoining the values of χi,k to the rational field.
Then from equation (2.1), we have Li,k = LiNk, where

Nk = �(ηsk) and Li = �({ξiτ : 0 ≤ τ ≤ β − 1}).

For i with gcd(i, β) = 1, the values ξiτ run through all the periods ξj as τ runs through
0, 1, . . . , β − 1, and so Li = LH by Corollary 2.7.

By examining the values of the χi,k on Z(G) we will be able to choose certain χi,k

which will allow us to isolate the periods ξi and determine the fixed field LH . The values
of χi,k on Z(G) = 〈as〉 × 〈bt〉 ∼= Cu × Cv are

χi,k(asσ btτ ) = sηsσkζ tτ i, 0 ≤ σ ≤ u, 0 ≤ τ ≤ v.

Let Y be the set of all χi,k such that χi,k(z) ∈ �(ζ t) for all z ∈ Z(G). Since �(ζ t)
is the vth cyclotomic field, we know which field �(ζ t) is. Note that the fact that a
character χi,k belongs to Y puts no restraint on i, but only on k. In particular, the
character χi,0 for any i relatively prime to β is contained in Y . As a result, the field
obtained by adjoining to � the set

{χi,k(g) : χi,k ∈ Y, g ∈ G},

is equal to �(ζ t, {ξiτ }i,τ ). Since ζ t ∈ LH and the ξiτ generate LH , this field is the desired
fixed field. This completes the proof. �

We give an example of the process described in the above proof of Theorem 1.1
for determining the isomorphism type of a split metacyclic group.

EXAMPLE 1. We consider group G = G72,27 in Magma notation [8]. This group has
24 linear characters and 12 characters of degree 2. We find the values

αβ = |G| = 72, t = |G′| = 3, and s = max c.d.(G) = 2,

where c.d.(G) denotes the set of character degrees of G. We can also determine the
isomorphism types of

Z(G) ∼= Cu × Cv
∼= C12,

G/G′ ∼= Cα × Cv
∼= C2 × C12,

Z/(G′ ∩ Z(G)) ∼= Cu × Cv/(t,v)
∼= C12.

Then A2 = {u2, v2} = {1, 4} and B2 = {α2, v2} = {2, 4}. Since A2 ∩ B2 = {4}, we
have v2 = 4. From this we determine that β2 = t2v2 = 4, α2 = (αβ)2/β2 = 2, and u2 =
α2/s2 = 1. We also have A3 = {u3, v3} = {1, 3} and C3 = {u3, v3/(3, vp)} = {1, 3}. Since
these sets are the same, we must have v3 = 1. From this we determine that β3 = t3v3 = 3,
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α3 = (αβ)3/β3 = 3, and u3 = α3/s3 = 3. Putting this information together, we have
(α, β, s, t, u, v) = (6, 12, 2, 3, 3, 4).

For the remaining steps, we will refer to the partial character table for G given in
Table 1. This table gives the values of the 12 characters of G of maximal degree 2. The
central classes are labelled with asterisks across the top. The characters which take on
values on Z(G) which are in �(i) are characters χ1, χ2, χ7, and χ8. Adjoining the values
of these characters gives the field �(i). Since the subgroup of (�/12�)× fixing �(i) is
the subgroup generated by 5, we conclude that

G = 〈a, b | a6 = b12 = 1, ba = b5〉.

3. p-groups. In this section, we prove Theorem 1.2.
We will need the following lemma, which is Corollary 4.4 of [6].

LEMMA 3.1. If m ≥ n ≥ 1, p is a prime, n + p ≥ 4, and r ≥ 1, then each of the
statements

(1 + pn)pr ≡ 1 mod pm,

(−1 + 2n)2r ≡ 1 mod 2m,

is equivalent to r ≥ m − n. �

We first consider the p odd case.
Let G be a noncyclic metacyclic p-group, p odd. Then in Theorem 3.5 of [10], it is

shown that G has a presentation of the form

G = 〈a, b | apα = bpβ

, bpβ+δ = 1, ba = bp1+pγ 〉,

where α, β, γ, δ are nonnegative integers satisfying α ≥ β ≥ γ ≥ δ and γ ≥ 1, and that
these parameters characterize the group G.

From the character table, we can determine |G| = pα+β+δ and G/G′ ∼= Cpα × Cpγ .
Since α ≥ γ , we then know α and γ , and also β + δ. We now determine the
isomorphism type of Z(G). From Lemma 2.2 we know that Z(G) = 〈as, bt〉, where

s = ord|b|(1 + pγ ) = ordpβ+δ (1 + pγ ),

t = |b|/ gcd(|b|, pγ ) = pβ+δ/ gcd(pβ+δ, pγ ) = pβ+δ−γ ,

and this last equality follows since β + δ ≥ γ . Since β + δ ≥ γ ≥ 1 and γ + p ≥ 4,
Lemma 3.1 implies that (1 + pγ )pε ≡ 1 mod pβ+δ if and only if ε ≥ β + δ − γ , and so

s = ordpβ+δ (1 + pγ ) = pβ+δ−γ .

Since |a| = pα+δ and |b| = pβ+δ, we have

|as| = |a|/s = pα+δ/pβ+δ−γ = pα−β+γ ,

|bt| = |b|/t = pβ+δ/pβ+δ−γ = pγ .
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D

Table 1. Nonlinear characters of group G72,27. Here ω = e2π i/3, i = e2π i/4, ζ = e2π i/6, and η = e2π i/12.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
χ1 2 2 0 0 2 2 −1 −1 −1 2 2 0 0 2 2 −1 −1 −1 0 0 0 0 2 2 2 2 −1 −1 −1 −1 −1 −1 0 0 0 0
χ2 2 2 0 0 2 2 −1 −1 −1 −2 −2 0 0 2 2 −1 −1 −1 0 0 0 0 −2 −2 −2 −2 1 1 1 1 1 1 0 0 0 0
χ3 2 2 0 0 2ω −2ζ −2ω −1 ζ 2 2 0 0 −2ζ 2ω −1 ζ −2ω 0 0 0 0 2ω −2ζ 2ω −2ζ −1 ζ −2ω ζ −1 −2ω 0 0 0 0
χ4 2 2 0 0 −2ζ 2ω ζ −1 −2ω 2 2 0 0 2ω −2ζ −1 −2ω ζ 0 0 0 0 −2ζ 2ω −2ζ 2ω −1 −2ω ζ −2ω −1 ζ 0 0 0 0
χ5 2 2 0 0 −2ζ 2ω ζ −1 −2ω −2 −2 0 0 2ω −2ζ −1 −2ω ζ 0 0 0 0 2ζ −2ζ 2ζ −2ζ 1 ω −ζ ω 1 −ζ 0 0 0 0
χ6 2 2 0 0 2ω −2ζ −2ω −1 ζ −2 −2 0 0 −2ζ 2ω −1 ζ −2ω 0 0 0 0 −2ζ 2ζ −2ζ 2ζ 1 −ζ ω −ζ 1 ω 0 0 0 0
χ7 2 −2 0 0 2 2 −1 −1 −1 2i −2i 0 0 −2 −2 1 1 1 0 0 0 0 −2i −2i 2i 2i −i −i −i i i i 0 0 0 0
χ8 2 −2 0 0 2 2 −1 −1 −1 −2i 2i 0 0 −2 −2 1 1 1 0 0 0 0 2i 2i −2i −2i i i i −i −i −i 0 0 0 0
χ9 2 −2 0 0 −2ζ 2ω ζ −1 −2ω 2i −2i 0 0 −2ζ 2ζ 1 ω −ζ 0 0 0 0 2η5 2η −2η5 −2η −i η η5 −η i −η5 0 0 0 0
χ10 2 −2 0 0 2ω −2ζ −2ω −1 ζ 2i −2i 0 0 2ζ −2ζ 1 −ζ ω 0 0 0 0 2η 2η5 −2η −2η5 −i η5 η −η5 i −η 0 0 0 0
χ11 2 −2 0 0 −2ζ 2ω ζ −1 −2ω −2i 2i 0 0 −2ζ 2ζ 1 ω −ζ 0 0 0 0 −2η5 −2η 2η5 2η i −η −η5 η −i η5 0 0 0 0
χ12 2 −2 0 0 2ω −2ζ −2ω −1 ζ −2i 2i 0 0 2ζ −2ζ 1 −ζ ω 0 0 0 0 −2η −2η5 2η 2η5 i −η5 −η η5 −i η 0 0 0 0
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Furthermore, since β ≤ α and δ ≤ γ , we have

s = pβ+δ−γ ≤ pα,

t = pβ+δ−γ ≤ pβ.

Therefore, apα = bpβ ∈ 〈as〉 ∩ 〈bt〉. But since apα

is the smallest power of a lying in
the subgroup 〈b〉, we conclude that 〈apα 〉 ∩ 〈bpβ 〉 is generated by apα

, which has order
pα+δ/pα = pδ. Thus

|Z(G)| = |〈as〉| · |〈bt〉|
|〈as〉 ∩ 〈bt〉| = |as| · |bt|

|apα | = pα−β+γ · pγ

pδ
= pα−β+2γ−δ.

Since as and bt generate the abelian group Z(G), we see that the exponent of Z(G) is

exp Z(G) = max(|as|, |bt|) = max(pα−β+γ , pγ ) = pα−β+γ .

Therefore,

Z(G) ∼= Cexp Z(G) × C|Z(G)|/ exp Z(G) = Cpα−β+γ × Cpγ−δ .

Since α − β + γ ≥ γ − δ, we can then determine β and δ, and hence G. �
Since nilpotent groups are direct products of their Sylow p-subgroups, we have

COROLLARY 3.2. Any two nilpotent metacyclic groups of odd order having the same
character tables are isomorphic.

We now deal with the case of 2-groups. We prove that any two metacyclic 2-groups
which are not dihedral and generalized quaternion, respectively, can be distinguished
by their character tables.

We will make use of the following characterization of metacyclic 2-groups by
Hempel [6].

THEOREM 3.3. Every metacyclic 2-group has one of the following eight types of
presentation, in which the parameters r, s, t, u, v and w are nonnegative integers:

(i) 〈a | a2r = 1〉 with r ≥ 0,
(ii) 〈a, b | a2r = b2 = 1, ba = b〉 with r ≥ 1,

(iii) 〈a, b | a2 = b2r = 1, ba = b−1〉 with r ≥ 2,
(iv) 〈a, b | a2 = b2r

, b2r+1 = 1, ba = b−1〉 with r ≥ 1,
(v) 〈a, b | a2 = b2r+1 = 1, ba = b1+2r〉 with r ≥ 2,

(vi) 〈a, b | a2 = b2r+1 = 1, ba = b−1+2r〉 with r ≥ 2,
(vii) 〈a, b | a2r = b2s

, b2s+t = 1, ba = b1+2u〉 with r ≥ s ≥ u ≥ 2 and u ≥ t,
(viii) 〈a, b | a2r+s+t = b2r+s+u+v

, b2r+s+u+v+w = 1, ba = b−1+2r+u〉 where r ≥ 2, v ≤ r, w ≤ 1,
su = tu = tv = 0, and if v ≥ r − 1, then w = 0.

Groups of different types or of the same type but with different parameters are not
isomorphic.

Groups of type (i) and (ii) are abelian, and so are determined by their character
tables. Types (iii) and (iv) are dihedral and generalized quaternion, respectively, and
we have already seen that they have the same character table.

We will assume that |G| > 8.
We note that groups of types (iii), (v), (vi) are split metacyclic and so no non-

isomorphic pair of these groups have the same character tables by Theorem 1.1.
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The following table gives the orders of G and isomorphism type of G/G′ for groups
of different types in terms of the parameters given in the characterization above.

type |G| G/G′

(iii), (iv) 2r+1 C2 × C2

(v) 2r+2 C2 × C2r

(vi) 2r+2 C2 × C2

(vii) 2r+s+t C2r × C2u

(viii) 22r+2s+t+u+v+w C2 × C2r+s+t

The information in this table follows immediately from the presentations.
Groups of type (vii) are distinguished from all other types by G/G′, since r, u ≥ 2.

Groups of type (v) have |G′| = 2, which distinguishes them from the remaining types
(iii), (iv), (vi), and (viii). Groups of type (viii) have G/G′ ∼= C2 × C2r+s+t . Since r ≥ 2, this
distinguishes type (viii) from types (iii), (iv) and (vi).

It remains to show that two groups of type (vii) or two groups of type (viii), with
different parameters, cannot have the same character table.

Case (vii). We note that the proof of this case is nearly identical to the proof for odd
p. The difference is that it appeals to the half of Lemma 3.1 which deals with p = 2.
Suppose G is of type (vii), so that

G = 〈a, b | a2r = b2s
, b2s+t = 1, ba = b1+2u〉,

where r ≥ s ≥ u ≥ 2 and u ≥ t. From the character table, we can determine G/G′ ∼=
C2r × C2u . Since r ≥ u, we know both r and u. From Lemma 2.2, we know that Z(G) =
〈aα, bβ〉, where

α = ord|b|(1 + 2u) = ord2s+t (1 + 2u),

β = |b|
gcd(|b|, 2u)

= 2s+t

gcd(2s+t, 2u)
= 2s+t−u,

where for the last equality we used the fact that s + t ≥ u. Since s, t, u satisfy s + t ≥
u ≥ 2 and u + 2 ≥ 4, Lemma 3.1 implies that (1 + 2u)2j ≡ 1 mod 2s+t if and only if
j ≥ s + t − u, and so α = ord2s+t (1 + 2u) = 2s+t−u. Since |a| = 2r+t and |b| = 2s+t, we
have

|aα| = 2r+t/α = 2r+u−s, and |bβ | = 2s+t/β = 2u.

Furthermore, since r ≥ s and u ≥ t, we have

α = 2s+t−u ≤ 2r, and β = 2s+t−u ≤ 2s.

Therefore, a2r = b2s ∈ 〈aα〉 ∩ 〈bβ〉. Since a2r
is the smallest power of a lying in the

subgroup 〈b〉, we conclude that 〈aα〉 ∩ 〈bβ〉 is generated by a2r
, which has order

2r+t/2r = 2t. Thus

|Z(G)| = |〈aα〉| · |〈bβ〉|
|〈aα〉 ∩ 〈bβ〉| = |aα| · |bβ |

|a2r | = 2r−s+u · 2u

2t
= 2r−s−t+2u.
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Since |aα| = 2r−s+u > 2u = |bβ |, we conclude that the exponent of Z(G) is exp Z(G) =
2r−s+u. Thus

Z(G) ∼= Cexp Z(G) × C|Z(G)|/ exp Z(G) = C2r−s+u × C2u−t .

Since r − s + u ≥ u − t and we know r, u, we can determine s and t, and hence G.

Case (viii). Here we need Corollary 4.5 [6]:

LEMMA 3.4. If G = 〈a, b | a2k = b2l
, b2m = 1, ba = b−1+2n〉, where m − 1 ≤ l ≤ m,

2 ≤ n ≤ m, and m − n ≤ k, then

Z(G) =
{

〈a2, b2m−1〉 if m = n,

〈a2m−n
, b2m−1〉 otherwise.

A group of type (viii) is of the form

G = 〈a, b | a2r+s+t = b2r+s+u+v

, b2r+s+u+v+w = 1, ba = b−1+2r+u〉,

where r ≥ 2, v ≤ r, w ≤ 1, su = tu = tv = 0, and if v ≥ r − 1, then w = 0.
From the above table we have:

|G| = 22r+2s+t+u+v, G/G′ ∼= C2 × C2r+s+t .

Thus, we know 2r + 2s + t + u + v and r + s + t.

LEMMA 3.5. The parameter w can be determined from Z(G). In particular: w = 1 if
and only if Z(G) is cyclic of order greater than 2.

Proof. Since G satisfies the hypotheses of Lemma 3.4, we have

Z(G) =
{

〈a2, b2r+u−1〉 if s + v + w = 0,

〈a2s+v+w

, b2r+s+u+v+w−1〉 otherwise.
(3.1)

We consider various cases.
Suppose first that w = 1. Then, we are in the second of the two possibilities for

Z(G) in (3.1). We have b2r+s+u+v+w−1 = b2r+s+u+v = a2r+s+t
, and so

Z(G) = 〈a2s+v+w

, a2r+s+t〉 = 〈a2min(s+v+w,r+s+t)〉.

Since w = 1, we have v < r − 1, and so s + v + w < s + r ≤ s + r + t. Thus Z(G) =
〈a2s+v+w 〉, and so

|Z(G)| = |a2s+v+w | = |a|/2s+v+w = 2r+s+t+w/2s+v+w = 2r+t−v.

Since v < r − 1, we have r + t − v ≥ 2, and so Z(G) ∼= C2r+t−v is cyclic of order 2r+t−v >

2.
Now suppose that w = 0. Consider the situation v = r ≥ 2. Then, we are again in

the second case of (3.1):

Z(G) = 〈a2s+v+w

, b2r+s+u+v+w−1〉 = 〈a2r+s
, b2r+s+u+v−1〉.
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From the condition tv = 0, we have t = 0, and so a2r+s = a2r+s+t = b2r+s+u+v

. Thus Z(G)
is generated by b2r+s+u+v−1

, which has order

|b|/2r+s+u+v−1 = 2r+s+u+v/2r+s+u+v−1 = 2,

so Z(G) ∼= C2.

If w = 0 and v 
= r, we show that Z(G) is noncyclic.
If s + v = 0, then Z(G) = 〈a2, b2r+u−1〉. Now |a2| = 2r+t/2 = 2r+t−1 and |b2r+u−1 | =

|b|/2r+u−1 = 2r+u/2r+u−1 = 2. Furthermore, since G is split metacyclic, the intersection
〈a2〉 ∩ 〈b2r+u−1〉 ⊆ 〈a〉 ∩ 〈b〉 is trivial, and so

Z(G) = 〈a2〉 × 〈b2r+u−1〉 ∼= C2r+t−1 × C2.

Since, r ≥ 2 we see that Z(G) is non-cyclic.
If s + v > 0, then Z(G) = 〈a2s+v

, b2r+s+u+v−1〉. The generators have order

|as+v| = |a|/2s+v = 2r+s+t/2s+v = 2r+t−v, and

|b2r+s+u+v−1 | = |b|/2r+s+u+v−1 = 2r+s+u+v/2r+s+u+v−1 = 2.

Again, since G is split metacyclic, the intersection 〈a2s+v 〉 ∩ 〈b2r+s+u+v−1〉 ⊆ 〈a〉 ∩ 〈b〉 is
trivial, and so

Z(G) = 〈a2s+v 〉 × 〈b2r+s+u+v−1〉 ∼= C2r+t−v × C2.

Here, we note that r + t − v > 0 since we are assuming the conditions r ≥ v and r 
= v.
Thus, w can be determined by the isomorphism type of Z(G) in all cases. �
If w = 1, then we consider the quotient

G/〈b2r+s+u+v 〉 ∼= 〈a, b | a2r+s+t = b2r+s+u+v = 1, ba = b−1+2r+u〉,

by the unique central subgroup of G of order 2. This quotient is a group of type (viii)
with the same r, s, t, u, v, but with w = 0. Thus, we may reduce to the case where w = 0.
Then we have

G = 〈a, b | a2r+s+t = b2r+s+u+v = 1, ba = b−1+2r+u〉,

and we note that G is split metacyclic. This case now follows from Theorem 1.1.
This completes the proof of Theorem 1.2. �

4. {p, q}-groups. We first give a description of these groups according to the
characterization given in [10]. Let p, q be odd primes with p dividing q − 1, let μ be the
largest integer such that pμ divides q − 1, and let α, β, γ, δ, κ be nonnegative integers
satisfying

(i) α ≤ β, γ ≥ β, β + δ ≥ γ ≥ δ,
(ii) δ ≥ 1 or β = 0,

(iii) 1 ≤ κ ≤ min(α,μ),
(iv) β ≥ δ or α − κ < β.
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Let ε, ζ, η be nonnegative integers with ε + η ≥ ζ ≥ η > 0 and let θ be a primitive pκ th
root of unity mod qζ . Then it is proven in [10] that the group G generated by x, y, u, v

and given with the relations

xpα = ypβ

,

yx = y1+pδ

, ypγ = 1,

ux = u, uy = u, uqε = 1,

vx = vθ , vy = v, vu = v1+qη

, vqζ = 1,

is a presentation of a non-nilpotent metacyclic group of order pα+γ qε+ζ , and that every
non-nilpotent metacyclic {p, q}-group has a presentation of this form. Moreover, [10],
θ can be chosen in a manner depending on α, β, γ, δ, κ so that the groups given by
presentations as above form a complete and irredundant set of representatives of the
isomorphism types of non-nilpotent metacyclic {p, q}-groups. Note that the elements
xu and yv are generators giving a metacyclic presentation for G, and that it is not clear
from the above presentation that G will be split metacyclic unless αβ = 0.

We note that the cases where the {p, q}-group is nilpotent are covered by
Corollary 3.2.

Proof of Theorem 1.3 . So, let G be a metacyclic {p, q}-group with a presentation as
above, and where by [10] the parameters α, β, γ, δ, κ, ε, ζ, η are invariants of G which
determine G up to isomorphism. Let P = 〈x, y〉 and Q = 〈u, v〉. Then Q is a normal
Sylow q-subgroup, and so can be located by the character table. Since G/Q ∼= P, we
can determine the character table of P from the character table of G. Since, p is odd
and P is a metacyclic p-group with presentation

P = 〈x, y | xpα = ypβ

, ypγ = 1, yx = y1+pδ 〉,

we can determine the parameters α, β, γ , and δ using Theorem 1.2.
Lemma 5.6 of [10] states that κ = |P : Op(G)|, where Op(G) is the unique largest

normal p-subgroup of G. Since the orders of P and of Op(G) can be determined by the
character table, this gives us κ.

Let X = 〈x〉 and V = 〈v〉. Note that since P centralizes u and y centralizes v,
we have G′ ∩ Q = [P, Q] = [X, V ]. We can write V = CV (X) × [X, V ], but since V is
cyclic, one of these direct factors must be trivial. Since the action of x on v is nontrivial
(since G is not nilpotent), we conclude that V = [X, V ]. Now G′ can be located from
the character table. In particular, since G′ is cyclic, it has a unique subgroup of every
order dividing |G′|. These subgroups are normal in G, and so we can find the Sylow
q-subgroup of G′, which is V . Thus, we can determine ζ = |V | from the character table.
From the order of G, which is equal to pα+γ qε+ζ , we can also determine ε + ζ , and
hence ε.

To find η, we examine Q ∩ Z(G). From the presentation of G, we see that Q ∩
Z(G) = CZ(Q)(x). Since

Q = 〈u, v | uqε = vqζ = 1, vu = v1+qη 〉,
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we know from Lemma 2.2 that Z(Q) = 〈uS, vT 〉, where

S = ordqζ (1 + qη),

T = qζ / gcd(qζ , qη) = qζ−η.

Since ζ ≥ η ≥ 1 and η + q ≥ 4, Lemma 3.1 implies that (1 + qη)qn ≡ 1 mod qζ if and
only if n ≥ ζ − η, and so S = ordqζ (1 + qη) = qζ−η. The above generators of Z(Q) have
orders

|uS| = |u|/S = qε/qζ−η = qε−ζ+η,

|vT | = |v|/T = qζ /qζ−η = qη.

Since Q is split, it then follows that

Z(Q) = 〈uS, vT 〉 ∼= Cqε−ζ+η × Cqη .

Since ux = u, we have

Q ∩ Z(G) = CZ(Q)(x) ∼= Cqε−ζ+η × C〈vT 〉(x).

Since, this last factor is cyclic of order at most qη ≤ qε−ζ+η, we conclude that the Sylow
q-subgroup of Z(G) has exponent qε−ζ+η. Therefore, we can determine ε − ζ + η, and
hence η, from the character table. This gives all the parameters for G. �
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