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Abstract

Background. Preclinical evidence suggests that diazepam enhances hippocampal γ-aminobutyric
acid (GABA) signalling and normalises a psychosis-relevant cortico-limbic-striatal circuit. Hip-
pocampal network dysconnectivity, particularly from the CA1 subfield, is evident in people at
clinical high-risk for psychosis (CHR-P), representing a potential treatment target. This study
aimed to forward-translate this preclinical evidence.
Methods. In this randomised, double-blind, placebo-controlled study, 18 CHR-P individuals
underwent resting-state functional magnetic resonance imaging twice, once following a 5 mg
dose of diazepam and once following a placebo. They were compared to 20 healthy controls
(HC) who did not receive diazepam/placebo. Functional connectivity (FC) between the hippo-
campal CA1 subfield and the nucleus accumbens (NAc), amygdala, and ventromedial prefrontal
cortex (vmPFC) was calculated. Mixed-effects models investigated the effect of group (CHR-P
placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on CA1-to-region FC.
Results. In the placebo condition, CHR-P individuals showed significantly lower CA1-vmPFC
(Z = 3.17, PFWE = 0.002) and CA1-NAc (Z = 2.94, PFWE = 0.005) FC compared to HC. In the
diazepam condition, CA1-vmPFC FC was significantly increased (Z = 4.13, PFWE = 0.008)
compared to placebo in CHR-P individuals, and both CA1-vmPFC and CA1-NAc FC were
normalised to HC levels. In contrast, compared to HC, CA1-amygdala FC was significantly
lower contralaterally and higher ipsilaterally in CHR-P individuals in both the placebo and
diazepam conditions (lower: placebo Z = 3.46, PFWE = 0.002, diazepam Z = 3.33, PFWE = 0.003;
higher: placebo Z = 4.48, PFWE < 0.001, diazepam Z = 4.22, PFWE < 0.001).
Conclusions. This study demonstrates that diazepam can partially restore hippocampal CA1
dysconnectivity in CHR-P individuals, suggesting that modulation of GABAergic function
might be useful in the treatment of this clinical group.

Introduction

Identifying novel pharmacological interventions to reduce symptom severity and prevent
transition to psychosis in individuals at clinical high-risk for psychosis (CHR-P) is a significant
unmet clinical need (Bosnjak Kuharic et al., 2019; Fusar-Poli, de Pablo, Correll, et al., 2020).
Current neurobiological theories of psychosis development identify the hippocampus as a central
hub of pathophysiology (Heckers & Konradi, 2015; Knight, McCutcheon, Dwir, et al., 2022;
Lieberman, Girgis, Brucato, et al., 2018) and a promising pharmacological target (Uliana, Lisboa,
Gomes, & Grace, 2024). Several neuroimaging studies in individuals at CHR-P have identified
increased hippocampal cerebral blood flow/volume compared to healthy controls (HC) (Allen,
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Chaddock, Egerton, et al., 2016; Allen, Azis, Modinos, et al., 2018;
Provenzano, Guo, Wall, et al., 2020). The CA1 subfield is proposed
to be the origin of hippocampal dysfunction in the CHR-P state, in
terms of volume loss (Ho, Holt, Cheung, et al., 2017) and hyper-
activity (Schobel, Chaudhury, Khan, et al., 2013; Schobel, Lewan-
dowski, Corcoran, et al., 2009), which then spreads to the
subiculum following psychosis onset (Schobel et al., 2013). The
CA1 and subiculum have a high number of glutamatergic efferent
projections (Qiu et al., 2024), and anterior projections innervate a
cortico-limbic-striatal circuit encompassing the nucleus accum-
bens (NAc) of the striatum, amygdala, and the ventromedial pre-
frontal cortex (vmPFC) (Grace, 2016). These regions are highly
interconnected (Alexander, DeLong, & Strick, 1986; Grace, 2016;
Haber, 2003; Haber, 2016; Haber & Fudge, 1997; Harrison, Guell,
Klein-Flügge, & Barry, 2021; Kahn & Shohamy, 2013; Lodge &
Grace, 2006; Sah, Faber, Lopez De Armentia, & Power, 2003) and
are associated with positive, negative, and cognitive symptoms
of schizophrenia, respectively (Floresco, Todd, & Grace, 2001;
Ghoshal & Conn, 2015; Grace, 2010). Therefore, hippocampal
dysfunction preceding the onset of psychosis may disrupt down-
stream cortico-limbic-striatal regions, contributing to circuit dys-
function and the emergence of psychosis (Grace, 2016).

Circuit dysfunction can be investigated in terms of the func-
tional connectivity (FC) between brain regions measured using
resting-state functional magnetic resonance imaging (rs-fMRI)
(Power, Schlaggar, & Petersen, 2014). rs-fMRI studies have identi-
fied altered hippocampal FC with the cortico-limbic-striatal circuit
in individuals with a first episode of psychosis or chronic schizo-
phrenia compared to HC. More specifically, these studies reported
lower hippocampal FC with the striatum (Edmiston, Song, Chang,
et al., 2020; Gangadin et al., 2021; Knöchel, Stäblein, Storchak, et al.,
2014; Kraguljac, White, Hadley, et al., 2016; Nelson, Kraguljac,
Maximo, et al., 2022; Sarpal, Robinson, Lencz, et al., 2015; Song,
Yang, Chang, et al., 2022) and vmPFC (Blessing et al., 2020; Cen,
Xu, Yang, et al., 2020; Duan, Gan, Yang, et al., 2015; Fan, Tan, Yang,
et al., 2013; Knöchel et al., 2014; Kraguljac et al., 2016; Liu, Li, Liu,
et al., 2020; Nelson et al., 2022; Qiu, Lu, Zhou, et al., 2021; Samudra,
Ivleva, Hubbard, et al., 2015; Song et al., 2022;Wang, Yin, Sun, et al.,
2021; Xue, Chen, Wei, et al., 2023; Zhou, Shu, Liu, et al., 2008), and
either lower (Tian, Meng, Yan, et al., 2011; Xue et al., 2023), higher
(Walther, Lefebvre, Conring, et al., 2022), or unaltered (Walther
et al., 2022) hippocampal FC to the amygdala. The pattern is less
clear in subclinical psychosis spectrum individuals (although there
are far fewer studies): lower hippocampal-striatal FChas been shown
in healthy individuals with high schizotypy traits (Kozhuharova,
Saviola, Diaconescu, & Allen, 2021; Waltmann, O’Daly, Egerton,
et al., 2019), while both lower (Edmiston et al., 2020; Liu et al.,
2020) and normal (Aberizk, Sefik, Addington, et al., 2023; Allen,
Hird, Orlov, et al., 2021;Wang et al., 2021) hippocampal-striatal and
hippocampal-PFC FC have been observed in individuals at CHR-P
compared to HC. To our knowledge, no studies in CHR-P individ-
uals have investigated hippocampal-amygdala FC, or FC alterations
from specific hippocampal subfields to the cortico-limbic-striatal
circuit. Given that hippocampal dysfunction may be localised to
theCA1 subfield in theCHR-P stage (Schobel et al., 2009), alterations
in FC may not be present across the whole hippocampus.

GABAergic dysfunction has been proposed as a key mechanism
underlying hippocampal hyperactivity in psychosis (Heckers &
Konradi, 2015). Studies in rats exposed to the mitotoxin methyla-
zoxymethanol acetate (MAM) during neurodevelopment showed
that reduced PV+ interneuron number in the hippocampus was
associated with an increased firing rate of local excitatory neurons

and excitatory/inhibitory imbalance (Lodge & Grace, 2007). This
hyperactivity is found to drive functional alterations of downstream
regions in MAM-treated rats, evidenced by experiments where
chemical (Lodge & Grace, 2007) or pharmacological inactivation
of the hippocampus (with a nonspecific GABAA-enhancing benzo-
diazepine (Perez, McCoy, Prevot, et al., 2023) or an α5-GABAA

specific compound (Gill et al., 2011; Perez et al., 2023)) normalised
midbrain dopaminergic neuron firing. Furthermore, this mechan-
ism is proposed to underlie the findings that repeated peripubertal
diazepam administration inMAM-treated rats prevented the emer-
gence of schizophrenia-related neurophysiological and behavioural
phenotypes in adulthood. Such phenotypes included prevention of
midbrain dopamine hyperactivity and hyperlocomotion response
to amphetamine (positive symptoms), amygdala hyperactivity
(negative symptoms), and PFC dysfunction (cognitive symptoms)
(Du & Grace, 2013; Du & Grace, 2016; Du & Grace, 2016).

This preclinical evidence suggests that GABA-enhancing com-
pounds may be an effective strategy for psychosis prevention by
downregulating hippocampal hyperactivity and normalising down-
stream circuit dysfunction. In healthy individuals, prior rs-fMRI
studies using an acute, non-sedating dose of a GABA-enhancing
compound report increases in FC under benzodiazepine (or other
GABA-enhancing drugs, e.g., Z-drugs such as zopiclone/zolpidem)
compared to placebo across the hippocampal-amygdala-PFC circuit
(Licata et al., 2013), the default mode network (Flodin, Gospic,
Petrovic, & Fransson, 2012; Frölich, White, Kraguljac, & Lahti,
2020), and a wider brain network including visual, auditory, sensori-
motor, and prefrontal regions (Blanco-Hinojo, Pujol, Macià, et al.,
2021). In CHR-P individuals, we recently demonstrated that an
acute, non-sedating dose of diazepam normalised elevated hippo-
campal and subfield cerebral blood flow to levels seen in healthy
controls (Livingston et al., 2024). However, whether this is accom-
panied by a normalisation of the FC between the hippocampus and
downstream cortico-limbic-striatal regions was not known.

Therefore, the current study examined the effects of an acute
dose of diazepam versus placebo on FC between the hippocampus
and this cortico-limbic-striatal circuit in the same cohort of CHR-P
individuals (Livingston et al., 2024). Each condition was also com-
pared toHCdata collected on the same scanner.We focussed on the
CA1 subfield as a seed, given its proposed role in psychosis devel-
opment at the CHR-P stage (Lieberman et al., 2018) and the
substantial number of anatomical connections to output regions
of interest (NAc, amygdala, and vmPFC (Aggleton, 2012; Rosene &
Van Hoesen, 1977)). On the basis of previous findings in hippo-
campal FC across the psychosis spectrum (Alexander et al., 1986;
Floresco et al., 2001; Gangadin et al., 2021; Ghoshal & Conn, 2015;
Grace, 2010; Haber, 2003; Haber, 2016; Haber & Fudge, 1997;
Harrison et al., 2021; Kahn & Shohamy, 2013; Knöchel et al.,
2014; Nelson et al., 2022; Power et al., 2014; Qiu et al., 2021; Sah
et al., 2003; Samudra et al., 2015; Song et al., 2022;Wang et al., 2021;
Xue et al., 2023; Zhou et al., 2008), we hypothesised that individuals
at CHR-P (in the placebo condition) would display lower CA1-NAc
and CA1-vmPFC FC and altered CA1-amygdala FC compared to
HC. Based on prior benzodiazepine challenge rs-fMRI studies in
healthy individuals (Du & Grace, 2013; Gill et al., 2011; Lodge &
Grace, 2007; Perez et al., 2023), we hypothesised that a single dose of
diazepam would increase CA1 FC within this circuit, to the extent
that it would no longer differ from HC. For completeness, the
following supplementary analyses were included: (i) using the
anterior hippocampus as a seed (given it is specifically the anterior
portion of the CA1 implicated in psychosis development (Schobel
et al., 2009; Schobel et al., 2013)) and (ii) exploring broader effects
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of diazepam on CA1/anterior hippocampus FC with the rest of the
brain.

Methods

Study design, participants, and procedure

This experimental medicine study was conducted at King’s College
London. The study received ethical approval from the National
Health Service UK Research Ethics Committee (18/LO/0618), and
each participant gave written informed consent. While the study
received ethical clearance as ‘not a Clinical Trial of an Investiga-
tional Medicinal Product’ by the EU directive 2001/20/EC, it was
registered on clinicaltrials.gov (NCT06190483). Full study details,
including inclusion/exclusion criteria, can be found in our recent
publication describing the hippocampal cerebral blood flow find-
ings in the same participants (Livingston et al., 2024). Briefly, this
study used a randomised, double-blind, placebo-controlled, cross-
over design, whereby 24 antipsychotic-naïve individuals at CHR-P
underwent MRI scanning on two occasions, once following a single
oral dose of diazepam (5 mg) and once following an oral placebo
(50 mg ascorbic acid). The diazepam/placebo capsule was admin-
istered 60 min before MRI scanning, and there was a minimum
3-week washout period between scans. Data from a group of 22 HC
from a prior study (PSYAUD17/25) acquired with the same MRI
scanner, scanning sequences, and acquisition parameters were used
as a comparison group (Modinos, Egerton, McMullen, et al., 2018).

MRI acquisition

MRI data were acquired on a General Electric MR750 3.0 T MR
scanner with an 8-channel head coil at the Centre for Neuroima-
ging Sciences, KCL. A 3D T1-weighted scan was acquired using a
SPGR sequence and rs-fMRI data was acquired using a multi-echo
echo planar imaging sequence (full acquisition details in
Supplementary Methods). During the rs-fMRI scan, participants
were instructed to remain awake with their eyes open, while a
fixation cross was displayed in the centre of the screen.

Neuroimaging data processing

Preprocessing
The structural and rs-fMRI datawere preprocessed using fMRIPrep
(version 23.1.3) (Esteban, Markiewicz, Blair, et al., 2019), SPM12
(Friston, 2007), CONN (Whitfield-Gabrieli & Nieto-Castanon,
2012), and FSL (Woolrich, Jbabdi, Patenaude, et al., 2009). Struc-
tural images from both sessions were corrected for intensity non-
uniformity using N4, skull-stripped, segmented, and averaged
across sessions to generate a singular participant structural image
which was then normalised to MNI space (1mm3 resolution)
(Esteban et al., 2019). For the rs-fMRI data, volume re-alignment
and slice-timing correction parameters were calculated using the
first echo and applied to all echoes (Esteban et al., 2019). Participants
were excluded if they moved >3 mm on any translation/rotation
parameter or had a mean framewise displacement of >0.5 mm, as
advised by prior methodological investigations (Power et al., 2012).
The three echoes in native space underwent TE-dependent ICA-
based denoising and were optimally combined using T2* weighted
averaging via TEDANA (Kundu et al., 2017), before being normal-
ised to MNI space (2mm3 resolution) with transformations gener-
ated during fMRIPrep (see supplementary materials for full boiler
plate) (Esteban et al., 2019). The denoised, optimally combined,
normalised functional data was then spatially smoothed in SPM12

(Friston, 2007) with a 6 mm FWHM Gaussian kernel, and further
denoised by removingwhitematter andCSF signal using the first five
components of aCompCor, despiking, scrubbing, and band-pass
filtering (0.008–0.09 Hz) in CONN (Whitfield-Gabrieli & Nieto-
Castanon, 2012).

Generation of seed and region-of-interest masks
Hippocampal and subfield seed masks were generated for each
participant from their preprocessed structural scan collected during
their first scanning visit using the MAGeT Brain (multiple
automatically generated templates of different brains) toolbox
(Pipitone, Park, Winterburn, et al., 2014) (see previous publica-
tion for further details (Livingston et al., 2024)). Using all
participants’ CA1 segmentations, study-specific left and right
CA1 masks were generated by using majority vote (ANTs/2.5.0;
Figure 1). ROI masks for the cortico-limbic-striatal circuit (NAc,
amygdala, and vmPFC) were derived from Neurosynth (https://
www.neurosynth.org/) using the search terms ‘nucleus accum-
bens’, ‘amygdala’, and ‘vmPFC’ (uniformity tests). The resulting
images were thresholded, binarised, and dilated (MINC toolkit;
https://bic-mni.github.io/).

Neuroimaging data analysis

To control for the number ofmodels, FDR correctionwas performed
on all FWE-corrected second-level analyses described below.

First- and second-level analysis
To generate participant-level seed-to-voxelZ-maps, themean func-
tional time series was extracted from the left and right CA1 and
used in first-level analysis models as regressors of interest in FSL.
These first-level seed-to-voxel Z-maps were then entered into
second-level analysis models using FLAME-1 (FMRIB’s Local Ana-
lysis of Mixed Effects) (Woolrich et al., 2009), which employs
Bayesian modelling and a weighted least-squares approach to
perform a mixed-effects analysis. FLAME-1 was chosen as mixed-
effects modelling is optimal for within-subject designs (i.e., CHR-P
diazepam vs. placebo) to account for within-subject correlations,
and FLAME-1 is able to estimate different variances for different
groups of subjects within a model, which is advantageous for
unpaired two-sample comparison (i.e., CHR-P vs. HC) (Sabaroedin,
Tiego, & Fornito, 2023). All models below use an FWE-corrected
(P < 0.05) threshold ofZ > 2.3. This thresholdwith FLAME-1models
has been shown to produce FWE rates lower than 5%, and is
therefore similar to traditional FSL ordinary least square analyses
using a threshold of Z > 3.1 (Eklund, Nichols, & Knutsson, 2016).

Within-group CA1 resting-state FC analyses
Before comparing differences between groups/conditions, we first
validated within-group resting-state FC networks for the CA1 to
the whole brain to ensure they matched expected networks (one-
sample contrast for each group independently) (Ezama et al., 2021).

Group and condition seed-to-ROI analyses
To investigate the effect of group (CHR-P placebo/diazepam
vs. HC) and condition (CHR-P diazepam vs. placebo) on FC
differences between CA1 and cortico-limbic-striatal circuit regions,
we conducted seed-to-ROI analysis. Second-level models were run
per seed-to-ROI per hemisphere for each group/condition compari-
son using a small volume adjustment approach by applying a pre-
threshold ROI mask generated independently from Neurosynth as
described above. Models were run both contralaterally (e.g., left CA1
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to the right amygdala) and ipsilaterally (e.g., left CA1 to the left
amygdala), as disruptions to both have been found across the psych-
osis spectrumwithin this circuit (Sabaroedin et al., 2023). Voxel-level
thresholding was used (Z > 2.3) for inference, which was FWE-
corrected (P < 0.05) for multiple comparisons. Again, this threshold
has been demonstrated to be quite conservative when using voxel-
level inference in FLAME-1models (Eklund et al., 2016). For CHR-P
placebo/diazepam versus HC models, age (mean centred) and sex
were added in as covariates of no interest. For CHR-P diazepam
versus placebo, change in pre-post scan fatigue score from the Bodily
Symptoms Scale (Zuardi, Cosme, Graeff, & Guimarães, 1993) for
each condition was included as a covariate of no interest to control
for drug effects of sedation/fatigue.

Supplementary/exploratory analyses
For completeness, supplementary analyses explored the effect of
group/condition on FC between (1) anterior hippocampus and the
cortico-limbic-striatal circuit (seed-to-ROI), and (2) hippocampal
seeds (CA1 and anterior hippocampus) and the rest of the brain on

a voxel-wise basis. Anterior hippocampal masks were generated by
masking the study-specific averaged whole hippocampus segmen-
tation with a hippocampus head mask derived from the Allen
human reference atlas (Allen Human Reference Atlas - 3D,
2020), then thresholded, binarized, and dilated. Identical second-
level models were run as described above, and for the seed-to-voxel
analyses an inclusive grey matter mask was used during the pre-
threshold masking.

Results

Demographics and clinical assessments

Following data quality checks, six CHR-P participants were excluded
(n = 2 missing rs-fMRI data, n = 1 poor data quality, n = 3 excessive
motion), along with 2 HC participants (n = 1 missing rs-fMRI data,
n = 1 poor data quality). This resulted in a final sample of 18 CHR-P
and 20 HC for analyses. Participant details can be found in Table 1.
There were significant group differences in IQ and ethnicity in our

Figure 1. Within-group CA1-to-voxel functional connectivity. CA1-to-voxel functional connectivity networks averaged across each group independently (healthy controls, CHR-P
placebo, and CHR-P diazepam) for the left and right CA1 subfield using study-specific masks (Z > 2.3, PFWE < 0.05). CHR-P, ‘clinical high-risk for psychosis’.
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sample. The IQ difference was driven by an above-average mean IQ
in the HC group (mean ± SD = 122.9 ± 13.9, mean IQ in the general
population for 20–29 years old = 100 (Silva, 2008)), while the CHR-P
group had an average mean IQ (mean ± SD = 96.9 ± 22.1). The

difference in ethnicity was driven by a high proportion of white
ethnicity in the HC group (70%) compared to the CHR-P group
(55%). There were no significant differences in head motion param-
eters or change between pre- and post-scan Bodily Symptom Scale

Table 1. Participant demographic information, clinical characteristics, head motion parameters, and fatigue scores

CHR-P
(n = 18)

HC
(n = 20) Comparison t/χ p

Demographic

Age (years; mean ± SD) 24.1 ± 4.6 26.5 ± 5.1 CHR–P versus HC 1.5 0.136

Sex (male/female; n) 5/13 9/11 CHR–P versus HC 1.2 0.272

Ethnicity (n) CHR–P versus HC 11.2 0.024

Asian 1 6 – – –

Black 4 0 – – –

Mixed or multiple 2 0 – – –

Other 1 0 – – –

White 10 14 – – –

IQ (WAIS-III short version (Silva, 2008); mean ± SD) 96.0 ± 22.1 122.9 ± 13.9 CHR–P versus HC 4.4 <0.001

Current daily cigarette use, n (%) 4 (22) 2 (10) CHR–P versus HC 1.1 0.302

Current alcohol use, n (%) 14 (77) 18 (90) CHR–P versus HC 1.1 0.302

Current cannabis use, n (%) 5 (28) 3 (15) CHR–P versus HC 1.8 0.181

Clinical characteristics

CAARMS (Yung, Yuen, McGorry, et al., 2005) score (mean ± SD)

Positive symptoms 47.5 ± 12.9 NA – – –

Negative symptoms (n = 21) 29.5 ± 25.3 NA – – –

Total (n = 21) 77.9 ± 28.2 NA – – –

Global functioning score (Carrión, Auther, McLaughlin, et al., 2019) (mean ± SD)

Social 6.3 ± 1.5 NA – – –

Role 6.1 ± 1.7 NA – – –

Hamilton scale score (mean ± SD)

Anxiety (Hamilton, 1959) (n = 22) 17.6 ± 9.3 NA – – –

Depression (n = 21) (Hamilton, 1960) 13.5 ± 6.9 NA – – –

Current antidepressant medication, n (%) 7 (38) NA – – –

Current or prior antipsychotic medication, n (%) 0 (0) NA – – –

Current benzodiazepine/hypnotic medication, n (%) 0 (0) NA – – –

Head motion

Fractional displacement in mm (mean ± SD)

Total group 0.148 ± 0.08 0.146 ± 0.07 CHR–P versus HC 0.05 0.957

Placebo condition 0.156 ± 0.10 – CHR–P placebo versus HC 0.36 0.724

Diazepam condition 0.139 ± 0.07 – CHR–P diazepam versus HC �0.35 0.722

– – CHR–P diazepam versus placebo 0.62 0.544

Bodily symptoms scale

Fatigue scores post-scan (mean ± SD)

Placebo condition 0.944 ± 0.93 – CHR–P diazepam versus placebo 1.51 0.148

Diazepam condition 1.38 ± 1.58 – – – –

Note: The significant (i.e., <0.05) p values are shown in bold.
Abbreviations: CAARMS, ‘comprehensive assessment of at-risk mental states’; CHR-P, ‘clinical high-risk for psychosis’; HC, ‘healthy control’; IQ, ‘intelligent quotient’; WAIS, ‘Weschler adult
intelligence scale’.
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(Zuardi et al., 1993) scores between the placebo and diazepam
conditions.

Resting-state functional connectivity

Within-group CA1 resting-state FC
Within each group/condition, as expected (Ezama et al., 2021), the
CA1 showed significant FC with the rest of the hippocampus,
extending to the temporal lobe, amygdala, precuneus, posterior
cingulate cortex, mPFC, and parieto-occipital regions (Z > 2.3,
PFWE < 0.05; Figure 1).

CA1-to-ROI
Compared to HC, individuals at CHR-P in the placebo condition
showed significantly lower FC between the left CA1 and the right
NAc (Figure 2A and Table 2), and between the right CA1 and the
left NAc, left amygdala, and left vmPFC (Figure 2B and Table 2).
Additionally, the right CA1 showed higher FC to the right amyg-
dala (Figure 2B and Table 2). In the diazepam condition, these
differences observed in the placebo condition compared toHCwere
ameliorated (no significant difference), apart from the right CA1 to
left and right amygdala, which still showed significantly lower and
higher FC compared to HC, respectively (Figure 2B and Table 2).
We observed a significant drug effect on CA1-vmPFC FC, where
diazepam (compared to placebo) significantly increased the FC
strength from the left CA1 to left vmPFC and right CA1 to bilateral
vmPFC (Figure 2 and Table 2).

Supplementary/exploratory analyses
At the whole-brain level, compared to HC, individuals at CHR-P in
the placebo condition showed significantly higher FC between the
right CA1 and a right medial temporal network, including the
hippocampus, insula, and inferior/medial temporal gyri (Figure 3A
and Supplementary Table S1). Conversely, lower FC was observed
between the right CA1 and a left medial temporal network that
extended to include key regions of the default mode network
(bilateral mPFC, anterior cingulate cortex, and posterior cingulate
cortex). In the diazepam condition, higher FC between right CA1
and a right medial temporal lobe network was also observed com-
pared to HC, and additionally extended to parieto-occipital regions
such as the angular gyrus (Figure 3B and Supplementary Table S1).
When comparing CHR-P diazepam versus placebo conditions
directly, no significant differences in whole-brain FCwere observed
for either the right or left CA1. Finally, there were no significant
differences between groups (CHR-P placebo/diazepam vs. HC) or
conditions (CHR-P diazepam vs. placebo) in FC strength using the
anterior hippocampus as a seed on anROI orwhole-brain level. Since
there was a difference in IQ between the groups, supplementary
analyses correlated within each group IQ scores with hippocampal-
ROI FC parameter estimates for models in which there was a
significant difference betweenHCandCHR-P placebo groups. These
analyses showed no significant correlations (Supplementary
Table S2).

Discussion

The main finding of the current study was that a single, non-
sedating dose of the GABA-enhancing drug diazepam partially
normalised CA1 dysconnectivity to a cortico-limbic-striatal circuit
in individuals at CHR-P.More specifically, CHR-P individuals in the
placebo condition (compared to HC) showed lower CA1-vmPFC
and CA1-NAc FC. Diazepam significantly increased CA1-vmPFC

FC compared to placebo, and the lower CA1-vmPFC and CA1-NAc
FC observed in the placebo condition was normalised toHC levels in
the diazepam condition. We observed more complex results for
CA1-amygdala FC, as CHR-P individuals in the placebo condition
showed lower and higher FC compared to HC, which were still
present in the diazepam condition. Previously, we demonstrated that
diazepam normalised increased hippocampal and subfield regional
cerebral blood flow in the same CHR-P individuals, and here we
extend this work by showing that diazepam can also partially nor-
maliseCA1dysconnectivity to a downstream circuit. Taken together,
these results indicate that GABA-enhancing compounds can rescue
brain function in a psychosis-relevant circuit in CHR-P individuals,
and therefore, show promise as a novel treatment strategy for clinical
intervention in this group.

Our finding of lower CA1-vmPFC and CA1-NAc FC contral-
aterally (but normal FC ipsilaterally) in CHR-P individuals in the
placebo condition (vs. HC) is consistent with prior rs-fMRI reports
of subtle dysconnectivity in sub-clinical psychosis populations
(i.e., most studies report lower FC but some studies report no
differences) (Aberizk et al., 2023; Allen et al., 2021; Edmiston
et al., 2020; Kozhuharova et al., 2021; Liu et al., 2020; Tian et al.,
2011;Waltmann et al., 2019;Wang et al., 2021). In contrast, studies
in first-episode and chronic schizophrenia samples more consist-
ently report lower FC between these regions, both contralaterally
and ipsilaterally (Blessing et al., 2020; Cen et al., 2020; Duan et al.,
2015; Edmiston et al., 2020; Fan et al., 2013; Gangadin et al., 2021;
Knöchel et al., 2014; Kraguljac et al., 2016; Liu et al., 2020; Nelson
et al., 2022; Qiu et al., 2021; Samudra et al., 2015; Sarpal et al., 2015;
Song et al., 2022; Wang et al., 2021; Xue et al., 2023; Zhou et al.,
2008). This may suggest that in psychosis vulnerability stages, as
hippocampal hyperactivity begins to drive glutamatergic input to
the cortico-limbic-striatal circuit (Floresco et al., 2001; Ghoshal &
Conn, 2015; Grace, 2016), there is preserved or perhaps even
elevated temporal coherence (i.e., increased FC) between the hippo-
campus and these other regions. As CHR-P symptoms persist,
hippocampal hyperactivity and dysrhythmia may lead to excito-
toxic loss of efferent projecting hippocampal glutamatergic neurons
(Schobel et al., 2013) and consequentially uncoupling with down-
stream circuitry, which may further deteriorate following the onset
of psychosis. Given that there are fewer connections contralaterally
(e.g., right CA1 to left amygdala) than ipsilaterally (e.g., right CA1
to right amygdala) (Roesler, Parent, LaLumiere, &McIntyre, 2021),
it is likely that reduced FC would first be observed contralaterally,
whilst ipsilateral connections may be preserved. In support of this
model, experiments in MAM-treated rats demonstrated that NAc
hyperactivity, due to hippocampal dysfunction, drives a striatal-
midbrain circuit loop (Lodge&Grace, 2007) which increases phasic
dopamine efflux in the NAc itself (Grace, Floresco, Goto, & Lodge,
2007). Importantly, this increase in phasic dopamine can potentiate
the hippocampal drive on the NAc (Goto & Grace, 2005), which
may result in reduced hippocampal-NAc FC. This inverse relation-
ship of hippocampal hyperactivity and reduced hippocampal-
striatal FC has been observed previously in individuals at CHR-P,
as higher hippocampal glutamate levels (indicative of hyperactiv-
ity) was associated with reduced hippocampal-striatal FC (Allen
et al., 2021). In accordance with this, reduced CA1-NAc FC was the
most robust finding in our sample of individuals at CHR-P (i.e., it
was observed bilaterally in the CA1), in whom we have previously
demonstrated hippocampal hyperactivity (Livingston et al., 2024).
Beyond illness chronicity, themore pronounced reductions observed
inhippocampal FC in individualswith psychotic disorders compared
to those at CHR-P might be related to antipsychotic treatment. For
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Figure 2.Region-of-interest functional connectivity results for the CA1. Parameter estimates of functional connectivity strength between left (a) and right (b) CA1 and output regions
(nucleus accumbens, amygdala, and ventromedial prefrontal cortex) displayed for healthy controls and individuals at clinical high-risk for psychosis (in the placebo and diazepam
conditions) at peak coordinate of significant effect of group/condition (Z > 2.3, PFWE < 0.05). CA1 (green), amygdala (red), nucleus accumbens (yellow), and vmPFC (purple) are
visualised on the brain using masks. CHR-P, ‘clinical high-risk for psychosis’; Amy, ‘amygdala’; NAc, ‘nucleus accumbens’; vmPFC, ‘ventromedial prefrontal cortex’; *** < 0.001;
* < 0.05, ns, ‘not significant’.
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instance, we observed reductions in right, but not left, CA1-vmPFC
FC in our sample of antipsychotic-naïve individuals at CHR-P,
compared to the more robust observations in antipsychotic-treated
individuals with schizophrenia (Fan et al., 2013; Knöchel et al., 2014;

Liu et al., 2020; Samudra et al., 2015; Song et al., 2022; Wang et al.,
2021; Zhou et al., 2008). Whilst cognitive symptoms which are
present in the prodromemayworsen following the onset of psychosis
(Bora&Murray, 2014; Catalan, de Pablo,Aymerich, et al., 2021;Dong,

Table 2. Summary statistics of region-of-interest functional connectivity results for the CA1

Contrast Seed ROI Peak Z x y z
pFDR
value # voxels

CHR-P placebo > HC

Right CA1 Right amygdala 4.48 30 �8 20 <0.001 93

CHR-P diazepam > HC

Right CA1 Right amygdala 4.22 28 �8 �22 <0.001 129

HC > CHR-P placebo

Right CA1 Left amygdala 3.46 �20 �6 �24 <0.001 42

Left NAc 2.94 �14 10 �8 0.004 78

Left vmPFC 3.17 �8 48 �2 0.002 135

Left CA1 Right NAc 2.57 16 12 �4 0.011 12

HC > CHR-P diazepam

Right CA1 Left amygdala 3.33 �20 �6 �22 0.002 44

CHR-P diazepam > placebo

Right CA1 Right vmPFC 4.42 10 46 �6 <0.001 79

Left vmPFC 3.25 �10 48 0 0.002 3

Left CA1 Left vmPFC 3.20 �4 38 �12 0.002 8

Note: The significant (i.e., <0.05) p values are shown in bold.
Abbreviations: CHR-P, ‘clinical high-risk for psychosis’; FDR, ‘false discovery rate’; HC, ‘healthy control’; NAc, ‘nucleus accumbens’; ROI, ‘region-of-interest’; vmPFC, ‘ventromedial prefrontal
cortex’.

Figure 3. Voxel-wise whole-brain functional connectivity results for the CA1. Significant clusters showing differences (Z > 2.3, PFWE < 0.05) in functional connectivity between HC and
CHR-P placebo (a) and CHR-P diazepam (b) for the CA1. Areas showing functional hyperconnectivity (CHR-P placebo/diazepam > HC) are displayed in red colourbar, whilst areas
displaying functional hypoconnectivity are displayed in blue. N.B., no significant differences were found for the anterior hippocampus, nor for any of the regions (CA1 or anterior
hippocampus) when contrasting CHR-P diazepam versus placebo. CHR-P, ‘clinical high-risk for psychosis’; HC, ‘healthy controls’.
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Mao, Ding, et al., 2023), chronic antipsychotic treatment may also play
a role in further cognitive impairment related to hippocampal-PFC
FC uncoupling (Haddad et al., 2023; McCutcheon, Keefe, &
McGuire, 2023).

We found both higher and lower CA1-amygdala FC in individ-
uals at CHR-P in the placebo condition compared to HC. Prior
rs-fMRI studies have found lower (Tian et al., 2011; Xue et al., 2023)
and normal (Walther et al., 2022) hippocampal-amygdala FC in
individuals with psychotic disorders. However, hippocampal-
amygdala FC was increased in people with schizophrenia with
paranoia versus no paranoia (Walther et al., 2022), and higher
hippocampal-amygdala-PFC FC was associated with higher fear/
anxiety in individuals with early psychosis (Feola, Beermann,
Manzanarez Felix, et al., 2024). Whilst amygdala dysfunction is
associated with negative symptoms of schizophrenia (Ghoshal &
Conn, 2015), it is also implicated in clinically distinct comorbid
anxiety/mood disorders, which aremore common in those at CHR-
P (Fusar-Poli et al., 2014; Achim et al., 2011). This increased
affective component might explain the higher hippocampal-
amygdala FC observed in our sample of individuals at CHR-P
compared to HC. Furthermore, the findings in our study appeared
to be hemisphere-dependent (i.e., the right CA1 showed increased
FC to the right amygdala and decreased FC to the left amygdala).
This was also observed at the whole-brain level, whereby the right
CA1 showed hyperconnectivity with a right medial temporal net-
work, including the amygdala, but hypoconnectivity with a left
hippocampal network and frontal regions of the left default mode
network. Increased hippocampal FC with the medial temporal lobe
has been observed previously in the psychosis spectrum (Avery,
Rogers, McHugo, et al., 2022; Knöchel et al., 2014; Li, Liu, Deng,
et al., 2023), and therefore, according to the model outlined above,
increased FC to the amygdala may be observed given the close
proximity, number of bidirectional connections (van Staalduinen&
Zeineh, 2022), and proposed GABAergic alterations in this region
in psychosis (Du&Grace, 2016). Furthermore, this pattern of intra-
hemispheric hyperconnectivity and inter-hemispheric hypocon-
nectivity has been found previously in individuals with psychotic
disorders, indicating increased local network segregation and
decreased remote network integration (Hadley et al., 2016).

The main effect of diazepam versus placebo in CHR-P individ-
uals on CA1 FC to the cortico-limbic-striatal network was a bilat-
eral increase in CA1-vmPFC FC. Furthermore, all decreases in
CA1-vmPFC and CA1-NAc FC in CHR-P individuals in the pla-
cebo condition compared to HC were not present in the diazepam
condition. The general direction of the drug effect (that is, increas-
ing FC) is in line with our predictions and with prior pharmaco-
logical rs-fMRI studies using acute doses of GABA-enhancing
drugs in healthy individuals (Blanco-Hinojo et al., 2021; Feng,
Yu, Wang, et al., 2019; Flodin et al., 2012; Frölich et al., 2020; Licata
et al., 2013). GABA-enhancing drugs, such as diazepam, are posi-
tive allosteric modulators of the GABAA receptors via the benzo-
diazepine site (Engin, Benham,&Rudolph, 2018).Most commonly,
benzodiazepine binding leads to increased hyperpolarisation of
post-synaptic glutamatergic pyramidal cells (Engin et al., 2018),
reducing their activity (Venkat, Chopp, & Chen, 2016). The mech-
anism by which inhibition of neural activity in one brain region can
result in increased FC to another has been recently elucidated by a
chemogenetic fMRI study in mice. Rocchi and colleagues (Rocchi,
Canella, Noei, et al., 2022) demonstrated that either acute or
chronic inhibition of the PFC led to increases in FC with direct
thalamo-cortical output regions. The spiking activity was reduced
but became more rhythmic and phase-locked to low-frequency

oscillatory rhythms, leading to an increase in FC with connecting
regions. Therefore, through this mechanism, it is likely that down-
regulation of hippocampal hyperactivity under diazepam (which
we have demonstrated previously in this sample) led to increases in
FC with connecting output regions.

Interestingly, the effect of diazepam onCA1-vmPFC FC showed
the least inter-individual differences between people at CHR-P,
whilst the effects in the amygdala and NAc were more varied. This
may be due to the fact that the vmPFC, similar to the hippocampus,
contains a high number of benzodiazepine receptors (Nørgaard,
Beliveau, Ganz, et al., 2021). Consequently, similar local effects on
neural activity in the hippocampus and vmPFC might have also
contributed to a more robust increase in temporal coherence
between them. Increases in hippocampal-PFC FC under benzodi-
azepine versus placebo have previously been reported (Licata et al.,
2013), along with increases in FC to somatosensory and occipital
regions,(Liang et al., 2015; Wein, Riebel, Seidel, et al., 2024) which
also have a high number of benzodiazepine binding sites (Nørgaard
et al., 2021). Furthermore, as noted earlier, the largest alterations in
hippocampal FC observed in individuals at CHR-P in the placebo
condition compared to HC were with the amygdala. This suggests
that hippocampal-amygdala FC was the most perturbed out of the
cortico-limbic-striatal regions. Given the proposed role of the
amygdala in the initiation of hippocampal hyperactivity (Berretta
et al., 2004) and PV+ interneuron loss (Zhu&Grace, 2023), and the
high number of connections between these regions (van Staaldui-
nen & Zeineh, 2022), a single dose of diazepam may not have been
sufficient to regulate altered hippocampal-amygdala FC in individ-
uals at CHR-P. In support of this, benzodiazepines have been
shown to either increase (Licata et al., 2013) or decrease (Flodin
et al., 2012) hippocampal-amygdala FC in healthy individuals. This
suggests the pharmacological effects of GABA-enhancing com-
pounds on this circuitry are inherently complex, without the pres-
ence of potential alterations to theGABAergic system in individuals
at CHR-P.

Finally, we found no differences in FC strength between groups
or drug conditions for the anterior hippocampus to the cortico-
limbic-striatal circuit. This was unexpected, based on preclinical
evidence (Grace, 2010) and current theories about the pathophysi-
ology of psychosis (Heckers & Konradi, 2015; Knight et al., 2022;
Lieberman et al., 2018). However, the anterior hippocampus con-
tains subfields beyond the CA1 and subiculum, such as the CA2/3,
which largely only have intra-hippocampal projections (Shinohara
& Kohara, 2023). Therefore, inclusion of this signal may increase
noise, making it difficult to detect subtle FC alterations between
the anterior hippocampus and the cortico-limbic-striatal circuit
within individuals at CHR-P. In line with this, whilst preclinical
evidence focuses on the anterior hippocampus, it specifically
identifies the anterior CA1 as the site of dysfunction (Gergues,
Han, Choi, et al., 2020).

This study had several strengths. We used a gold standard
randomised, double-blind, placebo-controlled, crossover study
design in a sample of antipsychotic-naïve individuals at CHR-P.
The hippocampus and CA1 subfield were segmented with a high
degree of accuracy using novel computational methods (Pipitone
et al., 2014), allowing the generation of study-specific hippocampal
and subfield masks. We acquired rs-fMRI data using an advanced
multi-echo sequence, allowing robust data cleaning and removal of
non-physiological noise with advanced methodological techniques
such as TEDANA (Kundu et al., 2017). This led to high-quality
data, as within-group/condition resting-state FC networks for the
CA1 to the rest of the brain replicated those found previously
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(Ezama et al., 2021). We were able to contextualise baseline differ-
ences and direction of drug effects in the CHR-P group by compar-
ing them with data from a HC group. Finally, we used advanced
statistical mixed-effects modelling, which is optimal for examining
both inter-group differences without assuming uniform variance
and also for investigating within-subject effects (Beckmann, Jen-
kinson, & Smith, 2003). This study also had some limitations. Our
sample size of CHR-P individuals was reduced from 24 down to
18 after quality control, but retrospective power analysis demon-
strated that the diazepam versus placebo analyses (mean Cohen’s
d = 0.83) had an achieved power of 91%. Additionally, this study
was not powered to investigate the relationship between FC alter-
ations and symptoms, which would require a much larger CHR-P
sample. Due to limitations with the resolution of rs-fMRI, we were
not able to investigate differences in FC from specifically the anterior
CA1 (our study-specific mask only had ~30 voxels per hemisphere),
which is of particular relevance for psychosis (Grace, 2010).

In conclusion, this study provides evidence that a single dose of a
non-specific GABA-enhancing drug, such as diazepam, can nor-
malise CA1 FC alterations with the vmPFC and NAc in individuals
at CHR-P. Conversely, CA1-amygdala FC was greatly perturbed in
people at CHR-P under placebo compared to HC and was largely
unaffected by diazepam challenge. Given thismechanistic evidence,
future research is warranted with extended treatment durations to
link these neurobiological changes to symptoms and clinical out-
comes, including psychosis prevention.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725101268.
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