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Abstract
Hu et al. [“A boundary problem for group testing”, SIAM J. Algebraic Discrete Meth.
2 (1981), 81–87] conjectured that the minimax test number to find d defectives in 3d
items is 3d − 1, a surprisingly difficult combinatorial problem about which very little
is known. In this article we state three more conjectures and prove that they are all
equivalent to the conjecture of Hu et al. Notably, as a byproduct, we also obtain an
interesting upper bound for M(d, n).
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1. Introduction

Consider a population of n items consisting of d defectives and n − d good items.
In this paper we assume that the number d of defectives is known. The problem
is to identify these d defectives by means of a sequence of group tests. Each test
is on a subset of items with two possible outcomes: a pure outcome indicates that
all items in the subset are good, and a contaminated outcome indicates that at least
one item in the subset is defective. Group testing has applications in, for example,
high-speed computer networks [4], medical examination [1, 2], quantity searching [3],
statistics [1] and related graph theory problems [7, 13]. Let MT (d, n) denote the
maximum number of tests required by the algorithm T to identify the d defectives in n
items, where the maximum is taken over all possible combinations of the d defectives
among the n items. Define

M(d, n)=min
T

MT (d, n).

Then M(d, n) is the minimax test number for given d and n. We know that M(n, n)
= M(0, n)= 0. An algorithm which achieves M(d, n) is called a minimax algorithm
for the (d, n) problem.
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In Section 3, we derive three statements which are equivalent to the conjecture
of Hu et al. [11], perhaps the most major open problem in this area. Notably,
as a byproduct, we also obtain an interesting upper bound for M(d, n) (see
Proposition 3.8).

The question studied by Hu et al. [11] was for what values of n and d is it the case
that

M(d, n)= n − 1,

achieved by testing the first n − 1 items one by one. They [11] conjectured that

M(d, n)= n − 1 for 3d ≥ n > d > 0.

It was proved in [8] that

M(d, n)= n − 1 for
⌊

42d

16

⌋
≥ n > d > 0,

where bxc (dxe) denotes the largest (smallest) integer not greater (less) than x .
Following the method of Du and Hwang [8], Leu et al. [14] improved Du and Hwang’s
result a little further by proving that

M(d, n)= n − 1 for
⌊

43d

16

⌋
≥ n > d ≥ 193.

Also, Riccio and Colbourn [15] proved that if α < log3/2 3 ≈ 2.7095, then for
sufficiently large d , M(d, n)= n − 1 if n ≤ αd . Note that Fischer et al. [10] also
studied the conjecture of Hu et al. from a different point of view.

2. Some preliminary remarks and results

In this paper the terminology and notation which we adopt are used in [9].
A binary tree is a rooted tree where each node except the root has one inlink (the

root has none), and each node has either zero or two outlinks. Nodes with zero outlinks
are called terminal nodes and nodes with two outlinks are called internal nodes. The
path for a node v is the alternate sequence of nodes and links which connect the root
to v, excluding v itself. The length of a path is the number of nodes on it. Node u is
the parent of node v and v is a child of u, if u has an outlink to v. Two children of the
same parent are siblings.

A group testing algorithm can be represented by a binary tree where each internal
node is associated with a test and its two outlinks are associated with the two possible
outcomes. The test history H(v) at node v is the set of tests and outcomes associated
with the nodes and links on the path for v.

For a (d, n) problem, with d defectives among the n items, the sample space S(d, n)
consists of all d-subsets (called samples) of the n items. Associated with each node v
is the set of samples which are consistent with the test history of v. We refer to this set
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as the sample space at v and denote it by S(v). Note that if v is a terminal point, then
the cardinality of S(v) is necessarily unity.

When an algorithm T is in its binary tree representation, MT (d, n) is simply the
maximum path length of the tree. Let MT (S) denote the maximum number of tests for
the algorithm T to identify the d defectives from the subset S of S(d, n), and define

M(S)=min
T

MT (S).

In particular, let M(m; d, n) denote the minimax test number necessary to identify the
d defectives among n items when, among n items, a particular subset of m items is
known to be contaminated.

Now we state some basic lemmas which will be used in the following section. Their
proofs can be found in [9, Chapters 1 and 3].

LEMMA 2.1. M(S)≥ dlog2 |S|e, where |S| denotes the number of samples contained
in the sample space S.

LEMMA 2.2. Suppose that sample space S1 is a subset of sample space S2. Then
M(S1)≤ M(S2).

LEMMA 2.3. Suppose that n − d > 1. Then M(d, n)= n − 1 implies M(d, n − 1)
= n − 2.

LEMMA 2.4. M(d, n) < n − 1 for n > 3d > 0.

LEMMA 2.5. M(d, n)≤ M(d + 1, n) for n > d + 1> 0.

LEMMA 2.6. M(d, n)≤ n − 1 for n > d > 0.

LEMMA 2.7. M(m; d, n)≥ 1+ M(d − 1, n − 1) for m ≥ 2 and n > d > 0.

LEMMA 2.8. M(2; d, n)= 1+ M(d − 1, n − 1) for n > d > 0.

PROOF. By Lemma 2.7, we know that M(2; d, n)≥ 1+ M(d − 1, n − 1). Now let
T be the algorithm for the (2; d, n) problem which first tests one item from the given
contaminated group of 2 items and then uses a minimax algorithm for the remaining
problem. Then

MT (2; d, n) = 1+max{M(d − 1, n − 2), M(d − 1, n − 1)}

= 1+ M(d − 1, n − 1) (by Lemma 2.2).

Hence we conclude that M(2; d, n)= 1+ M(d − 1, n − 1). 2

LEMMA 2.9. M(1, n)= dlog2 ne.

To state the next lemma and Conjecture 4 of Section 3, we introduce a new notation.
Let M((d1, n)× (d2, m)) denote the minimax test number necessary to identify the
d1 + d2 defectives from a set X of n + m items when the following extra information
about set X is given: the set X is divided into two disjoint subsets A = {a1, . . . , an}
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and B = {b1, . . . , bm}, where set A contains d1 defectives and set B contains d2
defectives. Chang and Hwang [5, 6] studied the special case M((1, n)× (1, m)).
In [6] they proved the following result.

LEMMA 2.10. M((1, n)× (1, m))= dlog2 mne for all m and n.

REMARK 2.11. In practice, one hardly knows d exactly. Thus d is often either an
estimate or an upper bound. When d is known to be an upper bound of the number
of defectives, the (d, n) problem will be denoted by (d̄, n). Hwang et al. [12] proved
that M(d, n)+ 1≥ M(d̄, n)≥ M(d, n + 1) for n > d > 0.

3. Equivalent statements

In this section we state four conjectures including the conjecture of Hu et al. [11].
At a first glance Conjectures 1, 2 and 4 seem to belong to different types of problem.
However, in what follows, we will prove that they and Conjecture 3 are all equivalent
to each other. On the way, as a byproduct, we also obtain an interesting upper bound
for M(d, n) (see Proposition 3.8).

CONJECTURE 1 (Hu et al. [11]). If 3d ≥ n > d > 0, then M(d, n)= n − 1.

CONJECTURE 2. If integers 3(d1 + d2) ≥ n1 + n2 > d1 + d2 > 0, n1 > d1 ≥ 0 and
n2 > d2 ≥ 0, then

M(d1, n1)+ M(d2, n2) < M(d1 + d2, n1 + n2).

CONJECTURE 3. M(d, 3d + 2)= 3d for d > 0.

CONJECTURE 4. M((1, 3)× (d − 1, 3d − 1)) < M(3; d, 3d + 2) for d > 1.

REMARK 3.1. About Conjecture 2, the problem behind M(d1 + d2, n1 + n2) is to
identify d1 + d2 defectives from a set X of n1 + n2 items. On the other hand, the
problem behind M(d1, n1)+ M(d2, n2) is to identify d1 + d2 defectives from the set
X with extra crucial information about set X being given: that is, set X contains a
known subset A of n1 items which is known to contain d1 defectives.

As for Conjecture 4, the problem behind M(3; d, 3d + 2) is to identify d defectives
from a set Y of 3d + 2 items with extra information about set Y being given: that is,
set Y contains a known subset B of 3 items which is known to be contaminated. On the
other hand, the problem behind M((1, 3)× (d − 1, 3d − 1)) is to identify d defectives
from the set Y with more precise information on the set B: that is, set B contains only
one defective.

Therefore, in appearance, the statements of Conjectures 2 and 4 seem more friendly
than the original statement of Hu et al.. We hope that our equivalent statements will
focus more attention on the Hu–Hwang–Wang conjecture.

THEOREM 3.2. Conjecture 1 is true if and only if Conjecture 2 is true.
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PROOF. We first prove that Conjecture 1 implies Conjecture 2. Write n = n1 + n2
and d = d1 + d2 with n1 > d1 ≥ 0 and n2 > d2 ≥ 0, where 3d ≥ n > d > 0. By
Lemma 2.6, we find that

M(d1, n1)+ M(d2, n2)≤ n1 − 1+ n2 − 1= n − 2< n − 1= M(d, n).

Conversely, we want to prove that Conjecture 2 implies Conjecture 1. For d = 1, 2
and 3, it is easy to verify that M(d, n)= n − 1 for 3d ≥ n > d . Assuming that the
statement M(d, n)= n − 1 is true for d = a − 1≥ 3 and 3d ≥ n > d . We want to
prove that M(a, n)= n − 1 is also true for 3a ≥ n > a. By Lemma 2.3, it is enough to
prove that M(a, n)= n − 1 for n = 3a. Now, assuming Conjecture 2 is true, we find
that M(a, 3a) > M(1, 3)+ M(a − 1, 3a − 3)= 2+ 3a − 4= 3a − 2. This forces
the result M(a, 3a)= 3a − 1. The theorem is proved. 2

The reason to introduce Conjecture 3 is to make a connection between Conjectures 1
and 4. Therefore, the next job is to prove that Conjectures 1 and 3 are equivalent to
each other. In doing that Theorem 3.4 plays a key role. To prove Theorem 3.4 we need
the following proposition.

PROPOSITION 3.3. If n > d, M(d, n)= n − 1, and n − 2≤ M(d − 1, n)≤ n − 1,
then M(d, n + 1)= n.

PROOF. Let T be an algorithm such that M(d, n + 1)= MT (d, n + 1). Then

M(d, n + 1)= 1+max{M(m; d, n + 1), M(d, n + 1− m)},

where m(1≤ m ≤ n + 1− d) is the number of items being tested in the first test.

Case 1. m = 1. Since M(1; d, n + 1)= M(d − 1, n), so, by Lemma 2.5 and the
assumption M(d, n)= n − 1, we find that

M(d, n + 1)= 1+max{M(d − 1, n), M(d, n)} = 1+ M(d, n)= n.

Case 2. n + 1− d ≥ m ≥ 2. By Lemma 2.6, we know that

1+ M(d, n + 1− m)≤ 1+ n + 1− m − 1≤ 1+ n − 2= n − 1.

For the other sum 1+ M(m; d, n + 1), by Lemma 2.7 and the assumption
M(d − 1, n)≥ n − 2, we have that

1+ M(m; d, n + 1)≥ 1+ 1+ M(d − 1, n)≥ n.

Thus M(d, n + 1)≥ n.
By Lemma 2.6, we know that M(d, n + 1)= n. 2

THEOREM 3.4. If M(d, 3d)= 3d − 1, then M(d, 3d + 2)= 3d if and only if

M(d + 1, 3(d + 1))= 3(d + 1)− 1.
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PROOF. We first prove that if M(d, 3d + 2)= 3d , then M(d + 1, 3d + 3)= 3d + 2.
Since, by Lemma 2.5, 3d − 1= M(d, 3d)≤ M(d + 1, 3d), we find that M(d +
1, 3d)= 3d − 1. So, by Proposition 3.3, M(d + 1, 3d + 1)= 3d . Next, by
applying Lemmas 2.2 and 2.4, we have M(d, 3d + 1)= 3d − 1. Now, applying
Proposition 3.3 on n = 3d + 1, we obtain that M(d + 1, 3d + 2)= 3d + 1. Finally,
using M(d + 1, 3d + 2)= 3d + 1, the assumption M(d, 3d + 2)= 3d and applying
Proposition 3.3 on n = 3d + 2, we have that M(d + 1, 3d + 3)= 3d + 2.

Conversely, if M(d, 3d + 2) 6= 3d , then, by Lemmas 2.2 and 2.4, M(d, 3d + 2)
= 3d − 1. Let T be an algorithm for the (d + 1, 3d + 3) problem which first tests a
set K of 2 items. If the outcome is pure, then T uses a minimax algorithm for the
remaining problem. If the outcome is contaminated, then T tests a single item from
the set K and then uses a minimax algorithm for the remaining problem. Then

MT (d + 1, 3d + 3)

=max{1+ M(d + 1, 3d + 1), 1+ 1+ M(d, 3d + 1), 1+ 1+ M(d, 3d + 2)}.

Since, by Lemmas 2.2–2.4, 1+ M(d + 1, 3d + 1)= 3d + 1= 1+ 1+ M(d, 3d +
1)= 1+ 1+ M(d, 3d + 2), we find that MT (d + 1, 3d + 3)= 3d + 1. This implies
that

3d + 2= M(d + 1, 3d + 3)≤ MT (d + 1, 3d + 3)= 3d + 1, a contradiction.

Hence we derive that M(d, 3d + 2)= 3d . 2

Now using the fact that M(1, 3)= 2 and assuming either conjecture (Conjecture 1
or Conjecture 3) is true, we can prove that the other conjecture is true by induction
with the help of Theorem 3.4 easily. Thus we have the following desired relation.

COROLLARY 3.5. Conjecture 1 is true if and only if Conjecture 3 is true.

If one is interested in testing the conjecture of Hu et al. for large defectives d by
computer, then Theorem 3.4 might help.

The rest of this section is devoted to proving that Conjecture 4 is equivalent to
Conjecture 3. In doing this Theorem 3.9 plays a key role. First we need some
preliminary results.

PROPOSITION 3.6. M(d, n) < M((1, 2)× (d, n)) for n > d > 0.

PROOF. Let A = {x, y} be the set containing one defective and B be the set of n items
containing d defectives. By notation (1, 2)× (d, n), we mean that A ∩ B = ∅. Let
T be a minimax algorithm such that M((1, 2)× (d, n))= MT ((1, 2)× (d, n)), and v
be a leaf of T with the longest path length, say l. We will study the test history H(v)
of leaf v closely.

Case 1. Along the test history H(v) of leaf v, if the tests applied at nodes starting
from the first node (the root of T ) up to the (l − 1)th node do not involve items from
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the set A, then the sample space at the lth node is {I ∪ {x}, I ∪ {y}}, where I is a
sample from the sample space S(d, n).

Case 2. Along the test history H(v) of leaf v, let u be the first node (before the lth
node) with the test involving an item from set A. At this moment before testing, the
sample space at node u is S(u)= {I ∪ {i}; I ∈ S1 and i ∈ A}, where S1 is a subset of
the sample space S(d, n).

Subcase 2.1. The test t (u) involves one item, say x , from set A and a nonempty subset
W of set B. After executing the test t (u), S(u) is split into two disjoint nonempty
subsets, which are Sc(u)= {I ∪ {x}; I ∈ S1} ∪ {I ∪ {y}; I ∈ S1 and I ∩W 6= ∅} and
Sp(u)= {I ∪ {y}; I ∈ S1 and I ∩W = ∅}. Note that {I ∪ {x}; I ∈ S1} says the
remaining problem is to find the defectives in S1.

Subcase 2.2. The test t (u) involves only one item which is from set A, say x . Then
Sc(u)= {I ∪ {x}; I ∈ S1} and Sp(u)= {I ∪ {y}; I ∈ S1}.

Note that if set A does not exist, then the sample space at node u, instead of S(u),
is S1. Therefore the test t (u) of Case 2 is not needed.

Thus, either in Case 1 or Case 2, if we throw away the set A, then the algorithm
T induces an algorithm T ′ on the (d, n) problem with MT ′(d, n)≤ MT ((1, 2)
× (d, n))− 1. Hence we obtain that M(d, n) < M((1, 2)× (d, n)). 2

By the inequality M((1, 2)× (d, n))≤ M(1, 2)+ M(d, n) and Lemma 2.2, we
have the following corollary.

COROLLARY 3.7.

(1) M((1, 2)× (d, n))= 1+ M(d, n) for n > d > 0.
(2) M((1, a)× (d, n))≤ M((1, b)× (d, n)) for n > d > 0 and b > a > 1.

PROPOSITION 3.8. M(d, n)≤ 3d − 1+ d(n − 3d − 1)/2e for n ≥ 3d + 1≥ 4.

PROOF. We prove this inequality by induction. For case d = 1, it is clear that the
statement follows by the equality M(1, n)= dlog2 ne. Now assume the statement is
true for d = a − 1> 0. By Lemma 2.4, we obtain the inequalities

M(a, 3a + 1) ≤ 3a − 1= 3a − 1+ d(3a + 1− 3a − 1)/2e and

M(a, 3a + 2) ≤ 3a = 3a − 1+ d(3a + 2− 3a − 1)/2e.

To proceed we assume that

M(a, n − 1)≤ 3a − 1+ d(n − 1− 3a − 1)/2e for n − 1≥ 3a + 2.
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Let T be the algorithm for the (a, n) problem which first tests a set K of two items
and then uses a minimax algorithm for the remaining problem. Then

M(a, n) ≤ MT (a, n)

= 1+max{M(a, n − 2), M(2; a, n)}

= 1+max{M(a, n − 2), 1+ M(a − 1, n − 1)} (by Lemma 2.8)

≤ 3a − 1+
⌈

n − 3a − 1
2

⌉
(by induction).

The proposition is proved. 2

Now we can prove the following key step.

THEOREM 3.9. M((1, 3)× (d − 1, 3d − 1))≤ 3d − 2 for d ≥ 2.

PROOF. Let A = {a1, a2, a3} and B = {b1, b2, . . . , b3d−1} be the disjoint sets, where
A contains exactly one defective and B contains d − 1 defectives. For d = 2, by
Lemma 2.10, we know that M((1, 3)× (1, 5))= dlog2 15e = 4. For the case d ≥ 3,
let T be the algorithm defined by the following procedure.

Step 1. Set i := 1 and b0 = a1.

Step 2. Test the group {a1, bi }. If the outcome is pure, then use a minimax algorithm
for the remaining problem which is the (1, 2)× (d − i, 3d − i − 1) problem. By
Propositions 3.6 and 3.8, we know that

M((1, 2)× (d − i, 3d − i − 1)) = 1+ M(d − i, 3d − i − 1)

≤ 1+ 3d − 2i − 2= 3d − 2i − 1.

If this is the direction where the problem goes, then the total number of tests needed
to identify all defectives is at most 2(i − 1)+ 1+ 3d − 2i − 1= 3d − 2.

If the group {a1, bi } is contaminated, then go to Step 3.

Step 3. Test the group {a2, a3, bi }. If the outcome is pure, which implies item a1
is defective, then use a minimax algorithm for the remaining problem which is the
(d − i, 3d − i − 1) problem. Note that, up until now, the identified defectives are the
set {b0, b1, . . . , bi−1} and the identified good items are the set {a2, a3, bi }. If this is
the direction where the problem goes, then the total number of tests needed to identify
all defectives is at most 2i + M(d − i, 3d − i − 1) which, by Proposition 3.8, is less
than or equal to 3d − 2.

If the group {a2, a3, bi } is contaminated, then, by combining the contaminated
result on group {a1, bi }, we conclude that bi is defective. At this stage, we check
the number i . If i < d − 1, then set i := i + 1 and then go to Step 2. If i = d − 1,
then all defectives in the set B have been identified by using 2i(= 2d − 2) tests and
the remaining problem is the (1, 3) problem which needs two more tests to complete.

By inspecting the algorithm T , we know that the maximum path length of T is at
most 3d − 2. 2
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By Corollary 3.7 and Theorem 3.9, we have 1+ M(d − 1, 3d − 1)= M((1, 2)
× (d − 1, 3d − 1))≤ M((1, 3)× (d − 1, 3d − 1))≤ 3d − 2 for d ≥ 2. Hence the
following corollary clearly holds.

COROLLARY 3.10. For d ≥ 2, if M(d − 1, 3d − 1)= 3d − 3, then

M((1, 3)× (d − 1, 3d − 1))= 1+ M(d − 1, 3d − 1).

REMARK 3.11. By Lemma 2.10, we know that M((1, 3)× (1, 6))= dlog2 18e = 5
6= 4= 1+ M(1, 6). Hence, in general, the equation M((1, 3)× (d, n))= 1+
M(d, n) does not hold. We also note that, by Lemma 2.2,

M((1, 3)× (d, n))≤ M(3; d + 1, n + 3) for n > d > 0.

COROLLARY 3.12. For d ≥ 2, if M(d0, 3d0)= 3d0 − 1 for 0< d0 ≤ d, then
M(d, 3d + 2)= 3d if and only if M((1, 3)× (d − 1, 3d − 1)) < M(3; d, 3d + 2).

PROOF. First, by the assumption on M(d0, 3d0) and applying Lemma 2.3 and
Theorem 3.4, we know that M(d, 3d − 1)= 3d − 2 and M(d − 1, 3d − 1)= 3d − 3,
respectively. Also, by Lemmas 2.2 and 2.4, we know that 3d − 1= M(d, 3d)
≤ M(d, 3d + 2)≤ 3d .

Suppose that M(d, 3d + 2)= 3d . Then 3d = M(d, 3d + 2)=min
T

MT (d, 3d

+ 2)≤ 1+max{M(3; d, 3d + 2), M(d, 3d + 2− 3)} = 1+ M(3; d, 3d + 2). Now,
by applying Corollary 3.10, we obtain that M(3; d, 3d + 2)≥ 3d − 1> 3d − 2
= 1+ M(d − 1, 3d − 1)= M((1, 3)× (d − 1, 3d − 1)).

Conversely, suppose that M(3; d, 3d + 2) > M((1, 3)× (d − 1, 3d − 1))
= 3d − 2. To prove M(d, 3d + 2)= 3d , we employ the equation

M(d, 3d + 2) = min
T

MT (d, 3d + 2)

= 1+max{M(m; d, 3d + 2), M(d, 3d + 2− m)}

for some m > 0.

In the case m = 1 or m = 2, we have

M(d, 3d + 2)≥ 1+ M(d, 3d + 2− m)≥ 1+ M(d, 3d)= 3d.

If m ≥ 3, then by Lemma 2.2 we still have

M(d, 3d + 2)≥ 1+ M(m; d, 3d + 2)≥ 1+ M(3; d, 3d + 2)≥ 1+ 3d − 1= 3d.

In conclusion, we have M(d, 3d + 2)= 3d .
The corollary is proved. 2

Now we are ready to prove that Conjecture 3 is equivalent to Conjecture 4.

THEOREM 3.13. Conjecture 3 is true if and only if Conjecture 4 is true.
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PROOF. Assuming that Conjecture 3 is true, then, by Corollary 3.5, we have that
Conjecture 1 is also true. Now, by applying Corollary 3.12, we know that Conjecture 4
is true.

Conversely, assuming Conjecture 4 is true, we prove that Conjecture 3 is true by
induction.

For d = 1, by Lemma 2.9, M(1, 5)= 3 holds. Suppose that M(d, 3d + 2)= 3d
holds for d ≤ k. Then, by applying Theorem 3.4 repeatedly, we have M(d, 3d)
= 3d − 1 for 0< d ≤ k + 1. Now, applying Corollary 3.12, we obtain M(k + 1,
3(k + 1)+ 2)= 3(k + 1). Thus Conjecture 3 is true.

The theorem is proved. 2

REMARK 3.14. Inspired by the statements of Conjectures 2 and 4 many problems
arise. For example, we could ask what relations would exist between M(d1, n1)

+ M(d2, n2) and M(d1 + d2, n1 + n2) for n1 > d1 > 0 and n2 > d2 > 0. Similarly,
we could ask what relations could be between M(m; d, n) and M((1, m)
× (d − 1, n − m)). Of course, many more questions could be asked.
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