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Abstract. The notion of an iterated extension of a flow is introduced and studied.
In particular it is shown how eigenfunctions occur in a natural way. This is then
exploited to produce an example of a weakly mixing minimal set with a non-weakly

mixing quasi-factor.

Introduction . : :

The flow (Y, T) is an extension of the flow (X, T) if there exists an epimorphism
of (Y, T) onto (X, T). One way of producing extensions of (X, T') is by means of
cocycles of (X, T) into a compact group K. Thus let o be a cocycle on (X, T) to
K. Then one forms the skew product flow (K XX, T') where the action of T on
K XX is given by the map

(k, x, t)> (ko (x, 1), xt): K XX XT > K X X.

When the phase group T is isomorphic to the integers, the set of cocycles on (X, T)
to K may be identified with the set of continuous functions on X to K and this

may be exploited to iterate the extension. N .
In order to illustrate the basic definitions and facilitate the reading of the paper

we describe this construction informally. o
A flow in this paper is a pair (X, t) consisting of a compact Hausdorff space X

and a homeomorphism ¢ of X onto itself. (We use the same letter, ¢, for every flow
considered.) K will stand for a compact abelian topological group, e the identity
element of K, and Z (X ; K) the set of 1-cocycles from X X Z into K,

Now start with a minimal pointed flow (X, xo) and a coc.ycle ant(X; K). Let
(Y, yo) be the pointed flow ext (X, o). Thus Y <K XX is the orbit closure of
yo= (e, xo) in the flow on K XX given by

(k, x)t = (ko (x, )x, t).
We let F,: X - K be the function on X defined by F, (x) = o (x, t). Next we consider
the function
so(k, x) ‘8o ((k, )ty =a(x, 1),
S is the function on Y which ‘co-bounds’ a. Our next step is to define a cocycle
on Y by means of the function éo. Namely let o€ Z(Y, K) be given by

o1y, 1) =F,,(y)=6a(y).
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Let Yy=ext(Y,o1) =K XK xX;i.e. Y] is the orbit closure of zo= (e, e, xo) in the
flow on K XK XX given by

(, k, x)t = (IF5,(k, x), kFo(x), xt).
(Writing down the orbit of zo in Y; we have
(e’ e, xO)tn = (0'1(}’0, tn)’ O'(xo, t")’ thn) = (80'1(20'")’ 50(}’0t"), thn)')

The function 60 1: Y1 K, d01(l, k, x) =1 can now be used to define o, € Z(Y;;.K)
namely
o2z, t)=F,,(z2)=604(2) etc.

We were motivated to study the structure of these extensions by our attempts
to understand why our construction of eigenfunctions from cocycles in [4] ‘worked’.
This is explained in proposition 1.3 which states that for a proper choice of @ an
eigenfunction will appear in the supremum of the flows ext (x, o) and ext (x, o)a.

As an added bonus our analysis allowed us to construct a weakly mixing flow
with a non-weakly mixing quasi-factor. (Recall that a quasi-factor of a flow Z is
a minimal subset of the flow induced on 27, the space of closed subsets of Z.) To
see how this is done suppose that in the procedure described above we take X to
be weakly mixing, K =K the circle group and choose o such that Y =K XX and
Y is also weakly mixing (this is possible by [6]). We then show that necessarily
Y, =KXKXxX (proposition 1.7) and that Y, is weakly mixing (corollary 1. 11)
Take % to be the orbit closure of say '

{( ’ —1’ xO)’ (1p 19 xO)}’
in 2", the flow of closed subsets of Y. It is easy to see that the minimal flow ¥
has —1 as an eigenvalue, in particular it is not weakly mixing. We then show that

¥ =a(A, Y) for a certain r-closed subgroup A of G.
These subjects together with the analysis of flows of the form

(Y’ YO)V(Y’ YI)’

where yg and y; project onto the same point in X, on which our results rest, are
the content of § 1. In § 2 we consider the higher order cocycles o, (n eN) and
generalize some of the results of § 1.

We now formalize the above definitions. Each flow (X, ) will be assumed provided
with a base point xo such that xoit = xo, where u is a fixed idempotent in some
minimal subset M of BZ. This allows us to pass back and forth between minimal
sets and Z-subalgebras of C(M). The algebra corresponding to X will be denoted

by al(X) and the flow corresponding to the algebra &¢ by |s¢|. (See [1] for details.)
Let K be a compact abelian topological group. Then Z (M, K) will denote the
set of cocycles on M to K and
Z(X,K)={oceZ(M,K): al (o)< al (X)}.

There is a bijective correspondence
ceoF: Z(X, K)o CX, K),

the set of continuous functions from X to K, given by
F,(x)=o(x,1).
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On the other hand there is a bijective correspondence
o->80:Z(M,K)-»Co(M,K)={feC(M,K):f(u)=e}
(e, the identity element of K). Consequently given o €Z(M, K) there exists
0o € Z (M, K) such that
8a,(m)=F, ) 'F,(m) (meM).
(For a detailed discussion of the correspondence o - 8o see [2]. In the latter 6o is
denoted by f,.)

We write R for the real numbers, Z for the integers, and K for the multiplicative
circle group.

Section 1
The first result of this section codifies the relationship among the various operations

on a cocycle described above. Since the proof follows directly from the definitions,
it will be omitted.

(1.1) ProposITION. Let 0 € Z(M, K). Then:

(1) (88,)(m)=F,(u)"'F,(m).

(2) o(m, t)=F,(u)(63,)(m).

(3) F,(u) 'sc(m, t)=83,(m)éa(m).

(4) (80,)(m)63,)(n) ' =F, (m)F,(n)"! (m, n e M).

Notice that (2) implies that if ¢ is a cocycle on X to K, then 8, is a coboundary
on X to K.

(1.2) PROPOSITION. Let 0 € Z(M,K), meM, ‘and w be that element of Z (M, K)
with

dw(x)= 80(x)"16cr(m) Sa(mx) (x e M).
Then F,(x)=808,(mx)83,(x)" (x eM).
Proof. ‘
F,(x)=w(x, t)=6w(x) 6w (xt)
= 8o (mx) "' 80 (m)8a (x)80 (xt) ™' 60 ()~ 5o (mxt)
= §o(mx) 60 (x Y6 (xt)~'8a (nxt)
=a(x, t) 'olnx, t)= F,(x)"'F,(mx)
=89,(x)"188,(mx). O
(1.3) PRorosITION. Let € Z(s4, K), a €g(3,) and F,, (m) 80,(a) (meM). Then
(1) al (bw)<ext (£, o)V ext (f, o)a.
(2) If ta = oA, then
ext (&, o) vext (o4, o)a =ext (54, o) v ext (&, w).
Proof. (1). Set m =a in (1.2). Then

F,,(x) =88, (ax)83,(x) " =83, (a)88,(x)58,(x) "' =83, (a)
since « € (3,) (see [2]).
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Since al (6c) cext (&4, o), 6o defines a continuous function on |ext (&4, o)}, the
expression for dw given in (1.2) shows that w defines a continuous function on

lext (7, o) v ext (4, o).

(2). By(1), N =ext (s, o) vext (&, w) cext (4, o) vext (¥, o)a = . Since sfa =
f, & is a distal extension of &/ and so the proof may be completed by showing that

N =g¥) =S =g(&).
To this end let

B € N =g(ext (&7, o)) nglext (, w)).

Then
So(B)=e=6w(B)

whence.by (1.2)

e =8w(B)=580(B) 60 (a) 80 (ap)

=8a(a) 'Sa(aB).
Hence
so(a) =60 (aB)=ba(aBa'a)=6c(afa)sc(a)

(recall that &fa = implies that aAa"'=A whence aBa~'eA cgq(c)). This

implies that
afa"'eker sa
and so
Bea ' ker (6a)a"'nA =glext (¥, o)a).
Consequently
B €S =glext (s, o)) nglext (¥, o)a). O
(1.4) COrROLLARY. Let
oceZ (4, K)
and
Sa =5 (a € g(d,)).
Then

Viext (4, o)ala € g(3,)} = ext (7, o) VE.
(Here & is the set of all almost periodic functions on Z.)

(1.5) Remarks. (1). Let F be a r-closed subgroup of G and &f a Z-sub-algebra of
a(u). Then it is natural to define s to be F-regular if da = (a € F) and rp(&f),
the F-regularizer of sf, as the supremum of {sfa |« € F}. Then (1.4) states that

raealext (sf, o)) cext (s, o) vE

if o is g(d,)-regular.
(2)- Let S =g(ext (s, ). Then (1.4) implies that

SAEc n{aSa”|a €g(da.))
when &7 is g(d,)-regular. (Herc E = g(&).)
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(1.6) PROPOSITION. Let o € Z (¥4, K) and w € Z(M, K) with F, =éa. Then

1) a, =o.

2) sw(t*)=T1}20 8o (t)).

(3) Sw(pt)=6w(p)sa(p) (p€BZ).

4) Sw(pt*)=8w(p)I1j=0 Sc(pt’) (p € BL).

(5) dw(Bt*) =6w(B)6a(B) 8w (t*) (B € A =g(«)).
Proof. (1)

(8o)(m) = F,(u) 'F (m)= (69,)(1) 1 (58.)(m) = (68,)(m)" (m € M).

Hence o =4,

(2) Sw(t)=w(u, t)=F,(u)==56c(u)=e shows that

k-1 )
Sw(t®)= 1] sc(t') fork=1.
i=0
Now assume that it holds for 1 sk <r. Then

So(t™ =0, ™) =, No(t, )

r—1 .
= sw(EL(t") = ( T 80 (x'))sw %

j=0
=[] sw(t’).
j=0
(3) Let peBZ and t~ - p.Then ¢t 5 pt and
k-1
S (pt) = lim S (£ = (lim Tl 5a(t')) lim 80-(£%)
i j=0Q i

=lim 8w (¢*) li§n 8o (t*) = 8w (p)sa(p).

(4) This follows from (3) by induction on k.
(5) If B e A then 8o (Bx) =6c(B)déc(x) (x € BZ). Hence

k-1
6w (Bt*) =8 (B)30 (8)" 11 80 (t') =8w(8)8r (B) 8w (1)
j=
(by (4) and (2)). O
(1.7) Prorosi1TiON. Let o € Z (54, K) be such that & = ext (sf, o) is weak-mixing and

6a(A) =K. Then dw(S) =K where w € Z(M, K) with F,, =60 and S = g(¥).

Proof. 8w (S) is a closed subgroup of K whence dw(S) is finite or all of K. If §w(S)
is finite then 8w "(S)=¢ for some integer n. Since 6o"(A)=K and F»=8c¢", it
suffices to rule out the possibility that §w (S) =e.

" Let B =ext (¥, w), then dw(S)=e implies that B = whence Ba =Ja =sf =
B (€ A). This is impossible since B vBa contains the eigenfunction p where
Fy,(m)=60(a) (m € M) by (1.3). (Recall that 3, =¢ and A =g(a).) O

(1.8) Remarks. (1) The assumption 8o(A) =K implies that || =IK x|s?|, and the
conclusion 8w (S) =K implies that

lext (&, w)l =K XK X |s].
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We shall see later (corollary 1.11) that ext (¥, w) is also weak-mixing.

(2) With the assumptions and notation of (1.7) let B =ext (¥, w). (Observe that
F, =60 implies that w € Z(%, K).) Then ra(B)=B v &. To see this first observe
that S is a normal subgroup of A. This implies that Yo =% (a € A). Moreover
d., = o implies that A =g(d,,). Hence by (1.4) ra(B) =B v &.

Now let f be a character on Z. Then f = 8p where F,(m) =k for some k €K and
all m € M. There exists « € A with

§d,(a)=bc(a)=k
whence f = 8p e ra(¥) by (1.3.). Since the characters generate
ERBVEra(RB).
(3) Proposition 1.7 as well as theorem 1.10 below are true when K is replaced
by a finite group of prime order.
(1.8) LEMMA. Let g € Z'(s4, ) with 85(A) =K, £ >0 and V a neighbourhood of
u. Then there exists pe VN A < M such that
boc(p)—1lse and (So(pu))" #1 ifn#0.
(Notice that p € A implies that pu € A.)
Proof. Since 6o (1) =1 there exists a neighbourhood W of u with W< V and
[bo(x)—1|se (xe W).
By a now standard argument we may assume that
int, cls, (WNA)# J.
(See [3: 4.4].) Since 6o: (A, 7) > [ is onto and open there exists
accls, (WnA) withéo(a)"#1if n0.

Let (o,) be a net on WA with a, >« and a, » p € 8Z. Then

peWnAcVnA, |sc(p)—1l=e and a.=pu.

Hence §a (a) = 8o (pu). The proof is completed. O

(1.9) PROPOSITION. Let o€ Z (4, K) with éa(A)=K, weZ (M, K) with F, =éa,
and & =ext (£, o). Then B =ext (¥, w) is not an almost periodic extension of .

Proof. It will be convenient to identify |%B]| with a subset of K XK X |s/|. When this
is don¢

x|B = (6w (x), 6o (x), x|f) (xeM).
Let € >0. We shall find p, g € BZ such that
plsf = ulsd, bw(p)—1|=<¢, [o(p)—1lse and |6w(pg)dw(g)™'—1|=1

Thus p|9 is close to u|®, plf = u|sf, but pglB is not close to uglB. Consequently
A is not an almost periodic extension of 7.
To this end let V be a neighbourhood of u« such that

bw(r)=1|=se (reV).
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By (1.8) there exists p € V A A with |6c(p)—1|=¢ and do(pu)” #1 if n #0. Since
PeEA, pld =uld.

Now choose A € K with [Adw(pu)— 1)>3. There exists a sequence of integers k;
with Sa-(pu)"‘ - A. Let r € BZ be adherent to the sequence t*. Then by (5) of (1.6)

Sw (pur) = dw (pu)Aéw(r),

whence |6w (pur)w (r)"1 -1| >1. Now set ur = g and recall that 8w (r) = 8w (ur). The
proof is completed. O

The following result is valid for any abelian group T.

(1.10) THEOREM. Let & be an almost periodic extension of & such that S <A and

A/S is a Lie group, and let B be an almost periodic extension of & such that B S
and S/B =K. Then either

(i) B is an almost periodic extension of « or
(i) BeS*.
(Recall that
R* ={C|C is a v-closed subgroup of G with CR =G (R e R)}
where R is a collection of 7-closed subgroups of G.)

Proof. Assume that (i) does not hold and let C € S*; i.e. C is a 7-closed subgroup
of G with CS = G. Then

CB>(CS'>G'=E.
Since G/E is abelian, CB is a normal subgroup of G.
LetL=CBNS>ENS>EnA*=A" Hence £=a(L)n«” is an almost peri-
odic extension of &f. The exact sequences
1-S/L->A/L->A/S->0 and S/B->S/L-0

show that S/L is a circle or a point and that in either case A/L is a Lie group.
Thus &f <« <R and L/B is a subgroup of the circle group S/B. Hence L/B is
finite or L/B = S/B. If L/B were finite, 9 would be an almost periodic extension
of & [7:5.7], a possibility which has been ruled out. Therefore L/B =S/B and so
L =S. Consequently S = CB and G = CS < CB. The proof is completed. O

(1.11) CorOLLARY. Let o € Z(s4, K) with 60(A) =K, ¥ = ext (¥, o) weak-mixing
and o € Z(M, K) with F, = 8a. Then B =ext (¥, w) is weak-mixing and dw(S) =K.
Proof. Recall that when T is abelian, a flow (X, T) is weak-mixing if and only if
8(X)E = G (see[5: 3.7 and 4]). By (1.9) and (1.10) B € S**. Since & is weak-mixing,

SE=G;i.e. E€S*. Hence BE =G and & is weak-mixing. That 6w (S) = K follows
from (1.7). O

We shall now use the results obtained to produce a weak-mixing flow with a
non-weak-mixing quasi-factor.

(1.12) Notation. The following notation will be used for the remainder of this
section: o € Z (o, K),# =ext (4, ), w € Z(M, K) with F,, = 60, B=ext(¥,w),ac

A. with 8a(a) # 1, (a) the 7-closed subgroup of G generated by « and p € Z (M, K)
with F,(m)=6c(a) (meM).
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(1.13) PROPOSITION. Let 6w (B)=1 (B €{a)). Then

(1) gla({a), B))=(a)(ker 6p N B) and

(2) al(6p) =a({a), RB)).
Proof. (1) Set £ = a({a), B) and L =g(¥), and let b eker 6p N B. Then

1=8p(b)=6w(b) '6w(a) '6w(abd)=dw(a)  dw(ab)
(by (1.2)). Thus
Sw(a)=dw(ab)=bw(aba'a)=6w(aba")w(a) since aba™'eS.
Consequently 1= 8w (aba"") and aba '€ B =ker (8w|S). Thus
a(ker 8p " B)a~' cker ép N B.

Let H ={a €{a)|a(ker §p nB)<(ker §p nB){a)}. Then H is a closed sub-semi-
group of (o). Hence H is a closed subgroup of {(a) [1: 2.11]. Since a € H, H ={a).
Consequently

(a)ker 6p " B) < (ker 6p nB){a)
and
(ker 5p " B)(a)= ((a) ker 5p nB) ' = ((ker 5p N B)(a))™’
=(a)(ker 8p N B).

Thus (a)(ker 6p N B) is a T-closed subgroup of G.

Now L is the largest r-closed subgroup of G which contains {a) and is contained
in («)B [5: 3.1]. Hence (a)(kerp nB) < L.

Let beLNB. Then abe L=L""'=({a)B)™' =B{(a). Hence ab =rB for some
re B and B € (a). Then

dw(ab)=8w(rB)=6w(r)dw(B)=0w(B)=1.

Thus 8p(b) = 8w (b) 'Sw(a) 'sw(ab)=1 and so b e ker 5p N B.
Let /e L. Then ! =kb for some k €{a), b € B. Then

beLNnBc<kerépnB

and so [ € (a)(ker 6p N B).
(2) 8p(a)=6bw(a) '6w(a) '6w(a?) =1 shows that (a) < ker 8p. Hence

L =(a)(ker 6p nB)<ker 8p = g(al (6p)).
Now al (6p) < &, the algebra of almost periodic functions, implies that

a({a), B) v al (6p)

is an almost periodic extension of a({a), 2). Since the groups of these flows are
the same, the flows are equal. The proof is completed. O

(1.14) LEMMA. Let 6w(a)=1=8w(a?). Then dw(a")=1 for all integers n.
Proof. The formula
8p(x) = bw(x) '6w(a) 6w(ax) = 8w (x) 'swlax) (1.2) (%)

shows that p(a)=1. Hence 8p({a)) =1 since 8p is a continuous homomorphism
of (G, 7) into K. Lemma 1.14 now follows from (x) by induction. O
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(1.15) LEMMA. 8w ({(a)) =1 if and only if H({a), 7)< B and sw(a)=1=8w(a’).

Proof. Let 6w ({(a)) = 1. Then of course dw(a)=1=w(x %), Moreover a € A implies
that (o)< A. Hence

H({a, ) <H(A,7)cA%cS

whence H({a), 7)< B = ker (6w|S) since §w (H ({a), 7)) = dw({a)) = 1.
Now let Sw(a)=1=6w (a?) and H({a), )= B. Let B €{a). Choose a net (a™)
in (@) with «™ - ,8 and let ™ > p e M. Then

Sw (p) =lim §w(a™) =1
by (1.14).

Moreover (a™) = {a) = A implies that plof = ul/ and pu € {a). Hence p = pu on
B (B is a distal extension of &) and Sw(pu) =sw(p) = 1. Also a™ > , pu shows that
B(pu)'e H(a), 7)< B.

Consequently 8w (B8) = w(B(pu)~'pu) = sw (B(pu) )éw(pu) = 1. 0
(1.16) A construction. Let &f be a weak-mixing metric flow and o € Z (&, K) such
that ¥ =ext (&, o) is weak-mixing and So(A)=K. (Such exist, see [6].) Set
B =ext (¥, w) where F, =6o0. Then by (1.11) B is weak-mixing and éw (B) =K.
Hence |%3| may be identified with the flow (K XK X ||, t) where

(k, I, x)t = (8c(mt), Sw (pt), xt),
(k,leK,xe|sf/| and m,peM with8o(m)=k, sw(p)=1).

Let A elK. Then the flow (K, R,) is equicontinuous and so is disjoint from 2.
Hence there exists a sequence (N;) such that

(1,1, xt™>(1,A,x0) and AN 1,
(Here xo=ulst.) .
Let p € BZ be a limit point of the sequence (') and set & = upu e G.
(1.16.1) sw(a®) =1 for all integers k.
Proof. Since (1, 1, xo)t™ > (1, A, x0), (1, 1, xo)p = (1, A, x0). Also
(1, L, x0)p = (1, 1, xo)up = (8w (up), 8o (up), xoup).

Hence w(up) =1, da(up)=A and up =u on . Thus @ = upu = u on of;i.e. « € A.
Since & and & are both distal extensions of &/ and up =upu on o, a = upu = up
on & and @. Consequently dw(a)=8w(up)=1 and o (a)=A.

Moreover by (5) of (1.6)

Sw(at™) = dw(a)do (a)Nsw Ny = ANSw (R0)
from which it follows that

Sw(ap)=d6w(p) =dw(a)=1.

Since apu=pu=p=ap on &, a’=apu=ap on A. Consequently Sw(a?) =
Sw(ap)=1 and (1.16.1) follows from (1.14). O

(1.16.2) Let A* = 1. Then H({a), 7)< B.
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Proof. 8a(a*)=6c(a) =A% =1 implies that «* € S. By (1.16.1), sw (a*) = 1. Hence
a* e B =ker (§w|S).
Consequently (@) n B has finite index in (o) whence
H({a), 7)={a)nB <B. O

(1.16.3) Let A* =1 with A #£1, k #0. Then a({a), B) is a non-weak-mixing quasi-
factor of the weak-mixing flow, P.

Proof. This follows from (1.16.2), (1.15), and (1.13). O

Section 2

(2.1) Definition. Let o € Z (s, K). Then the sequence built on (£, o) is the sequence
(82n, 0n) (n =0) defined inductively as follows: sfo =1, oo =0, Hp+1 =Xt (Lp, Tn)
and on+1 € Z (A, K) With F,_,, =80, Thus o, ,, = 0

In § 1 we were concerned with the first two or three terms of the sequence built
on (&4, o). In particular (1.3) dealt with of; vl for a €g(d,). Here we shall
consider &, v &, a for « € A = g(HA).

(2.2) Notation. For most of this section we shall be dealing with a fixed flow &/,
oceZ(d, K), and a € A. Let (4, o) be the sequence built on (s, o) and

k,=6c,(a)e K (n=0).
Then (&7, pi' )i=0 Will denote the sequence built on (R, p") (n =0) where
p"€Z(M,K) with F,r(m)=k, (meM).

The various flows and cocycles depend of course on a but this dependence has
been suppressed for ‘notational convenience’.

(2.3) ProPOSITION. For all positive integers n,
T1 8p41(6) = 80mr(x) 80001(a) 6slax) (€M),
Proof. The case n =0 is just proposition 1.2. Now assume that
:I_:[; Sph—1i(x) =80, (x) 60, (@) 60, (ax) (x e M).
Then sf,+1 =ext (4, 0n) and 9,,,,, = .. By (1.2) if ye Z(M, K) with
8y (x) = 8041(x) 80 s1(@) " 6T nsr(ax)

then F,(x) = 80, (ax)bon(x)™" (x € M). Thus
n-1
F,(x) "—'50',;(0)‘“0 80 h-1-1(x)

=F,3(x) :lf[; Fpr_ (x)= ‘fIOFn.'.-a(x)‘

Consequently y =[]f=oph-i and 8y =[]{-08pn-i (recall that K is abelian). The
proof is completed. a
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(2.4) Remarks. We should now like to use the cocycles v, =ﬂ?.opf,..; to build a
sequence of flows (%,). To this end observe that

n n n+1
87" = H 6p:,-{ = iHO FP:‘--H—( and F'YmH = I-IO FP:“*I—I
=0 - =

whence
Fyir =(8Yn)F o5t

Now set 2o = R. Since v, is the constant cocycle po, R1=ext (Ro, o) is an almost
periodic extension of Ro.

Assume that vy, is a cocycle on R, to K and set R,+1 =ext (R, vn). Then &y,
definesacontinuousfunctionon|®,+1|toK.Since F ,3+1 isconstant, F ., = (§yn)F p3+1
defines a continuous function on [#,+] to K. Hence vy,+; is a cocycle on &+, to
K and the sequence (R.) is well defined, where R+ = ext (R, v« ).

(2.5) PROPOSITION. For all integers n =1, s, v slp,a =l vV Rp-1.

Proof. When n =1, R0 =R and &, v Ro= ;. Moreover &, v &ja =&, since ac€
A=A,and A1 <9A,.

The case n =2 is just (1.3).

Assume that of, v, =, vR,-1. Since .41 and R,, are distal extensions of

s, and R,_, respectively of,+1 Vv y+1a and &1 VR, are both distal extensions
of the flow

A Vo =, VRp-1.

It thus suffices to show that their groups A, 1 N a—lA,H.la and A,+1 N R, are equal.
LetBeA,+1 na'Apna cA,na'A,a=A,NR,_;. Then

n—-1
8Yn-1(8) = ino 8pn-1-i(B) = 80, (B) 80 n(a) 80, (aB)

and BeA,,1na 'A,ia implies that 8o, (8)=e and

San(aB) =don(afa " a) = son(aBa oo, (a).

Thus 6v,-1(8) = e; which together with the fact that 8 € R,_ implies that 8 € R,.
Consequently

Anrina 'Agi@e €A AR,
Now let 8 € Ap+1R,.. Then e =8y,-1(8) = 85,(8) '6a4(a) 60, (aB)
whence 8o, (af) = 0, ()60, (B). On the other hand
San(aB) =80n(aBa ™ a) = 80, (aBa " )é0, (a).
(Recall Be ApsinR, €A NRa1=A,na"'Aa.) Hence 5o (eBa™!) = e and so
Bea™'A,, a. The proof is completed. O

(2.6) Remarks. We should now like to consider the A-regularizer, ra(sf,) of <Z,.
To this end we introduce the following notation. Let « € K. Then (Fnln=0,...)
will denote the sequence built on (R, 1) where 7 is the cocycle on M to K with
F,(m)=« (meM). We shall also denote by R,(a) the flow previously denoted
by R, in order to indicate its dependence on a € A.
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Let €, = Viex n. Then we shall show that 60,(A,) =K for all n implies that

ra(st,)=s4, v&,-1 foralln,

(2.7) LEMMA., Let &, X, and N be minimal flows such that ¥ is a distal extension

of &, LcN,and N =K, Then % <N.

Proof. By [1: 13.11], g(£* A N)=L*N and g(£* %) =L*K > L*N. Consequently
H=F*N"HcFL*NNWN. O

(2.8) LEMMA. For all integersn =1 and alla € A, R, () = 8,.

Proof. Since R1(a) = FLE, R (a) = %,. Assume R, (a) < &,.. Then

Rp+1(a) =ext (Ru(a), va) With F, = ‘IEIO F,:_.
Since i
Forrrve vE 8 (ki=Fyla)), 8va(B)=e (BeE..).
Lemma 2.8 now follows from (2.7). 0O
(2.9) LEMMA. Let 60i(A) =K, ki€ K (1=si=<n). Then there exists a € A with
Soild)=«; (1=si=n).

Proof. The hypothesis implies that &/,+> may be identified with a flow whose
underlying phase space is K" x|sf| and such that

(ey...,e xo)p=6c,(p)...,00(p),xop) (peM).
Hence there exists p e M with
So(p)=x; (1=i=n) and xop =xo;
i.e. p=u on sf. Then
a=upuecA and dboi(a)=K (1sisn). O

(2.10) LEMMA, Let 60(A;) =K for all i. Then, for all n,

En< V{Rn(a)lax e A}
Proof. Since #3179 = R,(a) and ao(A) = K,

g1 v{iRi(a)la e Al

Now assume that
&n < V{Ru(a)|lx e A}

and let k € K. Choose a € A with §og(a) =« and §oi(a)=¢ (1=i=sn).
In this case the cocycles p" are trivial for 1 sk <n and p° is just the cocycle
with F,o=«. Consequently v, =p9. Since

Rnsrla)=cxt (Rnla), v.) and Farr =ext(Lm o),
Spl(B)=e (BE€Rywi(a)=g(Rn+1(a))). |
Hence g( v {R,+1(B)IB € A}) = g(¥r+1) and so
Fas1 € V{Rnn1(B)IB € A}
by (2.7). Since x was arbitrary, $,,1 < v{R.+1(B)|B € A} 0O
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(2.11) PROPOSITION. Let 607 (A,)=XK for all n. Then ra(sty) =5ty v En-y for all n.
Proof. Let a € A. Then s, vsfna =t vRuy(@)Stn Vv En1 bY (2.5) and (2.8).

Hence
ralsde) = vistua|a eAlcd, v&.a.
On the other hand
97’?n---l(a)C:*Sgn Vv Sfna Cl',\(&f,,) (a eA) o
implies that sf, v&,-1 < ra(sf,) by (2.10).

(2.12) Remark. Corollary 1.11 shows that the condition thaat 6(0-12 )(‘:-"[})(:-K for all n
is satisfied in the case when &¢ is weak-mixing, K =¥, and éo .

R.E.’s research was supported by NSF Grant no. 7800403 A02.
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