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Abstract. The notion of an iterated extension of a flow is introduced and studied.
In particular it is shown how eigenfunctions occur in a natural way. This is then
exploited to produce an example of a weakly mixing minimal set with a non-weakly
mixing quasi-factor.

Introduction
The flow (y, T) is an extension of the flow (X, T) if there exists an epimorphism
of (V, T) onto (X, T). One way of producing extensions of (X, T) is by means of
cocycles of {X, T) into a compact group K. Thus let o- be a cocycle on (X, T) to
K. Then one forms the skew product flow (KxaX, T) where the action of T on
K x X is given by the map

(k,x,t)^(k<r(x,t),xt):KxXxT-*KxX.

When the phase group T is isomorphic to the integers, the set of cocycles on (X, T)
to K may be identified with the set of continuous functions on X to K and this
may be exploited to iterate the extension.

In order to illustrate the basic definitions and facilitate the reading of the paper
we describe this construction informally.

A flow in this paper is a pair (AT, t) consisting of a compact Hausdorff space X
and a homeomorphism t of AT onto itself. (We use the same letter, t, for every flow
considered.) K will" stand for a compact abelian topological group, e the identity
element of Kt and Z(X; K) the set of 1-cocycles from X xZ into K.

Now start with a minimal pointed flow (X,x0) and a cocycle <reZ(X;K). Let
(Y,y0) be the pointed flow ext(X,<r). Thus Y«= KxX is the orbit closure of
y0 = (e, x0) in the flow onKxX given by

We let F*:X -* K be the function on X defined by FM = <r(x, f). Next we consider

the function
&r(fc, xTl8<r{{k, x)tn) = a{x, tn),

So- is the function on Y which 'co-bounds' a. Our next step is to define a cocycle
on Y by means of the function So-. Namely let <n eZ{Y, K) be given by
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2 R. Ellis and S. Glasner

Let Y\ = ext (Y, crx) <=• K x K x X; i.e. Y\ is the orbit closure of z0 = (e, e, JCO) in the
flow on K xK xX given by

(/, k, x)t = (lFvl(k, x), kFM), xt).
(Writing down the orbit of z0 in Y\ we have

(et ey xo)t
n = (cri(yo, tn), <r(*o, f"). jcor") = (&n(zof"), M y o H , *or").)

The function Sar\\ Y\-*Kt Sa-\{1% k,x) = l can now be used to define cr2€Z(Yi',K)
namely

0-2(2, t) = Fa2{z) = S(Tl{z) etc.
We were motivated to study the structure of these extensions by our attempts

to understand why our construction of eigenfunctions from cocycles in [4] 'worked'.
This is explained in proposition 1.3 which states that for a proper choice of a an
eigenfunction will appear in the supremum of the flows ext (*, cr) and ext (x, cr)a.

As an added bonus our analysis allowed us to construct a weakly mixing flow
with a non-weakly mixing quasi-factor. (Recall that a quasi-factor of a flow Z is
a minimal subset of the flow induced on 2Z, the space of closed subsets of Z.) To
see how this is done suppose that in the procedure described above we take X to
be weakly mixing, K = K the circle group and choose cr such that Y =KxX and
Y is also weakly mixing (this is possible by [6]). We then show that necessarily
Yi = KxKxX (proposition 1.7) and that Y\ is weakly mixing (corollary 1.11).
Take <& to be the orbit closure of say

in 2V|, the flow of closed subsets of Y\. It is easy to see that the minimal flow ^
has —1 as an eigenvalue, in particular it is not weakly mixing. We then show that
ty — a(A, Y) for a certain r-closed subgroup A of G.

These subjects together with the analysis of flows of the form

where y0 and yi project onto the same point in AT, on which our results rest, are
the content of § 1. In §2 we consider the higher order cocycles o-M (w eM) and
generalize some of the results of § 1.

We now formalize the above definitions. Each flow (X, t) will be assumed provided
with a base point Xo such that xou =xOt where 1/ is a fixed idempotent in some
minimal subset M of /3Z. This allows us to pass back and forth between minimal
sets and Z-subalgebras of C(M). The algebra corresponding to X will be denoted
by al(X) and the flow corresponding to the algebra si by \s&\. (See [1] for details.)

Let K be a compact abelian topological group. Then Z(M,K) will denote the
set of cocycles on M to K and

Z(X, K) = {a- 6Z(A/, K)\ al (<r) c al (AT)}.

There is a bijective correspondence
o-~/v:Z(Ar,iO *-*<?(*, JO,

the set of continuous functions from X to K, given by
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On the other hand there is a bijective correspondence
a-*So- :Z(M, K)-> C0(M, K) = {/e C(Af, K):f(u) = e}

(e, the identity element of K). Consequently given creZ(M,K) there exists
dceZiMiK) such that

Sda(m) = Ftr(«)"1FlT(m) (»i e Af).

(For a detailed discussion of the correspondence a--* So- see [2]. In the latter Sor is
denoted by /a.)

We write U for the real numbers, Z for the integers, and K for the multiplicative
circle group.

Section 1
The first result of this section codifies the relationship among the various operations
on a cocycle described above. Since the proof follows directly from the definitions,
it will be omitted.

(1.1) PROPOSITION. Let <r<=Z(M, K). Tlien:
(1) (53.)(m) = Ftr(u)"1F<r(m).
(2) o-(m,t)=FM(8d(T)(m).
(3) F^uy^Sa-im, t) = 8d{r(m)8<r(m).
(4) (5a£,)(m)(5atr)(n)-1=F<r(m)F(r(;i)-

1 {m,neM).
Notice that (2) implies that if o- is a cocycle on X to K, then d<r is a coboundary

on X to K.

(1.2) PROPOSITION. Let o-eZ(M,K), meM/and to be that element of Z{M,K)
with

8(o{x) = 8cr{x)~l8o-(m)~18o-{mx)

Then FJx) = 8dAmx)SdfT{x)~1

Proof.

F^ix) = (o(x, t) =

= So-(mx)~l8(r(m)Sa(x)8o-{xt)~1Sa(mylSa{mxt)

= 8o-(mx)~l8o-(x)8<r(xt)~l8o-{mxt)

= er(x, ty^a-imx, t) =

(1.3) PROPOSITION. Leto-eZ($?,K\ a eg(6j a/idF&,(m) = 5a(r(a) (m eM). 77te/i
(1) al (5o>) c ext (d, or) v ext (si, a)a.
(2) Ifs4a=s4,then

ext C< o-) v ext (s4, cr)a = ext (^/, a) v ext Cstf, tu).

Proof. (1). Set m = a in (1.2). Then

FM) = 8d(T{ax)8dIT{xrX = 53<r(a)5acr(x)5e<T(A:)-1 = 53tT(a)

since a 6 a(dCT) (see [2]).
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Since al (So-) <= ext (si, a), Scr defines a continuous function on |ext (si, cr)|, the
expression for SOJ given in (1.2) shows that 8<o defines a continuous function on

|ext (si, <T) v ext (si, cr)a |.

(2). By (l),jY = cxt (si, a) w ext (si, <o) <= cxt (si, <r) v ext (si, cr)a = y.S\nce sia =
si, SP is a distal extension of si and so the proof may be completed by showing that

To this end let

peN = g(ext {si, a)) n g(ext {s4> co)).

Then

whence-by (1.2)

e =

Hence
8cr(a) = 8cr{aP) = 8a{apa~la) -

(recall that sia=s4 implies that aAa~1=A whence apa'1 e A cg(cr)). This
implies that

ap<x~l eker 8a

and so

pea'1 ker(5o-)a~1nA = g(ext(^/, <r)a).

Consequently

/3 65 = g(ext(^,o-))ng(ext(^,o-)a). D

(1.4) COROLLARY. Let

and

Tlxen

V{ext (si, <r)a \a 6 g(a«.)} c ext (si, cr)

(Here % is the set of all almost periodic functions on Z.)
(1.5) Remarks. (1). Let F be a r-closed subgroup of G and si a Z-sub-algebra of
O(M). Then it is natural to define si to be F-regular if sioc =s? (aeF) and rp(si)%

the F-rcgularizcr of .stf, as the supremum of {.s/a \a eF}. Then (1.4) states that
rwjfixt (si, a-)) <= ext (^, o-) v 5?

if J / is g^J-regular.
(2)- Let S = g(cxt (si, a-)). Then (1.4) implies that

S n E c n {aSa"*1^ 6 Q(d(T)}

when ^ is g(dtf)- regular. (Here E =
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(1.6) PROPOSITION. Let or e Z{s£, K) and co eZ(M, K) with Fw = So-. Tlxen
(1) 9^ = 0-.
(2) Scj{tk) = Y\f'oSo-(ti).
(3) 8a}(pt) = 8co(p)8o-(p)(pel3Z).
(4) Sa>(ptk) = 8u>(pmtZi Script') (p
(5) 8<o(ptk) = 8a)(0)8<r((3)k8co(tk) 03

Proo/. (1)
(5cr)(m) «Fw(M)"lFw(m) = (53W)(M)"1(«3«)(W) = (S3j(m) (m 6A/).

Hence a- = 3W.
(2) 5w(r) = ft)(H,/) = -P'a,(") = 5or(M) = c shows that

) = kf[ 8a(t!)
/-o

Now assume that it holds for 1 ^ k < r. Then

/-o
fc|»pThen tk'+l

T= n
(3) Le tpe^Z and ffc|-»p.Then tk'+l-*pt and

5w(pr) = lim5a>(/k'+1) = (lim U 8a(t!)) li
\ i /-o / <

= lim So{tk>) lim 5o-(rfc|) = Scoip)8<rip).
i i

(4) This follows from (3) by induction on k.
(5) ItpeA then SaiPx) = Scr(/3)5o-0c) (x Gj3Z). Hence

i-o

(by (4) and (2)). •

(1.7) PROPOSITION. Let o-&Zis4, K) be such that £f = ext ist, <r) is weak-mixing and
So-iA) = K. Tlxen ScoiS) = IK w/iere tu eZ(M, IK) with F» = So- and S = g(^).

Proof. SoiS) is a closed subgroup of IK whence ScoiS) is finite or all of K. If 5o>(S)
is finite then 5a>n(S) = c for some integer n. Since 5cr"(A) = !K and F<1)« = 5crn, it
suffices to rule out the possibility that Sco(S) = e.

Let 59 = ext (5 ,̂ <o), then 5w(5) = <? implies that 53 = ̂  whence ®a=s4a=s? =
& (a eA). This is impossible since ^ vS3a contains the eigenfunction Sp where
Fp(m) = &r(a) („, 6 M ) by (1.3). (Recall that 3U = cr and A cg(o-).) Q

(1.8) Remarks. (1) The assumption 5<r(A) = K implies that |S^|=*IKx|^|, and the
conclusion Sco (5) = K implies that
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We shall see later (corollary 1.11) that ext (5 ,̂ CJ) is also weak-mixing.
(2) With the assumptions and notation of (1.7) let S3 =ext (&, to). (Observe that

F» = 8<r implies that <o eZ(S", IK).) Then rA(S3) = S& v %. To see this first observe
that S is a normal subgroup of A. This implies that Sfa^y (a e A). Moreover
dv=o- implies that A <=• g(5 J . Hence by (1.4) rA(0S) a S3 v g.

Now let / be a character on Z. Then / = Sp where Fp(m) = k for some k e IK and
all m e M. There exists a e A with --••<-•

whence / = 8p e rA(^) by (1.3.). Since the characters generate

(3) Proposition 1.7 as well as theorem 1.10 below are true when K is replaced
by a finite group of prime order.

(1.8) LEMMA. Let aeZ1(si, K) with 5<r(A) = IK, e > 0 and V a neighbourhood of
it. Tlxen there exists peVDAcM such that

\8o-(p)-l\<e and (8ar(pu))n *1 ifn*0.

(Notice that peA implies that pu eA.)

Proof. Since So-(u) = 1 there exists a neighbourhood W of u with W <=• V and

\8<r(x)-l\i£e (x
By a now standard argument we may assume that

(See [3: 4.4].) Since So-: (A, r)->(K is onto and open there exists

aec\sT(WnA) with 8o-(a)n * 1 if n ?*0.

Let (an) be a net on W o A with an -+a and an-»p 6/3Z. Then

and anr*pu-

Hence 8a(a) = 8o-(pu). The proof is completed. D

(1.9) PROPOSITION. Let o-eZ(s4,K) with 8<r(A) = IK, cueZ(M,IK) with F^^Scr,
d

() (,) () ,

and &> — ext {si, a). Then 2ft = ext (5", (o) is not an almost periodic extension of si.

Proof. It will be convenient to identify |$?| with a subset of IKxlKx|^| . When this
is done"'

x\m={8u){x\8cr{x\x\d) (x&M).

Let e > 0. We shall find p,gepl such that

p\st = u\s&, \8a>(p)-l\^e, \8o~(p)-l\^e and \8a>{pg)8a>(gTl-l\&i

Thus p\2d is close to u\$i, p\si = u\sit but pg|03 is not close to ug\$l. Consequently
^ is not an almost periodic extension of si.

To this end let V be a neighbourhood of u such that
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By (1.8) there exists peVnA with \8o-(p)-l\^£ and 8cr(pu)n * 1 if n*0. Since
peA, p\s£-u\s£.

Now choose AeK with |ASo>(pw)-l|>2. There exists a sequence of integers fc,-
with 8a(pu)kl'*\. Let re/3Z be adherent to the sequence t \ Then by (5) of (1.6)

Sea (pur) = So) (pu )\8a) (r),

whence \8<o(pur)8a>(r)~l - l |>i- Now set ur = g and recall that 8a)(r) = 8co(ur). The
proof is completed. D

The following result is valid for any abelian group T.

(1.10) THEOREM. Let Sf be an almost periodic extension of si such that S<iA and
A/S is a Lie group, and let 53 be an almost periodic extension of Sf such that B <i5
and S/B s K . Tlien either

(i) 03 is an almost periodic extension of si or
(ii) BeSx±.

(Recall that

9tx = {C\C is a r-closed subgroup of G with CR-G (R e&)}

where 01 is a collection of r-closed subgroups of G.)

Proof. Assume that (i) does not hold and let C eS*~\ i.e. C is a r-closed subgroup
of G with CS = G. Then

Since G/E is abelian, CB is a normal subgroup of G.
Let L = CB nS^EnS^>EnA* = A*. Hence if = a(L) nsi* is an almost peri-

odic extension of si. The exact sequences
1-*S/L-*A/L-»A/S-*Q and S/B-*S/L-*0

show that 5/L is a circle or a point and that in either case A/L is a Lie group.
Thus si<3<£<*0$ and L/B is a subgroup of the circle group S/B. Hence L/B is

finite or L/B = S/B. If L/B were finite, $? would be an almost periodic extension
of si [7: 5.7], a possibility which has been ruled out. Therefore L/B =S/B and so
L = S. Consequently S c CB and G = CS <= CB. The proof is completed. •

(1.11) COROLLARY. Let o-eZ(si, K) with 8o-{A) = K, 5̂  = ext Cstf, cr) weak-mixing
and (o zZ(M, K) with Fu = So: Tlien 01 = ext (#*, w) w weak-mixing and SCJ(S) = IK.
Proo/. Recall that when T is abelian, a flow (X, 7) is weak-mixing if and only if
Q(X)E = G (see [5:3.7 and 4]). By (1.9) and (1.10) B € S x \ Since Sf is weak-mixing,
SE = G; i.e. £ e S \ Hence BE = G and 0? is weak-mixing. That Sco (5) = IK follows
from (1.7). •

We shall now use the results obtained to produce a weak-mixing flow with a
non-weak-mixing quasi-factor.

(1.12) Notation. The following notation will be used for the remainder of this
section: <reZ(si, K),^ = ext {si, cr), <o eZ{M, K) withFw = &r, 53 =ext (Sf, to), a e
A with 8a-{a) ̂  1, (a) the r-closed subgroup of G generated by a and peZ(Mt K)
with Fp(m) = 8cr(a) (me A/).
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(1.13) PROPOSITION. Let S<o((3) = 1 (p e (a)). Tlien
(1) fl(a«a>, @)) = (a)(kcr8pnB)and
(2) al(Sp)cza«a>,S3)).

Proof. (1) Set Se = a«a), 0S) and L = g(if), and let 6 e ker 5p nJ5. Then

(by (1.2)). Thus

S(o(a) = So>(aZ>) = Sw(aba~la) = Sw(a6a"^Sw(a) since aba~xeS.

Consequently 1 = 8io{aba~x) and aba~leB = ker (SOJ\S). Thus -

a (ker Sp nB)a" 1 c ker Sp nB.
Let H = {a €<a)|a(ker Spr\B)cz(ker5p n5)(a)}, Then H is a closed sub-semi-
group of (a). Hence H is a closed subgroup of (a) [1: 2.11]. Since a eH, H = (a).
Consequently

(a)(ker SpnB)c (ker SpnB)(a)

and

(ker Sp nB)(a> = ((«> ker SpnB^cz ((ker SpnB)(a)yl

= <a)(ker5pnB).

Thus (a)(ker 5p n 5 ) is a r-closed subgroup of G.
Now L is the largest r-closed subgroup of G which contains (a) and is contained

in (a)B [5: 3.1]. Hence (a)(ker«5pn5)cL.
Let beLnB. Then a6eL=L~1c:«a)5)"1 = B(a). Hence a£=r/3 for some

r e 5 and/3 6(a>. Then

Thus 5p(&) = Sw(6r1&o(a)~1Sa>(a&) = 1 and so b eker 5p n B .
Let / eL. Then / = kb for some ke(a),beB. Then

6 € L n £ c ker SpnB

and so fe<a)(ker5pnB).

(2) 8p(a) = 8aj(a)~18cj(a)~l8(o(a2) = l shows that ( a ) c k e r 8p. Hence

L = <a)(ker 8pnB)<^ ker 5p = g(al {8p)).

Now al (6p)<= £, the algebra of almost periodic functions, implies that

is an almost periodic extension of o((a), 01). Since the groups of these flows are
the same, the flows are equal. The proof is completed. D

(1.14) LEMMA. Let 8aj{a) = 1 = 8(o(a2). Tlien 8u)(an) = l for all integers n.

Proof. The formula

8p(x) = 8u)(x)-l8u)(aTl8(o(ax) = 8(o(x)~x8u)(ax) (1.2) (*)

shows that 8p(a)-1. Hence 8p((a)) = 1 since Sp is a continuous homomorphism
of (G, T) into IK. Lemma 1.14 now follows from (*) by induction. •
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2)(1.15) LEMMA. 8(o((a)) = 1 if and only ifH((a),T)^B and 8a>(a) = l = 8a)(a2).

Proof. Let So* ((a)) = 1. Then of course 8co(a) = 1 = Scu(a2). Moreover a e A implies

that (a)c=A. Hence

whence H((ct), r ) c B = ker (6w|5) since 8<o(H((a), r)) c 5 w « a » = 1.
Now let 8a)(a) = l-8(o(a2) and H{(a)tT)^B. Let 0 e ( a ) . Choose a net (a"1)

in <a> with aN( -*T/3 and let a N | -*p eM. Then

by (1.14).
Moreover (aN() <=• (a) ̂  A implies t h a t p | ^ = w |^ and pu e(a). Hence p =pu on

23 (S3 is a distal extension of ^)and5o)(pM) = 5o)(p) = 1. Also a N'-*Tpu shows that

Consequently 8co(p) = 8(o(P(pu)~lpu) = 5cj(/3(pw)~1)5a)(pi0 = 1. .D

(1.16) A construction. Let ^ b e a weak-mixing metric flow and c r e Z ( ^ , K ) such
that ^ = e x t ( ^ , o-) is weak-mixing and 8a(A) = K. (Such exist, see [6].) Set
S8 =ext(5^, (o) where Fw=8o: Then by (1.11) 03 is weak-mixing and 8co(B) = K.
Hence |03| may be identified with the flow (IKxB<x|^|, t) where

(fc, /, A:)r = (8a(mt)t 8a)(pt), xt),

{k, I eK,x e\st!\ and m,peM with 8ar{m) = k,8<o(p) = I).

Let A elK. Then the flow (IK, Rx) is equicontinuous and so is disjoint from S3.
Hence there exists a sequence (Ni) such that

(1, l,jCo)rN'->(l,A,xo) and AN'->1.

(Here JCO = M | ^ . )
Let p G /3Z be a limit point of the sequence (fN|) and set a = wpw e G.

(1.16.1) 5w(ork) = 1 /or a// integers k.

Proof. Since (1 ,1 , xo)t
s> -* (1, A, x0), (1 ,1 , xo)p = (1, A, x0). Also

(1, 1, jco)p = (1 ,1 , xo)up = (8co(up), 8a-(up), xoup).

Hence 8<o(up) = 1, 8o-(up) = A and up = u on ^ . Thus a = upu = u on ^/; i.e. a e A .
Since ^ and $1 are both distal extensions of d and i/p = upu on ̂ , a = wpn = up
on 5^ and ^ . Consequently 5CJ(a) = 8oj(up)- 1 and5o-(a) = A.

Moreover by (5) of (1.6)

8(o(atN') = 8co(a)8a-(a)N'8co(tN') = AN'6cu(rN')

from which it follows that

Sa>(ap) = 8u)(p) = 5w(a) = 1.

Since a p w = p « = p = a p on ^/, a 2 = a p w = a p on 53. Consequently Sa>(a2) =
5to(ap) = l and (1.16.1) follows from (1.14). •

(1.16.2) Let\k = 1. Then
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Proof. Sa-(ak) = 8a(a)k = A k = 1 implies that ak e S. By (1.16.1), 8(o(afc)=l. Hence

akeB = ker(5w|5).

Consequently (a)r\B has finite index in (a) whence

%),T)c(a)nflcB. Q

(1.16.3) Let Xk = 1 iv/7/j A ?* 1, A: ^ 0. Tlien a((a), 2ft) is a non-weak-mixing quasi-
factor of the weak-mixing flow, 2ft. - ' ' *

Proof. This follows from (1.16.2), (1.15), and (1.13). D

Section 2

(2.1) Definition. Let cr eZ(s4, K). Then the sequence built on (s£, a) is the sequence
{sdM an) {n ̂  0) defined inductively as follows: s4Q = £?,o-0 = a, sdn+i = ext (^n, o-n)
and o-n+t (=Z(s4n, K) with F ^ , = 5o-n. Thus d<,n+l = crn.

In § 1 we were concerned with the first two or three terms of the sequence built
on {si,cr). In particular (1.3) dealt with $$ivs$\a for aeQ(da). Here we shall
consider s£n v $4na for a e A = g(^).

(2.2) Notation. For most of this section we shall be dealing with a fixed flow s4,
a e Z(rf, K), and a e A. Let (s£n, an) be the sequence built on (si, a) and

kn=8o-n(a)eK (/isO).

Then C^T.pD/ao will denote the sequence built on (U,pn) (n ==0) where

p" eZ(M,K) with Fp«(m) = kn (m eM).

The various flows and cocycles depend of course on a. but this dependence has
been suppressed for 'notational convenience'.

(2.3) PROPOSITION. For all positive integers n,
n

t l l (xeM).

Proof. The case n = 0 is just proposition 1.2. Now assume that

"ff
i-0

Then s4n+i = ext (s4n, <rn) and aa^t = <rn. By (1.2) if y (=Z(M, K) with

lthen Fy(x) = 8o-n(ax)8crn(xyl (xeM). Thus

8p'n-i-,(x)

1-0 i-0

Consequently y = n?-op!i-i and 8y =Y\'i-oop'n-i (recall that AT is abelian). The
proof is completed. •
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(2.4) Remarks. We should now like to use the cocycles yn =FI?-o Pn-i to build a
sequence of flows (3?n). To this end observe that

n

= n sp'n-i=n Fpu,-t a n d Fvn+i = n
<-0 /-0 J = 0

whence

Now set 02O = R. Since 70 is the constant cocycle pS, 521 = ext (02O, To) is an almost
periodic extension of fflo-

Assume that yn is a cocycle on &ln to K and set 0?n+i = ext ($„, yn). Then 5yn

definesacontinuousfunctionon|^n+i|toK".SinceFp3*» isconstant,F7n+1 = (8yn)Fp«+i
defines a continuous function on \&bn+i\ to K. Hence yn+\ is a cocycle on 0tn+\ to
K and the sequence (^n) is well defined, where 0tk+l = ext (0?k, yfc).

(2.5) PROPOSITION. For all integers n s 1, sln v ̂ n a = ^ n v 0?n_i.

Proo/. When n = 1, 02o = R and ^ 1 v ^»0 = «s/i. Moreover ^ 1 v ̂ /ia = d\ since a €
A=A0 andAi<A 0 .

The case n = 2 is just (1.3).
Assume that ,s/rt v^/Ma = s£n v52n_i. Since ^n+i and 02n are distal extensions of

s£n and 5?n_i respectively ^/n+i vs4n+i<x and J^n+i v^2n are both distal extensions
of the flow

It thus suffices to show that their groups AM+i n a "^,,+10 and An+\ r\ Rn are equal.
Let /3 eA^+ina 'Un+ia cA B n a ' U n O = An c\Rn-x. Then

implies that Scrn{p) = e and

) = 8<rn(a(3a~xa) = Scrn{apa~
l)8(rn{a).

Thus 5yn_i03) = e; which together with the fact that /3 ei?n_i implies that /3 e/?n.
Consequently

"

Now let /3 eA n + in i? n . Then e =Syn-i(p) = 8o-n(J3yl8o-n(a)~l8<rn(ap)
whence 8crn(af3) = 5o-n(a)5crn(j3). On the other hand

8<rn (a/3) = 8an (a(3a ~la) = 8o-n (a]5a "^Str,, (a).

(KecdM psAn+inRncAn nRn-^ An na~lAna.) Hence 8aH(aPa~l) = e and so
^ e a" An+1a. The proof is completed. •

(2.6) Remarks. We should now like to consider the A-regularize^ rA(s4n) of s£n.
To this end we introduce the following notation. Let K GK. Then {$fn\n =0 , . . . )
will denote the sequence built on (R, 17) where TJ is the cocycle on M to K with
Fn{m) = K (MI eM). We shall also denote by 0?n(a) the flow previously denoted
by Sin in order to indicate its dependence on a e A.
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Let %n = VKGKSC Then we shall show that So-n(An) = K for all n implies that

rA(sfn) = dn v #„-! for all /i.

(2.7) LEMMA. Let S£, f/{, and Jf be minimal flows such that % is a distal extension

Proof. By [1:13.11], Q(&*nJf) = L*N and Q(<e*nW) = L*K =>L*N. Consequently

(2.8) LEMMA. For all integers n ̂  1 and all a eA, &ln(a) <= #„.

Proo/. Since 0lx(a) = ̂ fYo(a), ^i(a) c 8?i. Assume 02n(a) c ffn. Then

#n+1(a) = ext (^n(«), y«) with F>n = ft Fp'.,.

Since

Lemma 2.8 now follows from (2.7).

(2.9) LEMMA. Let Sat(Ai) = KtKteK(l^i^ n). Tlien there exists aeA with

Proof. The hypothesis implies that ^/n+2 may be identified with a flow whose
underlying phase space is Kn x \s4\ and such that

{e>..., e, xo)p = (Scrn(p),..., Scrip), xop) (p eM).

Hence there exists peM with

Scri(p)-Kt ( l^ /^ / i ) and jcop=xo;

i.e. p — u on J^. Then
a-upueA and 5cri(of) = wj (1^/^/ t ) . •

(2.10) LEMMA. Let Scr{{At) = Kfor all i. Wien, for all n,

Proof. Since £r?°M =mx(a) and 5o-0(A) = K,

Now assume that

and let K 6 ^ . Choose a e A with Sa-Q(a)-K and 6o-|(a) = e ( l £ i £;t).
In this case the cocycles p are trivial for l^k^n and p° is just the cocycle

with FpOSK. Consequently yn =p°. Since

(a),yf,) and 9>U\ =ext j

Hence o( v {^«+i(^)|/3 e A}) c g ( ^ + i ) and so

^ + i C v { ^ n + 1 ( i 3

by (2.7). Since K was arbitrary, #„+! c v{5?n+i(/3)|^ e A). •
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(2.U) PROPOSmoN. I M ^ i M ^
Proof. Le, a eA. Then si. v r f* - A v« . - , (a ) = A v » . - , by (2.5) and (2.8).

Hence

On the other hand

implies that ^ v *B-i <= rA(^n) by (2.10).
(2.12) « . Corollary 1.11 shows that the condition that * * £ • > - * for ail „
is satisfied in the case when si is weak-mixing, K = K, and &KA) - K.

R.E.'s research was supported by NSF Grant no. 7800403 A02.
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