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NORMALIZERS OF FINITE MULTIPLICITY NESTS

by KENNETH R. DAVIDSON*

(Received 14th July 1994)

We show that every continuous nest of bounded multiplicity is unitarily equivalent to itself in a non-trivial
way. Along the way, it is shown that no finite (measurable) partition of the unit interval can separate
absolutely continuous homeomorphisms.

1991 Mathematics subject classification: 47D25.

0. Introduction

If s/ is an operator algebra, the unitary normalizers are those unitary operators U
such that Us/U* = s/. This includes, in particular, the unitary group of s/ but may
often be much larger. The purpose of this note is to show that it is indeed larger in the
case of continuous nest algebras of finite multiplicity. Simple examples show that infinite
multiplicity nest algebras may have only trivial normalizers.

Ringrose [7] showed that every automophism a of a nest algebra ^{Jf) is spatially
implemented in the sense that there is an invertible operator S so that a(T) = STS~l.
Because nest algebras are reflexive, a thus induces a dimension preserving auto-
morphism of the nest Jf by da(N) = SN = Ran(a.(N)). It is easy to see that 6a is trivial
precisely when a is inner. So 6 is a natural map of Aut(5"(^T)) into Aut(^T) with kernel
lnn(^(J^)). It is a consequence of the Similarity Theorem [2] that this map is
surjective [4]. In the case of a continuous nest, the nest is parametrized by the unit
interval [0,1]. So Aut(J/") is identified with Homeo(0,1], the homeomorphisms of [0,1]
such that Ji(0) = 0.

However, the unitary invariants of a nest algebra are more delicate, and often there
will be no unitary operator implementing an element of Aut(^K'). The unitary invariants
of a (parametrized) nest were obtained by Erdos [5]. These invariants consist of a
spectral measure and a multiplicity function on the nest. In particular, every continuous
nest may be parametrized by the unit interval [0,1] as ^V = {N,} so that the spectral
measure is equivalent to Lebesque measure. The multiplicity function is then a Lebesgue
measurable function of [0,1] into the set Nu{co). An order preserving homeo-
morphism h of [0,1] is implemented by a unitary operator exactly when h and h'1 are
absolutely continuous and h preserves the multiplicity function almost everywhere. So
the problem may be reduced to a measure theoretic question.
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In [1], Anoussis and Katavolos analyze possible actions of the real line on a nest.
When such actions are unitarily implemented and transitive, the action is unitarily
equivalent to translation on L2(R) with the nest being the subspaces L2( —oo,t) for real
t. They found the example we cite below, and raise the question answered in this note
about which nests have non-trivial actions implemented by unitary operators. The
author wishes to thank John Orr for pointing out the Anoussis-Katavolos question
which led to this paper.

We refer the reader to [3] for the necessary background on nest algebras.

Example 1. Consider a partition of [0,1] into disjoint measurable sets An for n ^ l
so that each An meets each subinterval of [0,1] in a set of positive measure. Choose a
dense subset {tn |n^l} of [0,1]. Define a multiplicity function fi by setting fi(t) = n for t
in A'n: = An n [0, fn] for n ^ l , and equal to oo on the remainder. In order that a
homeomorphism h preserve the measure and multiplicity class, it must be absolutely
continuous and

m(A'aAh(A'a)) = 0 for all n ^ l .

Then continuity forces h([0, tn]) = [0, („] for all w^l, whence h is the identity function.
So this nest has no non-trivial unitary normalizers.

Surprisingly, any continuous nest of finite multiplicity has many non-trivial automor-
phisms which are unitarily implemented. The technique is strictly measure theoretic.

1. Homeomorphisms of the unit interval

Let Homeo(0,1] denote the homeomorphisms of [0,1] such that /i(0) = 0. Likewise,
let Abseo(0,1] denote the subgroup of those homeomorphisms in Homeo(0,1] such that
h and h~l are absolutely continuous. Say that a (Lebesgue) measurable set is essentially
dense in an interval / if it intersects every non-empty subinterval in a set of positive
measure.

In this section, we will construct homeomorphisms of [0,1] with certain properties
without worrying about absolute continuity. Then in the next section, we will add the
subtleties needed to obtain homeomorphisms in this restricted class.

Lemma 1.1. Let ^ c N , and let {An\ne^\ and {Bn\ne£f} be two partitions of (0,1)
into pairwise disjoint essentially dense subsets. Then there is a homeomorphism he
Homeo(0,1] such that

m(h(Aa)ABn) = 0 for all neS?.

Proof. For clarity, we first suppose that y = {l,2}; so that we have two partitions
{A, Ac} and {B, Bc} into two essentially dense subsets. Fix a sequence £„ tending to 0.
Then find a closed subset AlczA such that m(/4\/41)<e1 and m(Aln / )>0 for every
interval / of length e^ A^ is necessarily a Cantor set because A has no interior.
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Similarly, construct a set B , cB with the same properties. By a well known construc-
tion, there is an order preserving homeomorphism of Ax onto B,. Extend it by linearity
on the components of the complement to obtain a homeomorphism gt of [0,1].

Now on each interval / of B^, construct closed subsets C of / ngj(/4c) and D of /
such that

m(/ng,(/l ')\q<£1m(/) and m{I n Bc\D)<elm(I),

and both C and D meet each interval of length £j in a set of positive measure. As in the
previous paragraph, there is an order preserving homeomorphism of / which carries C
onto D. Let /i, be the map obtained by setting it to be the identity on Bl and patching
together these homeomorphisms constructed on each interval /.

The composition fi = h1gl now maps a large portion of A and Ac onto a large
portion of B and Bc respectively. This procedure can now be iterated. At the nth stage, a
homeomorphism /„ is constructed so that fn(An) = Bn and /n(Cn) = Dn where An, Bn, Cn

and Dn are nested sequences of closed subsets of A, B, Ac and B* respectively with

mzx{m(A\An)MB\Btt),m(A<\Ctt),m(Bc\Dn)}<En,

and they each meet each interval of length 6n in a set of positive measure. Then /n + 1 is
constructed so that /n + 1 agrees with /„ on AnvCn. This forces / n + 1 to map each
interval of the complement to itself. As these intervals have length at most £„, the
sequence /„ converges uniformly to a homeomorphism / with the desired properties.

If y is countably infinite, the procedure is similar. The iterations match up a large
portion of some set Ak with a large portion of Bk at each stage, fixing that part that has
already been aligned appropriately. A simple way to ensure that each set Ak is adjusted
infinitely often is to work with Ak if n = 2k~1 (mod2k). As above the iterations converge
uniformly to a homeomorphism / such that m(f(Ak) ABk) = 0 for all keS^. •

Say that a collection of subsets {AjaeQ} essentially separates points in
Homeo(0,1] if

= 0 for all aefi

implies that h=g for all g and h in Homeo(0,1].

Theorem 1.2. No finite partition of(0,1) essentially separates points o/Homeo(0,1].

Proof. Suppose first that {An\ney} is a partition of [0,1] into essentially dense
subsets. Then the lemma above shows that there is a homeomorphism h such that
modulo null sets,

, n [0,2/3]) = A. n [0,1/3] and h(Am n [2/3, l]) = X.n [1/3,1]

for all n e Sf. So this partition does not distinguish h from the identity map.
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For the general case, proceed by induction on the cardinality n of the partition. The
result is obvious for the trivial partition when n=l. Suppose the result has been proven
for partitions of cardinality less than n, and consider a partition {Alt...,An} of
cardinality n. If each At is essentially dense, the argument of the previous paragraph
produces a homeomorphism h which is not separated from the identity by this partition.
On the other hand, suppose that An meets an interval / in a set of measure 0. Then by
the induction hypothesis, there is a homeomorphism of / which is not distinguished
from the identity by {Atr\ 1,1 ^i^n — 1}. Extending this to a homeomorphism h of
[0,1] by setting it to be the identity on Ic produces the desired homeomorphism. •

2. Absolute continuity

Now we will work a little harder to produce a homeomorphism h such that h and
h~l are absolutely continuous. Let Abseo(0,1] denote the group of such
homeomorphisms.

Lemma 2.1. Let A be a measurable subset of[0,1]. Then for each e>0, A contains a
Cantor set C such that m(A\C)<e and for each open subset / c [ 0 , 1 ] , either InC is
empty or it has positive measure.

Proof. Let Cx be any closed subset of A such that m(A\C)<e/2. Let Jx be a dense
open subset of [0,1] of measure less than e/2, and let C2 = Cl\Jl. (This step is
unnecessary if Ac is essentially dense.) So C2 is a Cantor set. Let {/„} be the collection
of all open intervals such that m(I n C2) = 0. Let J2 be the union of this collection. Since
every union of open subsets of [0,1] is the union of a countable subcollection, we see
that m(J2 n C2) = 0. Let C = C2\J2- This clearly has the desired properties. •

Lemma 2.2. Let S = {sn\n^ 1} and T={tn\ n^ 1} be two dense subsets of(0,1); and let
£>0 be given. Then there is a homeomorphism h of [0,1] such that h(S) = T and
(l-e){a-b)<h(a)-h(b)<(l+e)(a-b) for all 0^

Proof. We may assume that e < 1/2, and we may add 0 and 1 to both S and T. Fix a
sequence of positive numbers en such that Yin 1 + £„ < 1 + £• We will construct a bijection
h of S onto T such that

(1 - e)(s, - sj) < Ms,) - h(sj) < (1 + e)(s, - sj)

for all Sj > Sj in S.
Begin with h(0) = 0 and h(l)= 1. Assume that at the nth stage, h has been defined on a

finite subset Sn of S onto a finite subset Tn of T, containing {s,,...,s,,} and {tu...,tn}
respectively. Moreover assume that

k=i
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for all Si>Sj in Sn. If sn+l$Sn, let Si>sn+l>Sj be the nearest neighbours of sn + 1 in Sn.
Pick some /i(sn+1) in T such that

and

,/i(s,)
— £ n+ lJ

SS; — Sj Sj Sn+l Si Sj

Then it follows immediately that

and

/n+l \ /n+l

[I
Then if sk is another point in Sn, say without loss of generality sk^sn + 1, then it follows
easily that

n + l \ / n + l

FI ^-BkUsm + l-sk)<h(sn+1)-h(sk)<lYl

Now let S'n = Snu{sn+i} and T ' n = T n u {ft(sn+1)}. Then if Tn does not contain tn+l,
proceed as above to find h~l{tn+l) in S such that for all skeSn, say without loss of
generality sk^h~l(tn+l),

fl l-fl
Then let S11+1=s;u{A-1(tB + i)} and Tn + 1 = T ; u {tn + 1}.

Proceeding in this way, we obtain the desired bijection. Clearly, h extends by
continuity to a homeomorphism h of [0,1] such that

(l-e)(a-b)<h(a)-h(b)<(\+e)(a-b)

forOgfo<agl. D

Lemma 2.3. Let A and B be two Cantor subsets of (0,1) such that every non-empty
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relatively open subset has positive measure. Then there is a homeomorphism he Abseo(0,1]
such that h(A) = B.

Proof. Let u(t): = m([0, t] n A)/m(A), and similarly define /?(t) using the set B. Then
the restriction of a to A is strictly increasing except on the countable set of endpoints of
the intervals in Ac. The image of this countable set is a countable dense subset Sx of
(0,1). Likewise, define Sfi. Notice that a homeomorphism k of [0,1] which takes Sa onto
Sfi pulls back to an order preserving homeomorphism h of A onto B. Moreover, because
a and /? are scalar multiples of measure preserving maps, h is absolutely continuous if
and only if k is, and likewise for h~l and k~l. Moreover, if h is extended to [0,1] by
making it linear on each component of Ac, this absolute continuity is clearly preserved.

By the previous lemma, it is possible to construct a map fceAbseo(0,1] which takes
Sx onto Sfi. So the lemma is established. •

Theorem 2.4. Let 5^cN, and let {An\ney} and {Bn\neif) be two partitions of (0,1)
into pairwise disjoint essentially dense subsets. Then there is an absolutely continuous
homeomorphism heAbseo(0,1] such that

m(h(An)ABn) = 0 for all neSf.

Proof. We repeat the proof of Lemma 1.1 using the previous lemmas to control the
absolute continuity. Of course, a limit of absolutely continuous maps need not be
absolutely continuous; but the composition of finitely many such maps is absolutely
continuous. The construction has the property that it produces two partitions of the
interval into countable collections of disjoint Cantor sets, say {Cn} and {!>„}, and a
homeomorphism that carries Cn onto Dn for all n^ 1. Moreover, this homeomorphism is
the limit of homeomorphisms that are the composition of a finite number of maps
which, in turn, leave the first n sets Dt fixed. Thus, the restriction of the limit to any Cn

is, in fact, arrived at in finitely many steps. By using absolutely continuous maps at each
stage, we are assured that the restriction of the limit h to each Cn is an absolutely
continuous homeomorphism onto Dn. As these sets have union all of [0,1] except for a
null set, the map h is also absolutely continuous, as is its inverse. •

The following corollary is immediate by the same argument as before.

Corollary 2.5. No finite partition o/(0,1) essentially separates points of Abseo(0,1].

3. Unitary normalizers

It is now a simple matter to obtain the desired consequences for nest algebras.

Theorem 3.1. Let Jf be a continuous nest of finite multiplicity. Then there are
non-trivial unitary normalizers of Jf.
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Proof. Parametrize Jf so that the spectral measure is equivalent to Lebesgue
measure. Let // be the multiplicity function of Jf. Then define An:=fi~l(ri) for n^N
where N is the multiplicity of Jf. By Corollary 2.5, there is a non-trivial homeomor-
phism /ieAbseo(0,1] which preserves this partition. By [5], there is a unitary operator
U which implements the induced automorphism of Jf. D

We immediately obtain the following corollary.

Corollary 3.2. / / a continuous nest has an interval on which the multiplicity function
takes only finitely many values, then it has a non-trivial unitary normalizer.

Another consequence of this argument is:

Theorem 3.3. Suppose that Jf and Jl are continuous nests such that the sets of
multiplicity n are essentially dense or have measure zero for each weNu{oo}. Then Jf
and M are unitarily equivalent.

Proof. This is proven in the same manner as Theorem 3.1 using Theorem 2.4 instead
of Corollary 2.5. D

This result may be considered a generalization of the Kadison-Singer Theorem [6]
that any two continuous nests of multiplicity one are unitarily equivalent. Their result is
an easy consequence of von Neumann's result that given any non-atomic measure with
support equal to [0,1], there is a reparametrization that converts this measure to
Lebesgue measure. On the other hand, for arbitrary continuous nests, there still does
not seem to be a clean way to describe when two of them are unitarily equivalent for
some unspecified reparametrization.

For example, consider the case of multiplicity two nests. Parametrize the nest Jf so
that the spectral measure is equivalent to Lebesgue measure. Then let Al and A2 be the
subsets of [0,1] of multiplicity 1 and 2 respectively. Then let -4, and A2 denote their
essential closures, i.e. A consists of all points t such that m(U nA)>0 for every
neighbourhood U of t. Then &i = [0, l]\/i2 consists of intervals of uniform multiplicity
1; while (S2 = [0, l]\A{ consists of intervals of uniform multiplicity 2. In [0,1]\(C\ u 62),
both A i and A2 are essentially dense. The open set O = GXKJO2 consists of components
of multiplicities 1 and 2. So there is an associated order structure of these intervals and
a map into {1,2} that determines the multiplicity type of 0.

Now if Jf' is another multiplicity two nest with corresponding sets A\, A'2, O\ and
0'2, consider the problem of determining if it is unitarily equivalent to Jf. The first
difficulty is a complicated combinatorial problem to decide if the multiplicity types of 6
and <3' are equivalent. However, in addition there is the measure theoretic question of
whether this pairing preserves the measure on the complements. The method of this
note would allow the construction of an appropriate homeomorphism on the interior of
the complement of 0. However, the mapping on the rest is determined by the pairing of
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intervals between 0 and &. It seems unlikely to me that there is a nice simple
description of when this occurs.

One could also ask about partial isometries that normalize the nest algebra in the
sense that K * J ( ^ ) K c J ( / ' ) . For continuous nests, the situation is relatively elemen-
tary. Given any interval of a continuous nest, one may choose any vector with support
equal to this interval and use it to generate a cyclic subspace for the core (the center of
the diagonal). This will yield a subspace on which the nest has multiplicity one. Then
given any other such subspace dominated in the order on the nest, there will exist a
normalizing partial isometry in 3~(Jf) mapping the first subspace onto the second
obtained using the Kadison-Singer Theorem. These partial isometries are sufficient to
determine the invariant subspaces of ^(J^), and thus to recover it as a reflexive
algebra.

On the other hand, they do not span the algebra in norm. It is not too difficult to see
that, at least in the multiplicity one case, one cannot approximate finite rank elements
of the nest in this way. In fact, we expect this norm closed span to be rather thin.
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