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COMMUTATOR RINGS

ZACHARY MESYAN

A ring is called a commutator ring if every element is a sum of additive commutators.
In this note we give examples of such rings. In particular, we show that given any ring
R, a right ii-module N, and a nonempty set il, Endft(®n N) and End^^n N) a r e

commutator rings if and only if either fl is infinite or Endii(N) is itself a commutator
ring. We also prove that over any ring, a matrix having trace zero can be expressed
as a sum of two commutators.

1. INTRODUCTION

In 1956 Irving Kaplansky proposed twelve problems in ring theory (see [5]). One
of these was whether there is a division ring in which every element is a sum of additive
commutators. This was answered in the affirmative two years later by Harris in [4].
However, it seems that to this day not much is known about rings in which every element
is a sum of commutators, which we shall call commutator rings.

The purpose of the first half of this note is to collect examples of such rings. For
instance, we shall show that given any ring R, a right i?-module N, and a nonempty
set fi, Endfi(0niV) and Endf i (nnN) are commutator rings if and only if either Q
is infinite or Endjj(iV) is itself a commutator ring. We shall also note that if R is a
nonzero commutative ring and n is a positive integer, then the Weyl algebra An(R) is a
commutator ring if and only if R is a Q-algebra.

Along the way, we shall give an alternate characterisation of right fl-modules M that
can be written in the form © Ni, where fi is an infinite set, and the right fl-modules Ni

are all isomorphic. Specifically, M is of this form if and only if there exist x,z E End«(M)
oo

such that zx = 1 and |J ker(z*) = M.

The last section of this note is devoted to commutators in matrix rings. In [1] Albert
and Muckenhoupt showed that if F is a field and n is a positive integer, then every matrix
in Mn(F) having trace zero can be expressed as a commutator in that ring. (This was
first proved for fields of characteristic zero by Shoda in [11].) The question of whether
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this result could be generalised to arbitrary rings remained open for a number of years,
until Rosset and Rosset showed in [10] that it could not. (An example demonstrating
this will also be given below.) However, we shall prove that every matrix having trace
zero can be expressed as a sum of two commutators, generalising a result of Rosset in [8]
(unpublished) for matrices over commutative rings. As a corollary, we also obtain a
generalisation to arbitrary rings of the result in [4] that a matrix over a division ring is a
sum of commutators if and only if its trace is a sum of commutators. On a related note,
in [2] Amitsur and Rowen showed that if R is a finite-dimensional central simple algebra
over a field F, then every element r € R such that r®l has trace zero in R®FF = Mn(F)
is a sum of two commutators, where F is the algebraic closure of F. (See also [9].)

2. DEFINITIONS AND EXAMPLES

Given a unital associative ring R and two elements x,y € R, let [x, y] denote the
commutator xy - yx. We note that [x, y] is additive in either variable and

[x, yz] = [x, y]z + y[x, z], [zx, y] = [z, y]x + z[x, y]

are satisfied by all x, y, z G R (that is, [x, -] and [-, y] are derivations on R). Let [R, R]
denote the additive subgroup of R generated by the commutators in R, and given an
element x € R, let [x, R] = {[x,y] : y € R}. If n is a positive integer, we shall denote the
set of sums of n commutators in elements of R by [R, R]n. For convenience, we define
[R, R]o = {0}. Finally, right module endomorphisms will be written on the left of their
arguments.

DEFINITION 1: A ring R is called a commutator ring if R = [R, R].

In [4] and [6] examples of commutator division rings are constructed. Also, it is
easy to see that finite direct products and homomorphic images of commutator rings are
commutator rings.

PROPOSITION 2 . If RQ S are rings such that R is a commutator ring and S
is generated over R by elements centralising R, then S is also a commutator ring.

m
PROOF: Given an element o € 5, we can write a = J^ r«st> where T\ e R, the Si € 5

»=i
centralise R, and m is some positive integer. Since R is a commutator ring, for each rt

there are elements j/y, Xy € R and a positive integer m̂  such that ri = £ [xy , y%j\. Then

0 = > T-jSj =

D
This proposition implies that, for example, matrix rings, group rings, and polynomial

rings over commutator rings are commutator rings. Furthermore, given a commutative
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ring K and two if-algebras R and S, such that R is a commutator ring, R ® K 5 is again
a commutator ring.

Given a ring R, a set of variables X, and a set of relations Y, we shall denote the
fi-ring presented by i?-centralising generators X and relations Y by R(X : V).

DEFINITION 3: Let fibea ring. Then Ai(R) = R(x,y : [x,y] = l ) is called
the (first) Weyl algebra over R. Higher Weyl algebras are defined inductively by
An{R) = A\(An-i(R)). More generally, given a set / , we shall denote the ring
R{{xi}iei, {Vi}iei '• faux,} = [yi,yj] = [x^yj] = 0 for i ^ j , and [xityi] = l ) by Aj(fl).

PROPOSITION 4 . For any ring R and any infinite set I, A, (R) = [Aj {R),AI{R)]1.
In particular, any ring can be embedded in a commutator ring.

P R O O F : Let a € Ai(R) be any element. When written as a polynomial in {xi}iei
and {j/t}t€/> s contains only finitely many variables yit so there exists some n e / such
that yn does not occur in s. Then [xn, s] = 0, and hence

s = 1 • s = [xn, yn]s = [xn, yns] - yn[xn, s] = [xn, yns]. _

Harris used this construction in [4] to produce a commutator division ring. Specif-
ically, he took R to be a field and then used essentially the method above to show that
the division ring of fractions of Ai(R) is a commutator ring.

Before discussing the case when / is a finite set, we record two well known facts that
will be useful.

LEMMA 5 . Let R be any ring and n a positive integer. If A,B € Mn(R), then
trace([i4, B]) € [R,R]n2. Conversely, given any r e [R,R]n2, there exist matrices
A,B e Mn(.R) such that trace ([A, B]) = r.

PROOF: Let A,B e Mn(R), and write A = (a^) and B = (6y). Then

n n n n

traced - BA) = J^ £ a ^ - £ £ bik<lki-
t = l fc=l i = l fc=l

Now, for all i and j with 1 < i, j < n, ayfyj appears exactly once in the first term of this
expression, and bjiaij appears exactly once in the second term. Hence,

n n

trace(Ai? - BA) =

n n
For the second statement, given r G [R, R]n2, we can write r = 5Z 2[°«i» M for some

t=i j=i

<iij,bji € R, after relabeling. Setting A — (a^) and B = (6y), we have trace([i4,B]) = r,

by the previous paragraph. 0
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PROPOSITION 6 . Let F be a fieJd and R a Gnite-dimeasional F-algebra.. Then
R*[R,R).

PROOF: Suppose that R is an F-algebra such that R = [R,R]. Let K be the
algebraic closure of F and RK = R ®F K the scalar extension of R to K. Then RK

= [RK, RK], by Proposition 2. Since the property of being a commutator ring is preserved
by homomorphic images, it will suffice to show that some homomorphic image of RK is
not a commutator ring; so without loss of generality we may assume that RK is a simple
/(T-algebra. Then, as a finite-dimensional simple algebra over an algebraically closed field,
RK is a full matrix ring. Hence, [RK,RK] lies in the kernel of the trace, by Lemma 5,
contradicting RK = [RK,RK]. D

From this it follows that, for instance, no PI ring can be a commutator ring, since
every PI ring has an image that is finite-dimensional over a field.

It is well known that for any Q-algebra R, the nth Weyl algebra An(R) satisfies
An(R) = [r,An(R)] for some r e An(R) (for example, see [3]). Actually, it is not hard
to show that writing

An{R) = A^A^R)) = ^(Rfay: [x,y] = l),

we can take r = ox + by + c for any a, b, c in the centre C of R, such that aC + bC = C.
Combining this with another fact about Weyl algebras, we obtain the following statement.

PROPOSITION 7 . Let Rbea. nonzero commutative ring and n a positive integer.
Then the Weyl algebra An(R) is a commutator ring if and only it R is a Q-aigebra.

PROOF: If R is not a Q-algebra, then we may assume that R is a Z/pZ-algebra for
some prime p, after passing to a quotient. By a theorem of Revoy in [7], for such a ring
R, An(R) is an Azumaya algebra and hence has a quotient that is a finite-dimensional
algebra over a field. Therefore, by Proposition 6, An(R) cannot be a commutator ring. D

We can also prove a more general statement.

PROPOS ITION 8 . Let n be a positive integer, p a prime number, and R a Z/pZ-
algebra. IfR? [R,R], then An(R) ± \K{R),K{R)\-

PROOF: By induction on n, it suffices to prove the proposition for

Al(R) = R(x,y:[x,y] = l).

p-i
Let us denote the matrix units in Mp(R) by Eij, and set X = £Z Ei<i+i and

P-I t=i
Y = "£iEi+l,i. Then

t=i

XY - YX = JT iEiti - £ iEi+u+l = JT iEiti -
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Hence I H + I and y •-»• Y induces a ring homomorphism from A\{R) to Mp(R). Now,
since ip~l = 1 (mod p) for i € {1 ,2 , . . . ,p — 1}, we have

(2—1 '•*/ ^ l p •
1=1 ' t = l

Thus, if r € R\[R, R], then trace(-r(XF)p~1) = r e R, and so, by Lemma 5, -r
is not a sum of commutators in Mp(.R). Consequently, — r(xy)p~l is not a sum of com-
mutators in A\(R). D

3. ENDOMORPHISM RINGS

We begin with a general result about commutators in matrix rings and, with its
help, provide another way of constructing commutator rings.

LEMMA 9 . Let R be a ring and r e R any element. Suppose that e € R is an
idempotent such that ere € [eRe, eRe]mi and frf £ [fRf, fRf]m2> where / = 1 — e and
mi,m2 € N. Tien r £ [R,R]m+i, where m = max(mi,m2).

PROOF: First, we note that for any

x, y,z,w £ R, [exe, eye] + [fzf, fwf] = [exe + fzf, eye + fwf].

Hence, if ere € [ei?e, eRe]m and frf £ [fRf, fRf]m, then ere + frf € [R, R]m.

Now, write r = ere + erf + fre + frf. Then erf = (-erf)e — e(-erf) and
fre = (fre)e - e(fre). Hence, r = [fre - erf, e] + ere + frf £ [R, R]m+1. D

PROPOSITION 10. Let R be a ring, r e R any element, and mi,m2, ...,mn

€ N. Suppose that ci, e2,. . . , en € R are orthogonal idempotents such that 1 = ex + e2

-I \-en and e^rei £ faRei, eiRei\mi for i = 1,2,..., n {where each e^itei is viewed as a
ring with identity et). Then r £ [R, R]m+n_lt where m = max(mi, m2 ) . . . , mn).

PROOF: We shall proceed by induction on n. The statement is a tautology when
n = 1. If n > 1, let / = ei + e2 + 1- en_i. Then / = f2 and / = 1 - en. Also, for

i € {1,2,..., n - 1}, ei(frf)ei = e^e* € [ e ^ ,

so, by the inductive hypothesis, frf e [/fi/1/fl/]max(m1,m,,...,mn.1)+n-2- But, by assump-
tion, enren € [en.Ren,en/ten],^. Hence, r € [ii, R]m+n-i, by the preceding lemma and
the fact that max(max(mi,m2,..., j r in -^+n-2 , rrin) < max(mi,m2,.. . , m n ) + n - 2 . D

COROLLARY 11 • Let R be a ring and M = Mi © M2 © • • • e Mn be right R-
modules. If each Endfi(Mj) is a commutator ring, then so is EndR(M). Also, if for each i
there is some positive integer m* such that EndR(Mj) = [Endfi(Afj), Endfi(Mj)] , then
Endfl(M) = [Endfi(M), Endft(Af)]m+n_1, where m = max(mu m2>..., mn).
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Let us now turn to endomorphism rings of infinite direct sums and products of copies
of a fixed module.

PROPOSITION 12 . Let R be a ring, N a right R-module, SI an infinite set, and
M = ® n N or M = Un N. Then EndR(M) = [x, EndR(M)] for some x € EndR{M). If
ft = N, then x can be taken to be the right shift operator.

PROOF: Since ® n N = (B((Bn-W) and fin N - iKl ln^)- it; suffices to prove
1=0 »=0

the proposition in the case £2 = N. Let x be the right shift operator and z the left shift
oo

operator. Now, consider any endomorphism / € Endji(M), and set y = —^2x*fzi+1.
«=0

Assuming this summation converges and using the relation zx = 1, we have

xy — yx = —
>=0 t=0 i= l i=0

It remains to prove convergence of the sum defining y in the function topology on
Endfi(AT). (In the case M = ®nAT, it is the topology based on regarding M as a
discrete module, while in the case M = fin N, it is the topology constructed using the
product topology on M, arising from the discrete topologies on the factors.)

oo

If M = ® n N, then (J ker(z') = M. Hence, every element of M is annihilated by
oo

almost all summands of — £)z ' /z t + 1 . If M = IIn^> t n e n given any positive integer i
»=o

and any m € M, x* /zJ+1(m) has a nonzero component in the copy of N indexed by i for
oo

only finitely many values of j (namely, for j ^ i). In either case, — ̂ 2x*fzl+1 converges
in the appropriate topology on End#(M). *=0 D

Using similar methods, it can be shown that given any ring R, the ring of infinite
matrices over R that are both row-finite and column-finite is also a commutator ring.

THEOREM 1 3 . Let R be a ring, N a right R-module, ft a nonempty set, and
M = ® n N or Y\n N. Then EndR(M) is a commutator ring if and only if either ft is
infinite or Ends(A^) is a commutator ring.

PROOF: Suppose that EndR(M) is a commutator ring and ft is finite. Then
Endfi(M) = Mn(EndR(iV)) for some positive integer n. Hence, Endjj(iV) is a com-
mutator ring, by Lemma 5. The converse follows from the previous proposition if ft is
infinite, and from Proposition 2 if ft is finite. D

oo

Incidentally, in the proof of Proposition 12, the only fact about M = ® N that we
i=0

used was that for such a module there are endomorphisms i , z € EndR(M) such that
oo

zx = 1 and |J ker(z') = M. This condition actually characterises modules that are

infinite direct sums of copies of a module.
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PROPOSITION 14 . Let R be a ring and M a right R-module. The following are

equivalent.

(1) M = 0 Ni for some infinite set Q and some right R-modules Ni, such that
ten

Nt = Nj for alii, j G fi.

(1') M = 0 Ni for some countably infinite set ft and some right R-modules

Nt, such that Nt = Nj for all i,j G SI.

(2) There exist x, z 6 EndR(M) such that zx = 1 and \J k e r ^ ) = M.

PROOF: The equivalence of (1) and (1') is clear. To deduce (2) from (1'), we may
oo

assume that M = 0 Ni, after well ordering fi. Then x can be taken to be the right shift
i=0

operator and z the left shift operator. To show that (2) implies (1'), let Ni = z'ker(z)
for each i e N . Taking i ^ 1 and a G ker(z), we have zxi(a) = ii~1(a). Hence, left
multiplication by z gives a right i?-module homomorphism Nt -> A/j_i, which is clearly
surjective. This homomorphism is also injective, since Ni = x(xl~lkeT(z)) and zx = 1.
By induction, Ni = Nj for all i,j G N.

oo

Next, let us show that 52 Ni is direct. Suppose that a0 + ai H 1- an = 0, where
i=0

each ai e Ni, n ^ 1, and an j= 0. For each i 6 {0,1,. . . , n } , write at = x*(&i), where
bi € ker(z). Then

0 = zn(ao + ai-\ \- an) = zn(b0) + z"~1(6i) H 1- z(&n_i) +K = bn.

Hence, a,, = 0; a contradiction.
oo

Finally, we show that given a G M, we have o £ 0 ^ . By (2), a € ker(z") for
i=0

some positive integer n. If n = 1, then a € No, so there is nothing to prove. Otherwise,

za € ker(zn~1), and we may assume inductively that za = x°{bo)+x1(bi)-\ h i " " 1 ^ - ! )
for some bo,bi,..., 6n_i € ker(z). Then a = (a—xza)+xza, where a—xza G ker(z) = JV0,

n
and xza G 0 A/j- U

4. TRACELESS MATRICES

We now prove our main result about commutators in matrix rings. This proof uses
the same fundamental idea as the one for Proposition 12.

THEOREM 1 5 . Let R be a ring and n a positive integer. Then there exist matrices

X, Y e MniR) such that for all A G Mn(R) having trace 0, A G [X, MniR)] + [Y, Mn{R)].
n - l

SpecificaJiy, writing Eij for the matrix units, one can take X = ^ ^i+i,» a n £ ' Y = ^nn-
t=i

n - l n - l
PROOF: Write A = (o,^), and set X = X) ^t+u. Z = £ £M+1. Then

ZX = Bu + E22 H H £n_i) n_i = / — £„„.
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Hence,

(1) ZX = I-Enn.

Also,, for I £ {0,1,..., n - 1},

(»-' \ /""' \

/ . Ei+l,i IA I 2_j &i,i+l I ^rm = En,n-lAEn-l,n = On-l.Ti-i^nn-

Thus*
(2) EnnX

lAZlEnn = (>„.,,„.,£„„.
Nowr let

C = A + XAZ + ••• + Xn-lAZ"-1.

Then
[CZ, X] = CZX - XCZ = C(I - Enn) - XCZ,

by (1). Also, C - XCZ = A, since Xn = 0. Hence, [CZ, X] = A- CEnn. We note that
CEnn is an /{-linear combination of E\n, Esm,..., En-\>n, since

EnnCEnn = ((!„„ + On-i^-i H \- O,u)Enn = 0,

by (2) and the hypothesis that trace(i4) = 0.
Setting Y = Enn, we have for each i € {1,2,..., n - 1}, Ein = Ei nr - YEin. Hence

C£nn = [CEnn, Y], and therefore ^ = [CZ,X] + [C£nn, Y]. U

COROLLARY 16. Let R be a ring, n a positive integer, m € N, and A € Mn(il).
If traced) 6 [fi,il]m, tien A € [ ^ ( ^ . ^ ( i ? ) ] ^ ^ ^ ^ , wiere [m/n2] denotes the
least integer ^ m/n2.

PROOF: Letr = tiace(A). By Lemma 5, there is a matrix Be \Mn(R),Mn(R)],,1,
such that trace(B) = r. By the previous theorem, A — B is a sum of two commutators.
Hence, A € [^(R), Mn(R)] fm/n,1+2. 0

COROLLARY 17. Let R be a ring, n a positive integer, and A £Mn(R) a matrix.
Then A e [Mn(R),Mn(R)] if and only traced) € [R,R].

PROOF: The forward implication was proved in Lemma 5, while the converse follows
from the previous corollary. D

This is a generalisation of the result in [4] that given a division ring D, a matrix
A € Mn(D) is a sum of commutators if and only if its trace is a sum of commutators in D.
Actually, Corollary 17 can also be deduced rather quickly from Proposition 10 by writing
A = B + C, where B 6 Mn(R) has zeros on the main diagonal, C e M,,(i?) has zeros
everywhere off the main diagonal, and trace(C) e [R,R]. Then B € [Mn(R),Mn(R)],
by the proposition, and C can be written as a sum of commutators and matrices of the
form xEti - xEnn = (xEin)Eni - Eni(xEin).
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Let us now give an example of a matrix that has trace 0 but is not a commutator,
showing that in general the number of commutators in Theorem 15 cannot be decreased
to one. A similar example appears in [10], however, our proof is considerably shorter.
We shall require the following lemma in the process.

LEMMA 18. Let F be a fieJd and A, B G M2(F) matrices such that [A, B] = 0.
Then {[A,C] + [B,D] : C,D G M2(F)} is a subspace of the F-vector space M2(F) of
dimension at most 2.

PROOF: The result is clear if A and B are both central in M2(F), so we may assume
that A is not central. For all C G M2(F) let f(C) = [A,C] and g(C) = [B,C]. Then
/ and g are F-vector space endomorphisms of M2(F). Let 5 C M2(F) be the subspace
spanned by the images of / and g. We shall show that 5 is at most 2-dimensional.

For all a, 6, c G F we have f(aA+bB+cI) = 0 = g(aA+bB+cI), since [A, B] = 0. If
B is not in the span of / and A, then dim/?(ker(/)) ^ 3 and diniF(ker(<7)) ^ 3. So im(/)
and im(<7) are each at most 1-dimensional, and hence 5 can be at most 2-dimensional.
Therefore, we may assume that B = aA + bl for some a,b G F. In this case, S = im(/).
But, / , A G ker(/), and A is not in the span of / , so im(/) is at most 2-dimensional, as
desired. D

PROPOSITION 19. Let F be a field and R = F[xii,x12,x21]/(x1i,x12,x2i)2.
Then the matrix

has trace 0 but is not a commutator in M2(R).

PROOF: Suppose that X = [A,B] for some A,B G R. Viewing X, A, and B
as polynomials in i n , xi2, and x21, let A0,B0 G M2(F) denote the degree-0 terms of
A and B, respectively. Then the equation X = [A,B] tells us that [A>,B<>] = 0 ^ d
that the matrices of the form [A0,C] - [B0,D] (C,D G M2(F)) span a 3-dimensional
subspace of M2(F), namely the subspace of all trace-0 matrices. (For if we denote the
coefficients of Xy in A and B by Aij and By, respectively, then the coefficient of x^ in
X is [>lo,By] + [A^, So].) This contradicts the previous lemma, and s o X ^ [A, B\ for
all A,B€R. D

We can also extend the above result to a more general setting.

PROPOSITION 20 . Suppose F is a Geld, R a commutative F-algebra, I C. R an

ideal such that R/I = F, and I/I2 is at least 3-dimensionai over F. Then there exists a

matrix X G M2(R) that has trace 0 but is not a commutator.

P R O O F : Let x, y,z G / be such that {x,y,z} is F-linearly independent in I/P.

Then, there is a homomorphism <f> : R -* F[xn,x l 2 ,X2i] / (xi i ,x1 2 ,x2 i ) 2 such that <£(x)
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= Xiu <f>{y) = ^12, and <j>(z) = x2i- The matrix

X
=(:-:)

will then have the desired properties, since its image in M2(F[xn, xn, x2i]/(xn, X\2, x2i)2)
(under the extension of 4> to a matrix ring homomorphism) is not a commutator, by the
previous proposition. D
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