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This paper explores nonparametric estimation, inference, and specification testing
in a nonlinear cointegrating regression model where the structural equation errors
are serially dependent and where the regressor is endogenous and may be driven
by long memory innovations. Generalizing earlier results of Wang and Phillips
(2009a,b, Econometric Theory 25, 710-738, Econometrica 77, 1901-1948), the
conventional nonparametric local level kernel estimator is shown to be consistent
and asymptotically (mixed) normal in these cases, thereby opening up inference
by conventional nonparametric methods to a wide class of potentially nonlinear
cointegrated relations. New results on the consistency of parametric estimates in
nonlinear cointegrating regressions are provided, extending earlier research on
parametric nonlinear regression and providing primitive conditions for parametric
model testing. A model specification test is studied and confirmed to provide a
valid mechanism for testing parametric specifications that is robust to endogeneity.
But under long memory innovations the test is not pivotal, its convergence rate
is parameter dependent, and its limit theory involves the local time of fractional
Brownian motion. Simulation results show good performance for the nonparametric
kernel estimates in cases of strong endogeneity and long memory, whereas
the specification test is shown to be sensitive to the presence of long memory
innovations, as predicted by asymptotic theory.

1. INTRODUCTION

Most empirical econometric research with time series data still uses linear in vari-
ables models, particularly those involving vector autoregressions, error correc-
tion systems, or reduced rank regressions. These specifications are convenient
for practical work and package software has many standard routines for dealing
with such systems, encouraging extensive usage of the methods. While common
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in applications, there has been growing recognition of the limitations of linear
systems and the need for nonlinearities in specification that accommodate such
effects as thresholds, breaks, or nonlinear behavioral responses. Such extensions
can be formulated in parametric and nonparametric ways. While parametric for-
mulations have now been treated in some generality following Park and Phillips
(2001), allowing for unknown nonlinearity and nonstationarity in potentially coin-
tegrated systems has presented deeper technical challenges in the development of
asymptotic theories of estimation, inference, and specification. Progress has there-
fore been slow in comparison with the rapid earlier development of inference in
linear nonstationary systems. However, some recent critical advances have been
made that are now opening up this field to the practitioner.

In an earlier paper Wang and Phillips (WP) (2009a) discovered that standard
tools of kernel regression could be employed to estimate and conduct valid asymp-
totic inference in certain nonparametric cointegrating regression models. In par-
ticular, the standard normal limit theory for nonparametric regression estimates
in stationary systems applies also to self-normalized kernel regression estimates
even when the explanatory variable is integrated. In view of the complexities of
nonstationary regression limit theory in linear models, this simple finding was
unexpected. The results in WP (2009a) applied to a bivariate cointegrating re-
gression without contemporaneous endogeneity. Somewhat surprisingly, the same
result was found to apply in similar models with contemporaneous endogeneity
(WP, 2009b), highlighting a major difference with the stationary case where ker-
nel regression is inconsistent and ill posed inverse problems arise in the use of
nonparametric instrumental variable approaches that are designed to address the
endogeneity in stationary systems. In the predictive regression context, Kasparis,
Andreou, and Phillips (2014) have recently shown that the standard normal limit
theory continues to apply when the regressor has a local to unity or nonstationary
long memory generating mechanism.

The present paper shows that these advantages of the nonparametric approach
in the nonstationary case extend to an even wider class of models than that con-
sidered in WP (2009a,b). In particular, the regressor may be driven by long mem-
ory as well as short memory innovations and the structural equation errors may
have rather general weak dependence characteristics and correlation with the re-
gressor. These results give the nonparametric regression limit theory for nonsta-
tionary cointegrated models much the same level of generality as that of linear
cointegrated regression, at least for bivariate systems.

A typical nonlinear cointegrating regression model has the following form

yi=fx)4u, t=1,2,...n, (1.1)

where u; is a zero mean equilibrium error, x; iS a nonstationary regressor and
f(-) is an unknown real function on R. The model (1.1) is conventionally called
a cointegrating regression in view of the obvious link to cointegration when
f () is linear, even though nonlinear functions may well affect the memory
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and persistence properties of the regressor x;. In the presence of more explicit
prior information, the regression function f(-) may be specified in parametric
form as

f(x)=g(x,6), (1.2)

where g (-, #) represents a parametric family of functions with unknown true para-
metric value 6y € ®, a compact set in R™ for some finite m. The past decade has
witnessed progress in the development of an asymptotic theory of estimation and
inference for both the nonparametric model (1.1) and the parametric model (1.2).
Technical difficulties in the limit theory for nonlinear covariance functionals of
nonstationary and stationary time series has confined much of the asymptotic the-
ory to the case of strict exogeneity where the regressor x; is uncorrelated with the
regression errors u; at all leads and lags. Exogeneity is a natural starting point for
a pure cointegrated system and provides some useful insight into the properties
of various estimates of nonlinear long run linkages between the system variables.
But the assumption is restrictive, especially in a cointegrated framework where the
driver variables may be expected to be temporally and contemporaneously corre-
lated. Exogeneity therefore delimits potential applications as well as removing a
central technical difficulty in the development of the asymptotics.

Further progress in the field is inhibited by these limitations. One contribution
of the present paper is to address these technical difficulties. A second contribu-
tion is to expand the framework to include long memory process drivers in the
regressors, thereby allowing for a wider class of regressors and temporal depen-
dence properties within the system. A third contribution is to provide asymptotic
properties of a specification test for evaluating parametric regression hypotheses
of the form (1.2) under endogeneity and long memory. A further contribution is to
develop new consistency results for parametric nonlinear cointegrating regression.
These developments widen the range of practical application for kernel regression
methods and specification tests with nonstationary data.

The paper is organized as follows. Section 2 considers nonparametric estima-
tion in a nonlinear cointegrating regression model such as (1.1). Unlike previous
work in the nonlinear case, the current paper allows the regressor x; to be driven
by long memory innovations and permits serial dependence in the error u; and the
innovations driving x; for all leads and legs. A limit theory is developed for local
level and local linear nonparametric estimates and their self normalized versions.
A model specification test is developed in Section 3 for testing parametric hy-
potheses such as (1.2). The limit distribution of the statistic depends on the local
time of the Brownian motion or fractional Brownian motion limit process asso-
ciated with the (standardized) nonstationary regressor. This test is convenient to
apply in practice under endogeneity and short memory innovations and has power
against local alternatives to the null. Under long memory driver innovations for
the regressor, the test statistic has a nonpivotal limit theory and parameter de-
pendence in its convergence rate, which complicate inference. Section 4 explores
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the limit theory of parametric estimates in nonlinear cointegrating regressions,
extending some of the earlier results in Park and Phillips (1999, 2001) and pro-
viding support for a high level convergence condition used in the asymptotic the-
ory of the specification test. Proofs of the main results in the paper are given in
Section 6, which also presents several useful propositions. Proofs of these propo-
sitions are given in Section 7.

Throughout the paper, we denote constants by C, C1, Ca, ..., which may differ
at each appearance. We use the notation ||x|| = max; |x;| for vector x = (xj) and
||Al| = max;, j |a;;| for matrix A = [(a;;)]. Other notation is standard.

2. NONPARAMETRIC ESTIMATION

The local level kernel estimate of f(x) in model (1.1) is given by

_ Z?=1 Ve Kp(x; — x)

A Ay T,

where K, (s) = %K (s/h), K (x) is a nonnegative real function, and the bandwidth

parameter i = h, — 0 as n — oo. The limit behavior of f (x) has been investi-
gated in past work in some special situations, notably where the error process u,
is a martingale difference sequence and there is no contemporaneous correlation
between x; and u,. See, Karlsen, Myklebust, and Tjgstheim (2007), Cai, Li, and
Park (2009), WP (2009a, 2011), and Wang (2014), for instance. The treatment
in WP (2009b) notably allowed for endogeneity in (1.1) so that the equation er-
ror u; might be cross-correlated with x; over some finite time horizon for which
|t —s| < mg for some finite my.

This section has a similar goal to WP (2009b) in terms of accommodating
endogeneity, but provides more general results with advantages for empirical
applications. First, our model allows for the regressor x; to be driven by long
memory innovations. Second, unlike WP (2009b) where only finite memory
cross-correlation was considered, our assumptions permit dependence between
the error process u#; and the innovations driving x; for all leads and lags. These re-
laxations of the conditions in WP (2009b) are particularly important in nonlinear
cointegrated systems because finite time horizon dependence between the regres-
sor and the equation error will often be restrictive in practice and it is seldom
realistic in analyzing co-movement to insist that system variables or regressors be
exactly /(1) time series.

Throughout the section we let 7; = (¢;,v;)’,i € Z, be a sequence of iid random
vectors with Exg =0, E (;70116) = X, and E||59]|* < oo for some a > 2. Assume
Eeé =1, and let the characteristic function ¢(¢) of €q satisfy the integrability
condition ffooo(l + |t]) @ (¢)|dt < oo, which assures smoothness in the corre-
sponding density. We make use of the following assumptions in the asymptotic
development.
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Assumption 2.1. x; = Zlefj, where {¢;, j > 1} is a linear process defined
by & = > po Pk €j—k» With coefficients ¢y, k > 0, satisfying ¢ # 0 and one of
the following conditions:

Cl. ¢ ~k™* p(k), where 1/2 < u < 1 and p (k) is a function slowly varying
at oo.

C2. Z/?io |¢x| < o0 and ¢p = Z,fiogék #0.
Assumption 2.2. u; = Z;io wjnk—j, where the coefficient vector y; =
(wk1, wi2) satisfies D5 o kY4 (k| + [wax]) < oo and 322 wi # 0.

Assumption 2.3. K (x) is a nonnegative bounded continuous function satisfy-
ing [K(x)dx =1and [|K(x)|dx < oo, where K (x) = [ K (t)dt.

Assumption 2.4. For given x, there exists a real positive function fi(s,x) and
y € (0, 1] such that, when ¢ sufficiently small, | f (dy +x) — f(x)| < " fi1(y,x)
forall y € Rand [* K (s)[fi(s,x)+ f2(s,x)lds < oo.

Assumption 2.1 allows for short (under C2) and long (under C1) memory in-
novations ¢; driving the regressor x;. In the long memory case, the parameter

u=1—dwithd e (O, %) measures the hyperbolic decay rate in the coefficients

¢y of the linear process defining &;. In the special case where (1 — L)d S =¢,d

is the fractional differencing parameter. Set d> = Ex2, ¢, = m Jo xH

(x +1)"#dx and denote by Wy(¢) a fractional Brownian motion with Hurst pa-
rameter 0 < f < 1. It is well-known that the asymptotic form of d,, as n — oo is
given by

dp ~

n

[ cy n3-2u p2(n), under C1, 2.1)

o*n, under C2,

and on DJ[O0, 1] the following weak convergence applies (e.g., Wang, Lin, and
Gulati, 2003)

W3/0_,(t), under C1
Xint)/dn = w(t) :=[W3(/t2)’“() under €2, ° (2.2)

where |nt] is the floor function and W = W, is Brownian motion. Further-
more, the limit process y (¢) has continuous local time process L, (¢, s) with dual
(time and space) parameters (¢, s) in [0, c0) x R. The local time process L (%, s)
of a stochastic process G(x) is defined by (e.g., Geman and Horowitz, 1980,
Thm. 22.1)

N
LG(t,s):EIgr(l)Z/o 1{|G(r)—s|§e}dr. 2.3)

These notations are used throughout the rest of the paper without further explana-
tion.
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Assumption 2.2 allows the equation error u; to be cross correlated with
the regressor x; for all s < ¢, thereby inducing endogeneity and giving the
structural model more natural temporal dependence properties than those used in
WP (2009b). By a simple calculation

(o.¢]
Eul = Zy/kZV/,i, where T = (

1 Eéov())
k=0

EE()UQ El)g

We may have cov(u;,x;) # 0 under Assumptions 2.1 and 2.2, which differs
from much previous work where x; is often assumed to be adapted to F;_i
and (u,, F;) forms a martingale difference sequence. In that case, cov (u;, x;) =
E[x;E(u;|Fi-1)] =0.

Assumptions 2.3 and 2.4 are the same as in WP (2009b), are quite weak,
and are easily verified for various kernels K (x) and regression functions f(x).
Typical examples of K(x) and f(x) include the normal kernel, kernels with
compact support for K, and functions f(x) = |x|# or f(x) = 1/(1+ |x|#) for
some > 0.

The following is the main result on local level kernel estimation of the unknown
regression function in (1.1).

THEOREM 2.1. Under Assumptions 2.1-2.4, for any h satisfying nh/d, — oo
and nh'*%" /d, — 0, we have

A -
(’;—) (for-r@)=prL, 0,0, 2.4)

for any fixed x, where 1> = Eu(z) ffooo K?2(s)ds and N is a standard normal variate
independent of L, (1,0). We also have the following self-normalized limit form

" 12
(h > K —x)) (fo-r@)-pen. 2.5)

t=1

Under (C1) when p(n) is constant, (2.1) is d,% ~ ¢n'*24 for some constant ¢
and the condition nh/d, — oo on the effective sample size required for consis-

tency then reduces to n2=h — oo or «/nh — oo when d = 0 as in WP (2009b).
So the effective sample size falls as d increases. It follows that larger d € (O, %)

requires a larger bandwidth / to ensure that the effective sample size diverges. An
intuitive explanation is that a fractionally integrated / (1 +d) series is smoother
than an 7 (1) series which correspondingly reduces the local signal inherent in

the nonparametric regression signal > 1 K X’;x). A larger bandwidth com-

pensates for this reduction in the signal. Importantly, the self-normalized limit
(2.5) is pivotal upon estimation of E u%, constructed by
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~ 2
> = Few] Kie—x)
i1 K —x) '
Result (2.5) is well-suited to inference and confidence interval construction.

As in WP (2011) (see also Wang, 2014), an explicit bias term may be incor-
porated into the limit theory (2.4) and (2.5) if we impose stronger smoothness
conditions on f and K. Furthermore, the Nadaraya—Watson estimator f (x) has
the same limit distribution (to the second order including bias) as the local linear
nonparametric estimator (e.g., Fan and Gijbels, 1996), defined by

2
O'n—

Fr@ =" wiYi /D wi, wi=Kn(xi =) Ve — (i =)V},
i=1 i=1

where V,, j = >1 Kj (x; —x) (x; — x)/ . Explicitly, we have the following theorem.

THEOREM 2.2. Suppose Assumptions 2.1-2.2 hold. Further assume that, for
some p > 2,

() K(x) satisfies [ K (y)dy =1,
/y”K(y)dyaéO, /yiK(y)dy=0, i=12...,p—1

(ii) K (x) has compact support and is twice continuously differentiable on R;

(iii) for given fixed x, f(x) has a continuous p + 1 derivative in a small neigh-
borhood of x.

Then, for any h satisfying nh/d, — co and nh't2(*+D /d, — 0, we have

20 p £p) o0
(4) ['f(x)—f(x)—_h il y"K(y)dy} ~p tNL, (10,

dp
(2.6)
and
" 172 . P fP) (x) [0
(h Z;Kh(xt_x)) [f(X)—f(X)—T/_mypK(y)dy} —p TN.
l 2.7

where the notation follows Theorfm 2.1.F urthermore, both results (2.6) and (2.7)
(with p = 2) hold if we replace f(x) by fL(x).

This finding provides further evidence that, under pointwise estimation, the
bias reducing advantage of the local linear nonparametric estimator is lost when
X; is nonstationary, a phenomenon first discussed in WP (2011). In contrast to
pointwise estimation, the local linear nonparametric estimator does have superior
performance characteristics to the Nadaraya—Watson estimator in terms of uni-
form asymptotics over wide domains (Duffy, 2013; Chan and Wang, 2014a).

https://doi.org/10.1017/50266466614000917 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466614000917

366 QIYING WANG AND PETER C. B. PHILLIPS

3. MODEL SPECIFICATION TESTING

The preceding theory deals with nonparametric estimation of a nonlinear coin-
tegrating regression under general conditions of an endogenous regressor. Non-
parametric function estimation is often the first step in analyzing data when there
is no prior information on functional form. As is apparent from Theorems 1 and
2, nonparametric estimation has the merit of simplicity in terms of both practical
implementation and asymptotics. In comparison to parametric counterparts (e.g.,
Park and Phillips, 2001; Chang, Park, and Phillips, 2001; Chan and Wang, 2014b),
nonparametric estimators typically deliver slow convergence rates. Parametric es-
timation can therefore be attractive in practical work, whilst allowing for some
potential functional misspecification. The latter possibility makes it desirable to
perform a test of parametric specification. This section considers a parametric
model specification test that is suited to nonlinear cointegrating regression with
an endogenous regressor.

In view of the maintained model (1.1) interest typically focuses on testing a
specific parametric null hypothesis such as

Hy: f(x)=g(x,0h), 6eQ, (3.1

for x € R, where g(x, #) is a given real function indexed by a vector # of unknown
parameters which lie in the parameter space €. To test Hp, Gao et al. (2009) and
WP (2012) considered kernel-smoothed U statistics of the form

n

Se= > iy K[(x,—x0)/h], (3.2)

s,t=1,5#t

where 1, = y, — f (x4, 9), K (x) is a nonnegative real kernel function, 4 is a band-
width satisfying & = h, — 0 as the sample size n — oo and 0 is a parametric
estimator of @ under the null Hy that is consistent whenever 0 € Q. The behavior
of the kernel weights K ((x; — x5)/h) depends on the self intersection properties
of x;. The U statistic asymptotics for S, involve some new limit theory, developed
by WP (2012), that depend on the self intersection local time of a Gaussian pro-
cess (i.e., the local time for which the process intersects itself). The involvement
of the kernel weights K ((x; —x,)/h) in the U statistic make the asymptotics for
S, complex and difficult to extend to the case of an endogenous regressor.

The present paper uses instead of (3.2) a normalized version of the following
statistic

n 2
Tn=/ [ZK[(xk—x)/h][)’k_g(xk>é")]] 7 (x)dx,

~ k=1

where 7 (x) is a positive integrable function and 8, is the nonlinear least squares
(NLS) of 6y in the parametric model (3.1), as considered in the following sec-
tion. The statistic 7, is a modification of the test statistic discussed by Hérdle
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and Mammen (1993) for the random sample case. The test was used in Gao,
Tj@stheim, and Yin (2012) for a nonlinear cointegrating model with a martingale
error structure and no endogeneity. We proceed to show that the statistic 7}, is
asymptotically valid in a nonlinear cointegration model with endogeneity, as was
indicated in their simulation results. Moreover, with changes in the convergence
rate and the limit distribution, we demonstrate that the statistic remains valid un-
der long memory input shocks to the regressor. But in that case the limit theory
and convergence rate of the test both depend on the memory parameter of regres-
sor, which complicates practical implementation. The alternative of proceeding
under the assumption of short memory innovations when there are long memory
input shocks to the regressor leads to a conservative test with zero asymptotic size
and substantial reductions in power.

To proceed, we make the following additional assumptions on K (x) and g(x, )
to develop asymptotics for 7,.

Assumption 3.1. K (x) has compact support, ffooo K(x)dx =1 and |K(x) —
K (y)| < Clx — y| whenever |x — y| is sufficiently small.

Assumption 3.2. (i) There exist g;(x) and g» (x) such that, for each 8, 6y € Qo,
lg(x,0) —g(x,60)| < C10 —bol| g1(x),

and for some 0 < f <1,

lg1(x+y) — 1) < Clyl g2(x),
whenever y is sufficiently small. (ii) ffooo [l +g%(x) +g%(x)] w(x)dx < oo.

Assumption 3.3. Under Hy, |10, —6ol| = op[(dy/nh)"/?].

Assumption 3.2 covers a wide class of functionals g(x,#) and weight func-
tions 7 (x), including g(x,0) = (x +6)2, 0e* /(1 +¢€¥), flog|x|, ]x|* (a is
fixed) and o 4 601]x| + - - + Oc|x|* when 7 (x) = e=%°/2 or 7 (x) has compact
support. At this level of generality for g (x,8), the condition on 7 (x) is close to
being necessary. Assumption 3.1 is slightly stronger than is necessary, and can be
weakened to include the normal kernel function if more restrictions are imposed
on the weight function z (x). Under the current model with endogeneity, the stated
consistency rate condition on 0, required in Assumption 3.3 is not presently avail-
able in the literature. For completeness therefore, we investigate convergence re-
sults of this kind and provide primitive conditions to validate the assumption in
Section 4 of the paper. In particular, since # — 0, Theorems 4.2 and 4.3 show that
Assumption 3.3 is achievable under stronger smoothness conditions on g(x,8).

We have the following main result.

THEOREM 3.1. Suppose Assumptions 2.1-2.2, and 3.1-3.3 hold. Then, under
Hy, we have

d,
Tpa:i= % T, = p 0Ly (1,0), 3.3)
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for any h satisfying nh*logn /d, — 0 and n'=%h/d, — oo, where

70 = Euj / - K%(s)ds / - 7 (x)dx (3.4)

—00 —0Q
and oy can be as small as required.

Remark 3.1. As in the estimation theory, the condition on the bandwidth A
that n'=%h /d, — oo is close to being necessary. Similar to the discussions in
WP (2012), the further condition nh%log'/? n/d, — 0 is used mainly to offset the
impact of the dependence between u; and x,. See the proof of Proposition 7.3. It
seems difficult to relax this condition under the current model.

To investigate asymptotic power, let the parametric space ( be compact and
convex, and the true parameter 6y be an interior point of Qy. We consider the
following local alternative models

Hy: f(x)=gkx,60)+pym(x), 3.5)

where p,, is a sequence of constants measuring local deviations from the null and
m(x) is a real function. Local alternatives of the form (3.5) are commonly used in
the theory of nonparametric inference involving stationary data. See, for instance,
Horowitz and Spokoiny (2001). We impose the following smoothness conditions
on m(x) and the consistency rate condition on 6, under H to aid the asymptotic
development here. It should be mentioned that, since m(x) is assumed to be free
of 0, the majority of common estimates for & such as the LS estimates discussed
in the next section share the same rates under Hy and Hj.

Assumption 3.4.

(i) There exist m{(x) and y € (0, 1] such that, for any y sufficiently small,
Im(x +y) —m@)| < Cly|” mi(x).

(i) [ [1+m?(x)+mi(x)]z(x)dx <ooand [° m*(x)m(x)dx > 0.
(iii) The function m (x) is not an element of the space spanned by g(x, 6p) and
its derivative functions g (6p) = og (x, ) /6.

Assumption 3.5. Under Hy, |10, —6ol| = op[(dy/nh)"/?].

THEOREM 3.2. Suppose Assumptions 2.1-2.2, 3.1-3.2 and 3.4-3.5 hold.
Then, under Hy, we have

d
lim P(—ZT,, zto) =1,

n— 00 n

for any to > 0, any h — 0 satisfying n'=®h/d, — oo where dy can be as small
as required, and any py, satisfying nhp,% /d, — 0.
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Remark 3.2. As in Assumption 3.2, the conditions on m(x) imposed by As-
sumption 3.4 seem weak and are satisfied by a large class of real functions. As-
sumption 3.4 (ii) is an integrability condition and the requirement 7| = ffooomz
(x) 7 (x)dx > 0 ensures that

2 00 n 2
(d—") / [ZK[(xk —x)/h]m(xk)] w(x)dx —>p 1y L2,(1,0) >0, a.s.,
nh 2 Lk=1 '
as shown in the proof of Theorem 3.2, which further ensures the divergence of
Z—Z T, and test consistency under H;. Condition (iii) excludes functions m (x)
which lie in the span of g (x,6p) and its derivatives g (6p), thereby ensuring that
there is discriminatory power in the direction of m (x) . A related condition is used
in Horowitz and Spokoiny (2001).

Remark 3.3. According to Theorem 3.2 the 7), test has nontrivial power
against local alternatives of the form (3.5) whenever p, — 0 at a rate that is slower
than [d,/ (nh)]l/ 2 asnh /d, — oo. This result differs from the stationary situa-
tion where a test generally has nontrivial power only if p, — 0 at a rate slower
than n~!/2. Moreover, unlike the test used in WP (2012), the rate condition here
is only related to the bandwidth /, not to the magnitude of m(x). The explanation
is that the weight function 7z (x) in the test offsets direct impact of the magnitude
of m(x) under the alternative, although as noted in the previous remark both 7 (x)
and m(x) figure in the magnitude of 7| = ffooo m2(x) 7 (x)dx.

Remark 3.4. Theorems 3.1 and 3.2 show that specification tests based on 7},
are valid and have nontrivial local power for alternatives of the form (3.5) under
endogeneity.

In the short memory case (i.e., d = 0 or under C2), d,, = ¢+/n and result (3.3)

reduces to

TnoziTn—n) 70 Lw(1,0). 3.6)
T /nh

The error variance Eu% that appears in the definition of 7 [see (3.4)] can be esti-

mated by

52— Dol — gk, )P K (x, — x)
! Z?:] Kp(x; —x) ’

based on a localized version of the usual residual sum of squares. Further, ¢
can be estimated by standard HAC methods. Alternative HAR sieve methods
(Phillips, 2005; Sun, 2011; Chen, Liao, and Sun, 2014) or fixed-b kernel meth-
ods (Kiefer and Vogelsang, 2005; Sun, 2014) may be used after some changes to
the limit theory to address the random limit theory involved in the estimation of
¢ but these methods are not explored here. These facts imply that, in the short
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memory case, the test T, o is applicable under endogeneity for practical imple-
mentation in specification testing, just as discussed in Gao et al. (2012) under
exogeneity.

In the long memory case, the scaling in the statistic (3.3) relies on the expansion
rate parameter d2 ~cy n3—2u 2(n), which in turn relies on the unknown value
of u. Even in the simple case where p(n) is constant and d,, ~ en* for some
constant ¢, the required scaling depends on the (typically unknown) value of the
long memory parameter d = 1 — . If d were estimated nonparametrically by d
using narrow band methods (e.g., by the exact local Whittle procedure in Shi-

motsu and Phillips, 2005) with convergence rate /m where lf/gf + % — 0, then

a standard derivation shows that in this case /m (ﬁn - dn) / (dylogn) = 0, (1).
It follows that

. dy d, ~ ~m (dn —dn) d, "\ logn
Thai=—Th=—Th+——L (=T, —=
nh nh dylogn nh Jm

logn

Jm
giving the same limit distribution as (3.3). However, the limit distribution still
depends on d via the local time L (1,0) of the (unknown) fractional Brownian

motion process y and is therefore nonpivotal. The local time L, (1,0) may itself
be estimated by kernel methods in view of the asymptotic approximation

d, " Xr—X
— K ; ~L,(1,0), 3.7)
t=1

=T+ 0, ( )%DTOLW(LO),

which holds for all fixed x. However, this estimate also depends on the unknown
value of d. Moreover, the self normalized statistic

Ty

S K ()

is unsuited for inference, requires centering and a further limit theory for the re-
centered statistic, which again depends on the unknown value of d. In the long
memory case, therefore, the statistic 7; 4 is not well-suited for practical imple-
mentation in specification testing and further investigation seems desirable.

In the long memory case, we can still use the limit theory given by (3.6) giving

a feasible test, but when d € (O, %) the statistic ﬁTn produces a conservative

test. In particular, for a’2 ~cy n'*24 p2(n) we have

1 d
T, ~ —

1
— Ty~ —Ty X ——— —,0, (3.8)
Jnh nh" Pndp (n) P
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so that the size of a test based on [hT tends to zero as n — oo whenever

de (0, % . Furthermore, its power function under alternatives of the form (3.5)

depends on p,, and d,,. In particular, we note that

L _dn N dy 1

= — —_—~

= X ——,
okt kT kT 2 d )

so that limit behavior under the alternative depends on the divergence rate of f—z T,
in relation to d,,. The divergence rate of the statistic d’;l T, therefore needs to ex-
ceed n? p (n) for a test based on [ T, to be consistent. Using arguments similar
to those 1n the proof of Theorem 3.2 we find that test consistency is attained
provided * 7 /3 pn — oo. For small values of d, nontrivial power is then possible

. . 1
under local alternatives. For example, if d, ~ en2td and d = g, then the test
. . . 5 .
is consistent provided n 12 hp,% — 00. Larger values of d typically require more

distant alternatives to ensure consistency. For example, if d = }1, then the test is

. e L . .
consistent if n~ 12 hp,% — oo which requires p;,, — c0.

4. PARAMETRIC CONSISTENCY

This section considers extremum estimation of the unknown parameters 0
in model (1.2) by nonlinear least squares (NLS). We provide primitive condi-
tions for the verification of consistent parametric estimation of & as given in
Assumption 3.3. Since m(x) is assumed to be free of 8, the results still hold under
Assumption 3.5.

Let 0,(0) =>/_ (y: — g(xs, 6))2. The NLS estimator 8, of @ is defined as the
minimizer of Q,(f) over § € Q, viz.,

0, = argmingee 0, (0).

Let O, and O, be the first and second derivatives of O, (@), so that 0,=00, /06
and O, = 620,/6080’'. Similar definitions are used for ¢ and g. We assume
these quantities exist whenever they are introduced. To develop asymptotics for
0, the following framework is a generalization of Theorem 3.1 in Chan and
Wang (2014b) and draws on Wooldridge (1994) and Andrews and Sun (2004).
Park (2014) provides a recent overview of some of the research in this field.

THEOREM 4.1. Suppose 0y is a finite interior point of ® and there exist a se-
quence of constants {k,,n > 1} and a sequence of m x m nonrandom nonsingular
matrices Dy satisfying k, — oo and ky, || Dn_1 |[— 0, as n — oo, such that the
Jfollowing conditions hold:

() suppp,o—ayi<k, I (DD 2y [£(,0)&(xi,0) = &(x1,60)
g, 001D 1= 0p(9,2),
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(i) supy.|p,@—60)l<k, | (Dn_l)/ D1 8(x,0) [g(x,,@) _8()51,90)] Dn_l =
or (9;7),
(i) $UPgy p, @—ap) 1<k, | (D7) i &G, ) DTV = 0p (572),

@iv) Y, := (Dn_l)/ z;’zl &(x,00)&(xz,60) Dn_1 —p M, where M > 0, a.s.,
and

Z, = (Dn_l)/ Zg(xtﬁo) u; = Op(dy), 4.1
t=1

where 1 < 0,, < k,i_fo for some €y > 0. Then, there exists a sequence of
estimators {é,,, n> 1} satisfying Oy, (én) = 0 with probability that goes

to one and

D, (én—eo) =Y Zy +op(1). 4.2)

If we replace (iv) by the following condition (iv)/, then D,, (én - 90) —D
M~ Z and in (i)—(iii) we may take 5, = 1.
(iv) foranya! = (aj1,...,aim) e R",i=1,2,3,
(a) Yoo, 05Z,) —p (a]Maz, a5Z),
where M > 0, a.s. and Z is an a.s. finite random variable.

Remark 4.1. Theorem 4.1 was established in Chan and Wang (2014b) with
0, = 1. The current result weakens the restriction on Z,, which in turn allows
us to establish consistency of the estimator &, in model (1.1)—(1.2) under a more
general framework with an endogenous regressor.

We next investigate an application of Theorem 4.1 when the regressor x; and
equation error u, are defined as in Assumptions 2.1 and 2.2. To do so we require
certain smoothness conditions on g(x,#). We further assume © is compact and
convex, and the true parameter 6 is an interior point of ®. We start with the case
where g(x,0) is a bounded and integrable function.

Assumption 4.1. Let p(x,8) be any of g, g; or g;;, 1 <i,j <m.

(1) p(x,6p) is a bounded and integrable real function;

(ii) There exists a bounded and integrable function 7, : R — R such that
|p(x,0)— p(x,600)| < Cl6 —0ol| Tp(x), for each 6,6y € O

(i) T = [° (s,@o/)g(s,ﬁo)’ds > 0 for each Oy € ©, where g(.) =
(&10).-&m())".

THEOREM 4.2. Under Assumptions 2.1-2.2 and 4.1, we have

dn)l/z Iop(l), under C1,

O —6oll == 4.3
110 = oll (n OP(logl/zn), under C2. 4:3)
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The conditions in Theorem 4.2 hold for a wide range of integrable regression
functions, including g(x,0;,6) = 0;|x|%1 (x € [a, b]), where a and b are finite
constants, the Gaussian function g(x,8;,0,) = Hle_ezxz, and the Laplacian func-
tion g(x,61,6) = 01e~%l The term logl/2 n under C2 in (4.3) can be eliminated
if stronger restrictions are imposed on the relationship between the error process
u, and regressor x;. Park and Phillips (2001) and Chan and Wang (2014b) provide
results in this case. However it is difficult to remove this term under the present
model where there is general endogeneity. Consequently, we have not been able
to establish a general limit distribution theory for 6, without further conditions.
But Theorem 4.2 is sufficient for the purpose of the present paper and we leave
this remaining challenge in nonlinear nonstationary asymptotics under general
conditions for future work.

Assumption 4.2. Let p(x,0) be any of g, g; or g;;, 1 <i, j < m. There exists
a positive real function v, (4) which is bounded away from zero as 4 — oo and a
constant f > 0 such that, for each 6,60y € O,
1) |p(x,0) — p(x,00)| < C||0 —6p||* T1p(x) for some 0 < a < 1, where
T1p(2x) < Cop(2) (1+1x1F);
(i) p(ax,00) < Cop(4) (1+x17) and, for p(x,00) = &i(x,00), & (x.00),
1<i,j<m,

|p(2.x,600) = p(2y,00)| < Cop(A)[Ix = I+ Rip(2x) + Rap (2y)],

whenever x and y are in a compact set, where Rj,(z) and R;,(z) are
bounded and integrable functions;

(iii) gi(Ax,00) = vg (A)hi(x,00) + Ri(4,x,00) for 1 < i < m, where
Ri(A,x,60) = ofvg (M) hi(x,60)] as || — oo, and h;(x,6) is a
locally bounded function (i.e., bounded on any compact set) satisfying
> = f|s|<(;h(5790)h(5,90)/d5 > 0 for all 6 > 0, where h() =
(1) (D)5

. v(dy) i (dn) _ . _

@iv) SUP|<; j<m |m| < 00, where v(1) = vg4(4), 0;(4) = vg (4) and

l')','j (l) = l)g‘l.j (ﬂ)

THEOREM 4.3. Under Assumptions 2.1-2.2, 4.2 and z,fiokl/z(lz//lkl +
[yakl) < oo, we have

1D (0 —00) 11 = 0 (1),

where D,, = diag (ﬁlﬁ] (dy), ..., /oy (d,,))

Assumption 4.2 allows for asymptotically homogeneous functions. Typical ex-
amples include g(x,0) = (x +0)2, 6¢*/(1+¢%), Olog|x|, O]x|* (a is fixed)
and 6y + 01 |x| + - -- + 6 |x|¥. The class of functions satisfying Assumption 4.2
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is similar to but wider than the Hp-regular functions on ® imposed in Theo-
rem 4.2 of Park and Phillips (2001). For instance, since g’(x,0) = 2(x +60) and
g"(x,0) =2, Assumption 4.2 applies to the function g(x,0) = (x +6)? [with
vg(A) =4,03(1) =4,v53(A) =1 and h(x,6p) = 2x]; but Theorem 4.2 of Park and
Phillips (2001) does not directly apply for this function (e.g., see Example 4.1
(c) of that paper). While allowing for this extra generality here in establishing
consistency of 6, it is nonetheless difficult to establish an asymptotic distribution
theory for 9,, under the current model, as remarked above.

5. SIMULATIONS

We report the results of a small Monte Carlo experiment to explore finite sample
performance of estimation and inference under endogeneity and long memory.
The simulations are complementary to those in WP (2009b) for kernel regression
in structural nonstationary models and focus on the impact of a long memory
component in the regressor innovations. The generating mechanism follows (1.1)
and has the explicit form

vi=f&x)tou, Ax;=&, (1 —L)dft =€ =0u—1+ 1,

where (€;, A;) are iid N (O, [plﬂ Pel :|) The following regression function from

EA l

WP (2009b) was used in the simulation:

00 Nl i
f(x)=z( 1)J+js21n(]7rx),

j=1

where the function is truncated at j = 4 for numerical computation.

Kernel estimates of f (x) together with the bias, standard deviation (Std), and
root mean squared error (Rms) for these estimates were computed over the inter-
val [0, 1] on the equispaced grid {x = 0.01k;k =0, 1,...,100} based on 50,000
replications. Simulations were performed for p.; = E (€;4;) € {0,0.5,1.0}, 0 =
0.2, 8 =0.25, long memory parameter d € {0,0.1,0.2,0.3,0.4}, and for sample
size n = 500. These specifications allow for endogeneity, serial dependence in
uy, and long memory in the innovation process & of the regressor. An Epanech-
nikov kernel was used with bandwidths h = n_1/3,n_1/4,n_1/5,n_1/6. These

rates for & satisfy the condition n' 7 12 5 0 when y =landd e (0, %) , and
the condition n%_dh — oo for subsets d € [O, é) ,d € [0, 4—1‘) ,d € [0, %) , and

de [O, %), respectively.

Figures 1 (a) and (b) graph the mean simulated kernel estimates (broken lines)
of f (solid line) under exogeneity (p,, = 0) and strong endogeneity (p,; = 1)
for various bandwidth choices. Endogeneity evidently has a negligible effect on
the performance of f irrespective of bandwidth choice. As expected, smaller
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Pex = 0 Pex = 1

FIGURE 1. MC estimates of E (f (x)) for d = 0.4, n = 500, and various bandwidths.

bandwidths lead to less bias in estimation but also higher variance, as is apparent
from the summary statistics in Table 1 which reports the bias, standard deviation,
and root mean squared error of the estimates for various bandwidths and values
of d. Figures 2 (a) and (b) graph the mean simulated kernel estimates for various
values of d and for p;; € {0, 1}, confirming that the performance of f is robust
to the presence of long memory drivers in the regressor innovations as well as to
the degree of endogeneity in the regressor.

In the scale of Figures 1 and 2, the difference in performance of the kernel
estimates in terms of average location (and bias) is virtually indistinguishable
in these two cases. The summary statistics on bias in Table 1 indicate that bias

TABLE 1.
per =0 pe) =1

d h Bias Std Rms Bias Std Rms

0.4 n~1/3 0.013 0.166 0.173 0.007 0.156 0.161
n~l/4 0.030 0.136 0.151 0.025 0.125 0.140
n~1/3 0.053 0.130 0.163 0.048 0.119 0.153
n~1/0 0.076 0.130 0.184 0.072 0.119 0.175

0.2 n~1/3 0.012 0.151 0.155 0.008 0.144 0.149
n~l/4 0.032 0.125 0.141 0.028 0.117 0.132
n~1/3 0.058 0.119 0.156 0.054 0.111 0.147
n~1/6 0.083 0.119 0.179 0.080 0.111 0.171

0 n~1/3 0.013 0.127 0.132 0.007 0.125 0.128
n1/4 0.035 0.107 0.125 0.029 0.105 0.121
n~1/5 0.061 0.104 0.145 0.056 0.102 0.139
n~1/6 0.089 0.105 0.172 0.084 0.102 0.165
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Pex = 1

FIGURE 2. MC estimates of E (f (x)) for p =1, n =500, and various d.

is slightly smaller on average under strong endogeneity than it is for exogenous
regressors. But while endogeneity and long memory innovations in the regressor
seem to have a negligible effect on bias in the kernel estimates, long memory
innovations do affect variance. Table 1 shows that the standard deviation of the
estimates increases by 25-30% as d increases from O to 0.4.

Figures 3 (a) and (b) graph simulation estimates of the densities of the stan-
dardized test statistic 7, 4 = %Tn and the kernel estimate (3.7) of L, (1,0).
Figure 3(a) shows that, as the long memory parameter d increases, the density
of 7,4 is heavily concentrated close to the origin. By contrast, when d = 0 the
density appears almost flat in the scale of Figure 3(a). When d = 0, the limit
distribution is proportional to that of the local time of standard Brownian mo-
tion, Ly (1,0), whose distribution function is {2® (x) — 1} 1{x > 0}, as given in
Gao et al. (2012). Figure 3(b) shows the densities of 7}, 4 against those of the

40
s
Iy
38| kL
1 — Tp density d = 0.4
az 1\ — d=0 32 --- local time density d = 0.4
28f d=0.1 28 — — Tp density d = 0.3
1 d=0.2 Local time density d = 0.3
24 : 24
z ! --- d=03 7 |-
&20f ! - d=0.4 2 20
3 ! . 2
B .=~ -]
“'\
12 W 12
8 W N ar
i L T 4 —
— —r= Sk L P a = o
0.00 0,05 010 0.5 000 D02 004 D006 008 010 D12
(a) Densities of T}, 4 (b) Densities of T}, 4 and L, (1,0)

FIGURE 3. Densities of 7;, ¢ = ;f—';l Ty, and the kernel estimate (3.7) of L, (1, 0) for various
values of d, p;, = 0.5, and n = 500.
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kernel estimate (3.7) of the local time L, (1,0) of fractional Brownian motion
for d = 0.3,0.4. The concentration in the distributions of 7}, 4 and L, (1, 0) close
to the origin in relation to that of Ly (1,0) is evident in these graphs. A conse-
quence of the concentration of the distribution of 7, 4 in the long memory case

is that tests based on T%T” will be highly conservative in the presence of long

memory, corroborating the result shown earlier in (3.8) that the size of a test based
1 1

on WT" tends to zero as n — oo whenever d € (0, 5) .

6. CONCLUSION

The results in the present paper provide a sequel to those in Wang and Phillips
(2009b), bringing the limit theory for nonparametric nonstationary regression
close to that of the linear cointegrated system in terms of functionality under
general short memory innovations and a single endogenous regressor. The non-
parametric estimation and inference results are robust to long memory driver inno-
vations in the regressors, which further widens the scope of potential applications.
The specification test results of Gao et al. (2012) are also shown to hold under
short memory innovations and an endogenous regressor, confirming a conjecture
based on simulations reported in their paper.

The presence of long memory driver innovations in the regressor does raise
obstacles in specification testing for functional form. The specification test of
Gao et al. (2012) is no longer pivotal in this case and leads to tests with asymp-
totic size zero in the presence of long memory. Practical implementation of an
appropriately re-scaled test statistic is inhibited by parameter dependence in the
rate of convergence of the test and in the limit theory which depends on the
local time of fractional Brownian motion with an unknown parameter. These
findings in the long memory case suggest that further research on specifica-
tion testing is warranted to develop procedures that are robust under these wider
conditions.

7. PROOFS OF THE MAIN RESULTS

We start with several propositions. These provide certain key results which are
used in the proofs of the main theorems and which are of interest in their own
right. Their proofs are given in Section 8.

PROPOSITION 7.1. Suppose Assumptions 2.1-2.2 hold and g(x) is a
bounded function satisfying ffooo lg(x)]dx < oo.

(1) Forany ¢, — o0 and c,/n — 0, we have
o

@S s 2o [ sidxL, (1.0, 1)
k=1

—00
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where X = Xy /dy and Ly, (1,0) is defined as in (2.3). Furthermore,

dn <

=3 1gG) (1 +Juxl) = 0p (1), (7.2)
" k=1

d\"* & or(1), under C1,

(7) Zg(Xk)uk { p (log"?n), under C2. (7.3)

(i) If an addition Assumption 2.3, for any h — 0 (hlogn — 0 under C2)
satisfying nh/d, — oo and any fixed x, we have

a2
{(%) ZK[m—x)/h w, Zg[(xk—x)/h]}

N, {TNL;/Z(LO),/ g(s)dsL.,,(l,O)], (7.4)

where 2 = ]Eu% ffooo K2(s)ds and N is a standard normal variate inde-
pendent of L, (1,0).

(iii) If in addition |g(x) — g(y)| < C|x — y| whenever |x — y| is sufficiently
small, then for any h — 0 satisfying n'=%h /d,, — oo, where & can be as
small as required,

Zg (xx —x)/h] - Zg xi/h)

k=1

sup
|x|<logn

— 0p (nhlog—l n /d,,) . (1.5)

PROPOSITION 7.2. Suppose Assumptions 2.1-2.2 hold.

(1) For any locally bounded function H (x) (i.e., bounded on any compact set),

we have

1 - !

;ZH(x;Jd,,)—)D /0 H[y (x)ldx, (7.6)
k=1

1 n

- D 1H G /)| (1+ lug]) = Op (1), (7.7)
k=1

(ii) Let v(1) be a positive real function which is bounded away from zero as
A = 00 and assume g kKY2(lwixl + lwak]) < oo. For any real function
g(x) satisfying |g(Ax)| < Co(4) (1 + |x|ﬁ)f0r some f > 0 and

1g(Ax) —g(Ay)| < Co(A)[lx — y|+ Ri(Ax) + R2(Ay)]. (7.8)

whenever x and y are in a compact set, where R{(z) and Ry(z) are
bounded and integrable functions, we have

1 n
W};g(xk)uk = Op(1). (7.9)
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PROPOSITION 7.3. Suppose Assumptions 2.1-2.2 and 3.1 hold.

. o0 .
@) Iff_C><> |7 (x)|dx < oo and |7 (x)| is bounded by a constant, for any h sat-
isfying h — 0 and nh/d,, — 0o, we have

2
d o
— [ZK[(xk —x)/h]uk] 7 (x)dx = 0p(1). (7.10)
If in addition nh*logn/d, — 0, then
A ?
# o [];K[(xk —x)/h]uk] 7 (x)dx = p 10 Ly, (1,0), (7.11)

where to =Eu} [* K*(x)dx [* m(x)dx.
(i) If m(x) and 7 (x) satisfy Assumption 3.4 (i) and (ii), for any h satisfying
h— 0andn'=%h/d, — oo, where 5 can be as small as required, we have

2 00 n 2
(:—2) / [ZK[(Xk —x)/h]m(xk)] 7 (x)dx —p 71 L}, (1,0),
% k=1

(7.12)
where | = ffooomz(x)n(x)dx.

7.1. Proof of Theorems 2.1 and 2.2

In view of the joint weak convergence given in (7.4), the proofs of Theorems 2.1
and 2.2 follow in precisely the same way as WP (2009b, Thm. 3.1). See also
Wang (2014). The details are therefore omitted. |

7.2. Proof of Theorem 3.1

Under the null Hy, we have y;y = f(xg,6p) + ux. Simple calculation gives the
decomposition

n 2
T, =/ [ZK[(xk—x)/h][f (xk, ) f(xk,90)+uk]] m(x)dx
k=1

—00

=Tin+ Ton + T3n,s (7.13)

2
where Ty, = [% { >y Kl(xk —x)/h]uk} 7 (x)dx,

n 2
= | ’ZKuxk—x)/h][f(xk, ) - f(xk,eo)]] 7 (x)dx,
% Lk=1
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and |T3n|2 < 4Ty, T», by Holder’s inequality. To prove (3.3), by using (7.11) of
Proposition 7.3, it suffices to show that 7>, = op(nh/dy). Indeed, as g;(x) satis-
fies Assumption 3.4 (i) and (ii) with y = f, it follows from Assumptions 3.2-3.3
and the result (7.12) in Proposition 7.3 that

2
. 2 (o [
o <l -a | [ZK[(xk —x)/h]gl(xk)] 7 (x)dx = 0p (nh/dy),
% Lk=1
(7.14)
as required. The proof of Theorem 3.1 is now complete. |

7.3. Proof of Theorem 3.2

Under the alternative Hj, the test statistic 7;, can be written as

n 2
T, = / [ZK[(xk—x)/h][u;;+pnm(xk)]] m (x)dx

% Lk=1
= Tin + Ton + T30 + 290 Tan + py Tsn,

where up = ug + f (x, 9,1) — f(xk,00), Tjn, j = 1,2,3, are defined as in proof of

Theorem 3.1,
00 n 2

Tsn = / ’ZK[(xk—x)/h]mm)] 7 (x)dx,
0 k=1

and |Ty,| < (T + Ton + T3n)]1/2 (T5,,)1/2 by Holder’s inequality. Let ¢, =
nhp,%/d,,. We have ¢, — oo. Note that T, + T, + T3, = Op(nh/d,), due
to (7.10), (7.14) and |T3n|2 < 4T1, T5,,. This, together with (Z—Z)ZTM —D
71 L7,(1,0) and P(0 < L, (1,0) < 00) = 1, yields

d
Ay = # |T10n + Ton + T30 4+ 2pn Tan|

=0p(1)+O0p (63/2) .

and for any 79 > 0, as n — 00,

dy dy 3/4 dn \* “1/4
P ETnZIO >P ETnzfn =P % Tsn > €, —€, Ay
dn\? —1/4
> P (—) Tsp >€, " /2| > 1,
nh

which proves Theorem 3.2. |
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7.4. Proof of Theorem 4.1

The proof follows the same argument as that of Lemma 1 in Andrews and Sun
(2004). For convenience we outline the argument here. Let ®g = {# € ® : ||
D, (0 —6) |<ky,||0—0y <0} forsomed>0sothat {0 €@ :||0—60y||<}C O
and Q,(0) is twice differentiable on 6 € {# € O :|| € — Gy || < J}. Note that

00 (00) == D 8(x1,00) (e — g (x1,60)) = — >, 8(xs, 60)ur,
=1 =1

n n n
0n(0) =D 8(x1,0)8(x1,0) = > §x1, Oy — D §(xi,0)[2(x1,0) — g (x1,60)],
=1 t=1 t=1
and recall the definitions of Y, and Z,. It follows by Taylor expansion that

01(0) — Q) = 0 (60) (0 — o) + %(0 —600)' 0n(00)(0 —60) + R, (0, 60)
- % (Du0—00) + Y,;lzn)' v (Du@—00)+7,2,)
+%Z;Y,;‘z,, + R1,(0,60), (7.15)
for all 6 € O, where

|Rx(0,60)1 < sup (0 =00)'[0n(01) — 0n(00)] (0 — )| and

0,€0¢
1 (<
R1(0,00) = Ru (0, 00) + 5 (0 — O0) (Zg(xtﬁo)uz)(ﬁ—ao)-
t=1

In view of conditions (i)—(iii), simple calculations show that, for all 8 € ®,

| R1n(0.00)] < | Da (0= 00) I [ sup | (D7) [2a0) = 0u@0)] D!

916@0
1 X 1
+ sup || D, g(x;,01)u; D
0,€0q ( " ) ; ' ton
=op (572) 11 DaO—00) I1*. (7.16)

Let 8, = 0y — Dn_lYn_1 Z,. It follows from (iv) and &, /J,, — oo that
P (B¢ ) < P(IY; Zull 2 k) + P (DY, Zu11 2 6) 0.

This, together with (7.15) and (7.16), yields

~ 1 ~
On (Hn) - Qn(QO) = EZ;Yn_IZn + Rin (9;1,90) 5
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where Ry, (5,,,90) =op(1). Forany € > 0andn > 1, let

O.(€)={0c®: HD,,(@-@OHY;IZ,, <e).

Recall ||Yn_IZn|| = 0p(d,) = op(k,) and kj, HD,,‘IH = o(1). It follows that
P[O,(e) C ©p] = 1, as n — oo and SUPeo, (c) |R1,(8,80)| = op(1). Conse-
quently, for any 8 € 00, (¢), where 60,,(¢) denotes the boundary of ®,(¢), we
have

~ 1
0n(0)— On (9,1) = Ev;lyn”n +op(l),

where v, is a vector with ||v,|| =€ > 0. Since Y¥,, ->p M > 0, a.s., we have
P (%v; Y,v, > 0) > 1asn — oo. Hence, for each € > 0, the event that the min-

imum of Q,(0) over ®, (¢) is in the interior of @, (¢) has probability that goes to
one as n — o0. In particular, for each € > 0, there exists a point 8, (¢) € ©,(¢)

(not necessary unique) so that P (Qn[é,l ()] = O) — 1, as n — oo. In conse-
quence, there exists a sequence of én = én(l/Jn) € 0,(1/J,) where J, — 00 so
that P (Q,, (9,,) = 0) — 1,as n — oo, and (4.2) holds.

Finally, if we have (iv)’, then (4.2) holds with ¢, = 1. The asymptotic distribu-
tion follows immediately from (4.2) and (iv)’. |

7.5. Proof of Theorem 4.2

It suffices to verify the conditions (i)—(iv) of Theorem 4.1, with k,, = logn, D, =
/n/d, I where I is the identity matrix,

1, under C1,

M=XL,(1,0) and o, =
v(1,0) " [logl/zn, under C2.

Let Q, = {0 : 1|0 — 6| < d, logn/n}. (1)—(iii) of Theorem 4.1 will follow if we
prove: forany 1 <i,j < m,

di <) . . . g

= sup > [, 0) & (61,0) = i (31,00) &5 (51, 00)| = 0p (log™2n),  (7.17)

n peQ, 1

di N -

o sup 3 [, O [, 0) = g o )| =op (l0g ™). (7.18)
=1

dn n ) _2

-n i(xg, 0 = 1 . 7.19

. ;gj(xr yur| =op (1og™2n) (7.19)

We only prove (7.17) by using part (i) of Proposition 7.1. The other derivations
are similar and the details are omitted. First note that | gi(x,0)|,1 < j<m,
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are uniformly bounded on ® from Assumptions 4.1 (i) and (ii). It follows from
Assumption 4.1 (ii) that

|gi(xt90)gj(xt96)_gi(xlago)gj(x1960)|
S C|gj(x159)_gj(x[300)| +C1 gi(x[,e)_gi(x[,00)|
< C“G_HO” (ng (xt)+Tg,’(xt)):

and (7.17) follows immediately from (7.2) of Proposition 7.1.

The required condition (iv) of Theorem 4.1 follows from (7.3) of Proposi-
tion 7.1 and the following fact: using (7.1) of Proposition 7.1 with ¢, = d,
and g(x) = a}g(x,60) &(x,0) a2, we have, for any o; = (a1, ...,0im) € R™,
i=1,2,

di~— . .
D @180xr. 00) 8 (5. 00) a2 > p o} Mtz
t=1

The proof of Theorem 4.2 is now complete. |

7.6. Proof of Theorem 4.3

Similar to the proof of Theorem 4.2, we verify conditions (i)—(iv) of Theorem 4.1
with k, =logn and J,, = 1.

First for (iv). Let M = fol hlw (1), 00]h[w (t),00)dr. Tt is readily seen that
M > 0 as. due to > 5 = ﬁsl<5h(s,60)h(s,00)’ds > 0 for all 6 > 0. Further-

more, for any a = (ay,...,a,)"™, it follows from Assumption 4.2 (iii) and (7.6)
of Proposition 7.2 with H (x) = ZT]'=1 aiajh;(x,00)h;(x,00) that

n
(D a) D (k. 00)&(xx. 00) Dy '
k=1

= Z Z m& (xk,00)&j (xx,00)
_ 1 ]

1
= Z Z a0 hi (xk /dy, 00)hj (k[ dn, 60)[1 +0p (1)]

k=1i,j=1
—D 0(/ M.

Hence (D; 'Y >7_, §(xk,60)(xk,00) D' — p M. On the other hand, (7.9) of
Proposition 7.2 implies (4.1) with 6, = 1. These facts yield the required condition
(iv) of Theorem 4.1.

To verify (i)—(iii), we first show that, forall 1 <i, j <m,
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1 n
—F— su 0 (x7,0) 8 (x,0) — gi (xs,600) g (x;,600)| =0p(1), (7.20)
nvxdn)u,(dn)eeg‘i,,;'g’(’ ) &(@,0) = &i(x1.00) & (1. 00) | = 0p (1)

1 - .
00 ()17 ) sy, ; 81 (v, 0) [ (1, 0) = g (x, O0)1| = 0p (1), (7.21)
1 - .
ni ) e, Z‘g’j (2, O)ur) = op(1). (7.22)

where Q, = {0 : ||D,, (8 — )|| < logn}. In fact, it follows from Assumptions
4.2(i)—(ii) that, forany 1 <i <m and 6 € O,

|8i (e, 0)| < Coi(dy) (14110 —6011*) (1 + |x¢ /) .
|8 (x1,0) = & (x1,00)| < C110 —60110i(dn) (14 1x, /).
This, together with ||§ —6y|| = o(1) whenever 6 € Q,,, implies that

sup > |8 (x1,0) & (x;,0) — i (x1,00) & (x1. 60|

ey =1
< ofii () @)] > (14 /). (7.23)
=1

Now, by noting that 1+ |x[?# is a locally bounded function, the result (7.20) fol-
lows from (7.7) of Proposition 7.2.
The proof of (7.21) is similar. As for (7.22), by noting

n n n
D 8GO u| < > 8 G, O0) |+ D181 (0 0) — §ij (i, 00)] ||
=1 =1 =1
n
<> &ij (i, 60)uy
t=1

n
+C 110 =00l i (d) D (14 |x: /) luel,
=1
the result follows from (7.7) and (7.9) of Proposition 7.2.

% < 00, it follows from (7.21) that

Recalling sup;_; i,

1 S
W;ﬁgﬂ ; |87 (xr, 0)[g(x1,0) — g (x1,00)]|

C S
< W@S:gn ;|gij(xta(9)[g(xt:0)_g(xt,QO)H =op(l),
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for any 1 < i, j < m. This fact implies that

sp (D7) D000, 0) [80,0) — g, 00)] D = 0p (D),

0:1|Dn (0—00) || <kn =1

which yields the condition (ii) of Theorem 4.1. By using (7.20) and (7.22), simi-
lar arguments provide conditions (i) and (iii) of Theorem 4.1. The proof of Theo-
rem 4.3 is now complete. |

8. PROOFS OF PROPOSITIONS
8.1. Preliminaries

We may write, for any s < m,

m s m J
Xt DL D Edisit D D adj

j=s+1i=—00 j=s+1i=s+1
Lok /
=X X @8.1)

where x;’m depends only on (..., €5—1, €5) and

m—s j m m—i
Xsm = Zfi+s¢j—i = €; ¢j.
j=1 i=l i=s+1 j=0

Define Zﬁ':k =0ifl <k, and put a; = Zﬁ:o ¢;. By the definition of ¢; and ¢;,
elementary calculations show that

1—u

_ | m 7#p(m), under C1,

Gm = < 1, under C2. (8.2)
m

E(x},)2 = D ay g =<dp_ =< (m—s)ay_,. 8.3)

k=s+1

for s < m.! We further let Xom = xb’,’m — Ay and X, = x,, — Ajy, Where A, is
a functional of some €,k < m, such that A, is independent of X; ,, and X,
satisfying EA,, = 0. In view of (8.2 )~(8.3) and [ (1 + [t])|Ee’®°|dt < oo,
the following fact holds for m —s > 1 and A, satisfying supm_s>1I[-EA51 /

’
2
Exg, <1
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F: X m/dn—s and Xm /dym have density functions v, (x) and gn(x) respec-
tively, and the functions vg ,, (x) and gn (x) are uniformly bounded over x
by a constant C, and

sup |Vs,m ()C +u)— Vs,m (x)] < Cmin{|ul, 1}, 8.4
x

sup|gm (x +u) — gm(x)| < Cminflul, 1}. (8.5)

See Section 3.1 of WP (2009a) or Section 8.1 of WP (2012) with some routine
modifications. In particular, the fact F holds true for all m —s > 1 if A,;, =0 and

ap = ¢o # 0.
Recall that 7]} = (€j,v}) is a sequence of iid random variables with Eny = 0

and IEI||770||2 < o0. To introduce the following lemmas, let Fs = o (15, #5—1,...),
A(...) be a real function of its components, p(x) be a bounded real function
satisfying ['|p(x)|dx < oo, and Assumptions 2.1-2.2 hold. We use C,Cj, ... to
denote constants which differ at each occurrence.

LEMMA 8.1. Let A = A(ny, ..., n,mo), where t,12,...,tn, Is a subset of
{t,t —1,...}. There exists an Ay > 0 such that

(i) forany h > 0 andt > Ao, we have

ChE|IA o0
E{|AllpCe/ I} < % / 1p()ldx. (8.6)

(ii) forany h > Qandt —s > Ao, we have

ChE|A| [

di—s  J-oo

E{|Allp(x/ )| Fs} < |p(x)ldx, 8.7

provided s +1<1t; <t,j=1,...,mo. If in addition EA =0, then

Cph [

[B(A pe/m| 7Y < L0 [ 1peotas, 53)
t—s v 00

where B =mo(EA%)!/?2 ZL;?“{” """ o) |px|. Furthermore, if A is a con-

stant, the result (8.7) remains to be true forany h > O andt —s > 1.

Proof. We only prove (8.8). The other derivations are similar and the details are
omitted. Let Ay = D70 €0, and Xy, = x| ; — Ay, Recall (8.2) and (8.3).

j
There exists an Ag > 0 such that, whenever r —s > A, EAZ < Ex/?, /2. It follows

my — s
from fact F, the independence of ¢; and (8.1) that
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E{A p(xi/h) | F ) =E{A p[(x, + Amg +Xss) / 1] |}

o0
=E[A / P8+ Ay +disy) /] s 0)dy | F
—00

o0
7 / pOvs,(v)dy, (8.9)
t—s —0
where
—xX —An,+h
ve, () =E [/\Vs,z (%noy) |]:s] .
1—s
S[+hy

Note that E{Avs,, ( ) |7 } — 0. By (8.4), we have
vy, (M| < CE[[A] min{IAmOI/dt—s, 1}].
Taking this estimate into (8.9), simple calculations yield (8.8). n

LEMMA 8.2. Suppose that EA(#1) = 0 and g(x) is a bounded function satis-
fring [7 1g(x)|dx < oc.

(1) For any integer m > 1, there exists a constant Hy such that

Zg (xx —x)/h]

k=1

suplE < Hl'(m+1)! (nh/dy,)". (8.10)

(i) Forany h > 0, nh/d, — o0 and j > 0, we have

2
SuplE ZA(nk ) &[Gk —x)/h]
k=1
<CIEA2( ) (nh /) 1+hjl/2, under C1, 8.11)
n .

= '71 11 4+hj'2 +hlogn, under C2.
Consequently, for the uy defined in Assumption 2.2, we have

n 2

1 under C1

E h)| < CEllml|*nh/dy, { ’ 8.12

gukg(xk/ )| < CEllml*nh/dy [logn, inder C2. (8.12)

Furthermore, if uy m, = z;imo s ’%—j’ where yj = (w1, y2;) and 1; =
(A1 (i), Aa(n;)) with EL; =0, then for all h — 0 (hlogn — 0 under C2)
and nh/d, — oo,

2
supE Zuk mo 81Cxk —x/ )]
k=1
2
< CEl\A1lI* (nh/dy) Z] Iyl +1p2i0) | - (8.13)

_mO
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Proof. For the proof of (8.10), see Lemma 5.1 of Chan and Wang (2014a),
which comes from an application of (8.7). We next prove (8.11). Let Zj»=k =0
for k > [ and write

n 2
An= D Aln—j)g[(xx —x)/h]
k=1
n 2 Ao 2
<2 > Alm—p) e[k =x)/h]| +C [ D IAGK-))]
k=Ag k=1

n n n—1 n
2| > > 23 > | Aty Al g[ (e —x)/ k]

k= = k=Ayl=k
Ao |k—ll|lA0 Ao l=k+Aq
Ao 2
g[Ca—x)/h]+C | D 1AGn-))l
k=1
= A+ Ao+ Az, say, (8.14)

where Ag is chosen as in Lemma 8.1. Using |g(x)| < C and Lemma 8.1 with
p(y) = g(y — x/h), we have that, for k > Ag and |k —I| < Ao,

|EA (k- j) Almi—j) g[(xx —x)/ h] g[(xr —x)/ ]|
< CE|A(mk—j) A(mi—j) g[(xk —x)/ h]|
< CEA*(n1) h/dy,

and fork > Agand [ —k > Ay,

|EA(i— ;) Almi—;) g[ ek —x)/ h] g[(xi —x)/ ]|
< [E!A(nk_,-)A(m_ﬂg[(xk —x)/h]B{g[Ca —x)/n]|Fi}| it 1=j <k,
E|A(ni—;) g[(ex —x)/ R]E{A(m—) g[(x1 —x)/h]| Fi}| if I—j >k,
d! ifl—j<k
EA*(p) ka1 -
< CEA ) dy Iz£=0|¢k|d;_2k i 1—j> k.

It follows from these facts that

SUPE|A 1s] < CEA(m) h Z Z 1/di < CYEA (1) nh/dy,

k=1 =
|k— l|<A0
n—1 nA(k+j)
SUPE| A | <CEA*(qp) R D a7t | D df k+2|¢k| Z a2
k=Ao I=k+Ag I=k+j
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Jdi+ o 1l under C1,

< CEA*(n1) (nh* /dy) _
Jj/di+ ] _oléxllogn, under C2,

C]EAZ( Y hz/d )jl/z, under C1,
< n)\n
" jY24+1ogn, under C2.

On the other hand, it is readily seen that sup, E|A3,| < C EA?(51). Taking these

estimates into (8.14) and noting nh/d, — 0o, we obtain the required (8.11).
The result (8.13) follows from

2

n

D ttkomg 8Lk —x/ )]

k=1

E

2

Z Z'/’./ A—j K[(xk —x)/h]

=E
j=mo k=1
o0 o0 n 2
< Dl lwaih D i vl e DTE| D i Ak K[ —x)/ A
Jj=mg Jj=myg k=1

o0 o0
<2 > i Ayl D D 0T Qv+ Ly, )

J=mo Jj=mg

2
o0
< CE[lA|* (nh/dy) {Z j'/4(|W1j|+IW2jI)} ,

J=mo

2

+E ZAZ(’?k—j)K[(xk —x)/h]

k=1

> AU ) K [(xx = x)/h]

k=1

)

where we employ Holder’s inequality, 7 — 0O (hlogn — 0 under C2) and (8.11)
with A(.) = A1(.) and A3(.), respectively. The proof of (8.12) is similar, and
hence the details are omitted. The proof of Lemma 8.2 is now complete. u

LEMMA 8.3. Suppose that EA(n1) = 0 and |A(x)| < C. Let zx = [©° K?
[(xx — x)/ Rl p(x)dx and zxj = [0 K[(xk — x)/hIK[(xj — x)/h] p(x)dx,
where K (x) has compact support. Then, for any h satisfying nh*logn/d, — 0
and nh/d, — oo, 0 < s,s1 < mq, where mg is a fixed constant, we have

> A=) Ak )2k = Op [(1h/dy) 2], (8.15)
k=1
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D A=) Aj—s))zk,j = 0p(nh/dy). (8.16)

1<k<j<n

Consequently, if we let 7; = 1; — En;, where 7; = n; 1(||n;]| < C), and uy; =
2% Wil j» then

n

> (@~ By ) 2= 0p [ @h/d) 2], ®.17)
k=1

> Wiy, = op(nh/dy). (8.18)
I<k<j<n

Proof. We only prove (8.16). The proof of (8.15) is similar but simpler. The
proofs of (8.17) and (8.18) follow easily from (8.15) and (8.16), respectively. We
omit the details.

For notational convenience, write d;; = A(#; ;). By symmetry and |A(x)| < C,
it follows that

2

E Z Oks Ojsy 2k,j| < c1li(n) +c2 l(n) +c313(n), (8.19)

1<k<j<n

for some constants ¢y, ¢z, c3 > 0, where

hm= > E(;). hm= D Efzjui)

I<k<j<n 1<k#j#l<n

13(n) = Z ’E{@Q 5j51 5[_y 5”’151 Zk,j Zl,m}}~

I<k<j<l<m<n

As K (x) has compact support (say K (x) =0 if |x| > M), it is readily seen that,
forany r € R,

K(t—x/h)K({—y/h)=0,

whenever |y —x| > Mh. This implies that
o0 o0
E(e,j o) =F { || K=ok -yl
—00 J —O0

x K[(xj —x)/h1K[(x; = y)/h] P(X)P(y)dxdy]

E{K — h
< /_ ) /|y_x|<Mh (K[(x; —x)/h]
x KI[(x; —x)/ h1K[(1 =)/ K} p()p()dady.
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Now (8.10) of Lemma 8.2 yields
s [ [ [ =)/
ly x|<Mh 1<k7£]7él<n
x K[(x; =)/ NIK[(1 = )/ K1} p(o)p(y)dxdy

<sup1E(ZK[(xk—x)/h]) [, pemexas
—o00 J|y—x|<

k=1
< C(n/dy)*h*. (8.20)

Similarly, we have

11(n><supJE(ZK(xk—x)/h]) / /| PPy
—o0J|y—x|<

k=1
< C(n/dy)*h. (8.21)

‘We next consider I3,. Note that s < mg and, due to Lemma 8.1,

Ch/dy—;, ifm—I1<my+1

| E (s K[(om — )/ R | Fi)| < iCh/d,i_p ifm—1>mo+1.

We have that

sup > |E(dms, K[(xm —y)/ 11| Fi)|

X

m=I[+1
I+mg

<Ch > dyy+Ch Z d%, < Chlogn.
m=I[+1 m=Il+m

This result, together with (8.10), implies that

I3, = Z |E{5ks 5./'51 s Oms, Zk,j Zl,m}|
I<k<j<l<m<n
<[] {0, 159y KTk =)/ HIK (35 =)/ ]

*© 1<k<j <l<m<n

x K[(a =)/ 1K (e =)/ h1}| p@)p () dxdy

<c / / E | K[(xe —x)/ hIKI(x) —x)/ hIK[(x1 = y)/ h]

e 1<k<j<[<m

x> |E(ms K[Gon —y)/h1 | F)| § pG)p(y)dxdy,
m=I[+1
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n 3 o0 o
< Chlogn sup ]E(ZK[(xk —x)/h]) / / p(x)p(y)dxdy
x il —00 J —00

< C(n/dy)*h* logn. (8.22)
Taking the estimates (8.20)-(8.22) into (8.19), we obtain

2

E| 3 0o k| =C [0/ h* togn+/dyh* | = o[ h/d)?].

1<k<j<n

whenever nh”logn/d, — 0. This proves (8.16), and also completes the proof of
Lemma 8.3. u

In Lemmas 8.4 and 8.5, let r(x) be real function such that ffooo [r(x)]dx < oo
and [ |F(#)|dt < oo, 7(t) = [ €' r(x)dx. Under this condition, we have

r(x) = % / - e R(r)dr. (8.23)

Recall the Definitions (8.1)—(8.3). Except when mentioned explicitly, we still
make use of the notation given there.

LEMMA 8.4. Let uy(mg) = Z?;OO Wink—i with mo being a fixed constant.
There exist y > 0 and Ay > O such that for all j —k > Ao,k > s andu € R,

Ak )= (B rL(v+ ) ugmo)exp (i > €q/v/m | 1 5

q=k+1
<C (h /d}_k+e—y<f—’<>); (8.24)
forall j—k>1,k>s+1andu eR,
. 1/2
Ak(v, ) < Ch'2 {E[ud(mo) | 7]} (8.25)
In consequence, for any u € R, we have
m

sup | > Bl )| = o[ (h/d)' 2], (8.26)
y,0<s<m<n k=s+1

sup > Eh,(y,u)|=o(nh/dy), (8.27)
y,0ss<msn s+1<k<j<m

https://doi.org/10.1017/50266466614000917 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466614000917

NONPARAMETRIC COINTEGRATING REGRESSION 393

where

k
I (vow) = rl(y ] 1) /g (mo) exp [m Ze,-/ﬁ] :

j=1

Iy owy =r [ (v ) /h]r [ (v ;) /1] wmoyu; mo)exp |w iq/ﬁ].

j=1

Proof. We first prove (8.24). Let

j—m() /
D= Z € (taj_g+uh/yn), 9= Z €q(taj_g+uh//n).
q=k+1 q=j—mo+1

It follows from (8.23) and the independence of ¢ that
1 ) )

Moy < 5 [ (B B[00 ar
T

We may take n sufficiently large so that u/+/n is as small as required. Without loss
of generality we assume u = 0 in the following proof for convenience. Recall (8.2)
and (8.3). There exists an Ay > 0 such that j —mqg > (j +k)/2 and

orlaj—kl <laj—gl < 2laj—rl, k<q<(j+k)/2,

for some 0 < 1 < d; and all j —k > Ag. On the other hand, there exist constants
y1 > 0 and y, > 0 such that

e if |t > 1,

Ee' €| < 2,
| |_ e 2" if |t <1,

since [Ee; = 0, Eelz =1 and €] has a density. By virtue of these facts, simple
calculations show that, for any J; < d < d», there exists y > 0 such that

| .
Ak(y,j)S o / +/ ‘Eelz(l)/h’
27 \Ji1=0n/1a;-x1  J1t1<0h/1aj ]

[ o))
< Ce1UP / F(O)ldi+C / e (T
|t1<6h/laj—l

<C (h/djz_k +e_V(j_k)) ,

|7 ()| dt

where we have used the following fact: due to Eu;(mgo) = 0, we have

‘E{eiza)/h uj(mo)H _ ‘E{(eize)/h _ 1)Mj(m0)}‘

mo
< Clh™'1 3 g1 Edleyujtmo)l) < Cy [rh ™.
j=0
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This proves (8.24).
The proof of (8.25) is simple. Indeed, by noting that (8.7) remains to be true
forany r —s > 1if A =1, we have

Ak(y, J) < (E“r[(y—}-xé’j)/h]‘z l}-k])l/z [E[u}(mo) |]—"k]}l/2

< Ch'? {]E [ujg(mo) I}'k]}l/z,

as required.
We next prove (8.27). Due to h — 0, it follows from (8.24)-(8.25) and
Lemma 8.1 that, for j —k > logh™!,

Bk j (v ) <E{Ir [(y+x{ ) / ] i tmo) 1Ak (v, )1}
<C (h/d}_k +e—v<j—k)) E{r [(y+xL4) /] 1 ek (mo)1}

h'2, forl <k—s < Ao,

2L Gh)
Sc(h/df—k“ )[h/dk, fork—s > Ag+1,

and for j —k < logh_l,
12
B (v,u)] < Chl/zﬂa[v [(v+x34) /] HuiGmo)] {E [ mo) | 7 ] ]

B h/dy, fork—s>Ag+1,

where A is a constant given as in Lemma 8.1. These facts imply that, for any
uel,

sup > EhL,(y.u)

y.0ss<msn| i gck<j<m

n—1  [k+logh™! n

<ch+ > >+ D sup|Elg, j (v, u)]
v

k=A0+1 j=k+] j:k-‘,—lOgh_l-‘rl

n—1 n—1 n

sch+Cr? 3 dtve X > hdg! (hdk e 0H)

k=Ap+1 k=Ao+1 j=k-+logh=!+1

n
< Cnh*yd,+ Cunfdy) Y. (hfd}+e))
j=logh=1+1

hmin{l/Z,y} d Cl,
< C(nh/dy) s s under

h'/? +hlogn, under C2,

=o(nh/dy),
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due to 7 — 0 and hlogn — 0 under C2, which yields (8.27). The proof of (8. 26)
is similar and hence the details are omitted.

LEMMA 8.5. Let uy(mg) = Z;”ZOO Wink—i with mgy being a fixed constant.
Write, for 0 <t < 1,

[nt]

dn < dy
yin) = — > [ —x)/h]. a0y =~ > uimoyr[ (v —x)/h],
k=1 k=1

g\ 172 1]
M (t) = (#) Zuk(mo)r[(Xk —x)/h].

k=1

(i) Forany h — 0 and nh/d, — oo, we have
v = [rdxL, 0.0,y = tL, 1.0

on D[0, 1], where T = Eu%(mo) [r2(x)dx.

(i) For any fixed 0 <t < 1, ,(¢), n2(t), and y,(t),n > 1 are uniformly inte-
grable.

(iii) #,(¢) is tight on DI0, 1].

Proof. For the proof of part (i) see Proposition 3.2 of Wang and Phillips
(2011). The proofs of parts (ii) and (iii) are similar to Propositions 7.3 and 7.4 of
WP (2009b), respectively, only requiring the replacement of Lemmas 7.1 and 7.2
there by Lemma 8.4 of the present paper. We omit the details. u

8.2. Proofs of Propositions

Proof of Proposition 7.1. Result (7.1) follows from WP (2009a), and (7.5)
follows from a simple application of Theorem 2.3 in Chan and Wang (2014a).
By virtue of (8.6) in Lemma 8.1 and (8.12) in Lemma 8.2, we have (7.2) and
(7.3), respectively. To prove (7.4), let uy(mg) = Z;?LOO wj Nk—j. The result (8.13)
in Lemma 8.2 establishes that, as first n — oo and then my — o0,

n

D Lk —ug(mo)) K[ (i =)/ k] = op[(nh/dy)'/?].

k=1
This implies that (7.4) holds if we prove the following: for any mg > 0,

dy 123
[(%) > wemo) K [ — )/ ], Zg (o —x)/h]}

k=1

—D [roNLilﬂ(l,O), /00 g(x)dev,(l,O)] (8.28)
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where ‘L'g = Eu%(mo) /K 2(s)ds, N is a standard normal variate independent of
L,(1,0). Recalling Lemmas 8.4 and 8.5, the outline for the proof of (8.28) is
exactly the same as that of (3.8) in WP (2009b). We omit the details. u

Proof of Proposition 7.2. The result (7.6) is well known. See, Berkes and
Horvith (2006), for instance. Note that >} _, u,% = Op(n) and H?(x) is a locally
bounded function. (7.7) follows from (7.6) and the Holder inequality:

n n /2 /s 5 1/2
Z|H(xk/dn)|(1+|uk|)s(Z|H(xk/dn>|2) (Z(1+|uk|>2) :
k=1

k=1 k=1
To prove (7.9), we write

n

Zg(xk)uk—zg(xk) Z+ Z Vitlk—j

k=1 J=0  j=k+1
=Z Z [8 (o) — g i j—) Wi
J=0k=j+1
n n—j
+ D> gDy, nk+zg(Xk)ij+m j
=0 k=1 j=1
=Sln+52n+S3ns say. (8.29)

Let Qy = {x; : maxi<<p |xj|/dy < M}. It follows from (7.8) that

n n
EIS1 (@)l < Cod) 3 D E{d; o —xe ol lyymel

j=0k=j+1

+Co(dn) D D E{UR @)+ [ Ra (i )y mie—j1}

j=0 k=j+1

Z<|wl,|+|m,|) Z E{|xi —xi—j11

k=j+1

Cv(dn)

x (ve—jl +lex—iD} + Co(dn) Z(|wl,~|+|m|) > d;!

j=0 k=j+1

Cno(d,) <
Sd—n)zdj(lvfljl-l-ll//zjl)
n .
j=0

[o.0]
< Cold)Vn Y i Pyl +1y2i),

j=0
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where we have used (8.6) of Lemma 8.1 and the following fact from Holder’s
inequality

1/2
E{|xk — xk—j—1] (ve—jl +lee—; 1)} < € (E|xx —xk—j-11%) 2 < Cd;.
Similarly, it follows from g(Ax) < Co (1) (1 + |x|#) that

n o0
E[S301 (@) < Co(dn) D D> Elyjsarn—jl
k=1 j=1

< Coldy) D D (yijl+ly2,)

k=1 j=k+1

n [o/e]
< Cv(d,,)Zk‘l/2 Z J Uyl + Lyl

k=1 Jj=k+1
o0

< Cold)vn D iyl + ).
=0

Hence |Sin]| +1S3:] = Op[v(dy)y/n] due to P(maxi<j<p|xjl/dy > M) — 0 as
M — oo.
To estimate Sy, let x; = x; I (max << |xj|/d, < M) and

~ n on-j
S =2 > gGi-1)yj mi.

j=0 k=1

Due to the independence of 7 and g(Ax) < Co (L) (1+ |x|#), we have

n n—j n—j
E[Sol < D (yijl+1v2) {E D eGro v +E| D eGE-1) e
k=1 k=1

j=0
n n—j 172
<CO (yijl+lya,h D Ee*@-1)
j=0 k=1
n n—j 12
< Co(da) D (lyjl+1w2;D) { D E[1+ [Fem1/dnl’]
j=0 k=1

< Co(d)n Y (il + 1y,

j=0

so that S», = Op[v(dy)+/n]. This yields |Sa,| = Op[v(dy)/n] as San = S
on Qy and P(maxi<j<, |xj|/dy > M) — 0as M — 0.
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Combining all the above estimates, we obtain that

> gl /dn)u

k=1

< ISinl + 18201 + 18341 = Op[v(dn)/n],

as required. u

Proof of Proposition 7.3. Result (7.10) follows by direct application of (8.13)
in Lemma 8.2. To prove (7.11), for a fixed A > 0, let 7; = n; I (||n: || < A),

i =1 —Eui, 7 =ni—0i, ﬁkZZWjﬁk—j, ﬁkZZV/jﬁk—j
=0 =0

Note that E77; = 0. It follows from (8.13) of Lemma 8.2 that

n 2
E / iZK[m—x)/h]ak} 7 (¥)dx < Elliii1* nh/d,

k=1
< CEllmIPIUIm|l > A)nh/d,.

As Elln11P1(lln1]] > A) = 0 as A — oo and uy = iy + iix, simple calculations
show that (7.11) will follow if we prove

2
dy d,
%Tn: = = {ZK (xx —x)/hlu } T (x)dx

>b ]Eﬁ(z)/ Kz(x)dx/ z(s)ds L, (1,0), (8.30)

foreach A > 0.

To prove (8.30), we let i1y = Z;."ZOO wink—j and o = ux —u1x. It is readily
seen that
Tn = Tln + T2n + T3ns (8-31)

1/2 172

2
Ty Ton = [, {ZZ:1 K[ (xk —x)/h]ﬁzk} 7 (x)dx and

n 2
Tin =/ ZK[(xk—x)/h]ﬁlk 7 (x)dx
k=1

where T3, < 2T,

—00

=FEu?, Z/_Z K?[(xx —x)/hl 7 (x)dx

+Z(”1k_E”1k)/ K?[(x —x)/hlz (x)dx

k=1
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¥2 3 Wiy [ K=/ K1 =0/

o0

I<k<j<n -

= Ry + Ron + R3p, say.
Due to (8.13) of Lemma 8.2, we have

n 2
ET», < C supE{ZK[(xk —x)/h]ﬁzk}

* k=1

o0
< CE|lmll* (nh/dy) D K" * Uyl + 1y,

k:m()
i.e., Tr, = op(nh/dy,), as n — oo first and then my — 0. Furthermore it follows

from (8.17) and (8.18) of Lemma 8.3 that |R»,| + |R3,| = op(nh/d,) for each
A > 0. Now, by virtue of (8.31) and Eﬁ%o - Eﬁ% as mo — 00, (8.30) will follow

if we prove

d, —” 00 5 00

— Ry, = p Euyy K*(x)dx m(s)dsL,(1,0). (8.32)
nh —00 —00

Let gn(y) = h™" [°2 K*(y —x/h)m (x)dx. It is readily seen that [ g;(y)dy =
[ K?(z)dz [* w(x)dx and |g;(y)| < C [ |z (x)|dx < co. Then (8.32) fol-
lows from Theorem 2.1 of WP (2009a) with minor modification. This completes
the proof of (7.11).

We next prove (7.12). We may write

. 2
/ [ZK[(Xk —X)/h]f’n(Xk)] w(x)dx = Vip+ Van +2Vap, (8.33)
% Lk=1

where V3, < V11n/2V21n/2’ Van = 2o { 2hmt K — %)/ hllm (xx) — m(x)]}2
7 (x)dx and

; 2
Van/ HZK[(Xk—X)/h]] m?(x)7 (x)dx,

% Lk=1

" 2
= [ZK(Xk/h) ] / m?(x) 7 (x)dx
k=1 |x|<logn
n 2 n 2
+ / {me—x)/h]} - {ZK(xk/h)] m* (x)m (x)dx
lllogn | | ;= k=1

n 2
s[RI @
|x|=logn

k=1

v 4y @ Ly

2n 3n s Say.
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Since K (x) has compact support, it follows from Assumption 3.4 and (8.10) that

o0

n 2
EV2n§Ch7/ ]EIZK[(xk—x)/h]] m?(x)z (x)dx
k=1

—0Q

n 2 00
<Ch’ supE{ZK[(xk—x)/h]}/ m%(x)ir(x)dx

o k=1
< Ch” (nh/dy)>.
This yields Vo, = op[(nh/dy,)*]. Similarly, by virtue of part (iii) of Proposi-
tion 7.1 and (8.10), we have

n

> K1 —x)/h] —K(xk/h)}‘

k=1

‘V;j)) < sup

[x|<logn

n

x /II . Z{K[(xk—x)/h] +K(Xk/h)}m2(x)7t(x)dx
x|<logn ;|
= op[(nh/dy)?],
n 2
E|Vy)| < swpB S KiCw =)/ k] / m? () (x)dx
. k=1 |x|>logn

=o[(nh/d,)?],

which yields Vz(s) =op [(nh/dn)z]. Taking these estimates into (8.33), (7.12) will
follow if

i\ 2
E Vln —D ‘l,'lLl//(l,O).

But this follows from z—z S K(xk/h) = p L,(1,0) due to [0 K (x)dx =1
and the continuous mapping theorem. The proof of Proposition 7.3 is now
complete. n
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