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Oscillation results for the summatory
functions of fake μ’s
Greg Martin and Chi Hoi Yip
Abstract. Martin, Mossinghoff, and Trudgian [19] recently introduced a family of arithmetic
functions called “fake μ’s,” which are multiplicative functions for which there is a {−1, 0, 1}-valued
sequence (ε j)∞j=1 such that f (p j) = ε j for all primes p. They investigated comparative number-
theoretic results for fake μ’s and, in particular, proved oscillation results at scale

√
x for the

summatory functions of fake μ’s with ε1 = −1 and ε2 = 1. In this article, we establish new oscillation
results for the summatory functions of all nontrivial fake μ’s at scales x1/2� where � is a positive
integer (the “critical index”) depending on f ; for � = 1 this recovers the oscillation results in [19].
Our work also recovers results on the indicator functions of powerfree and powerfull numbers; we
generalize techniques applied to each of these examples to extend to all fake μ’s.

1 Introduction

A major topic in comparative prime number theory is the behavior of summatory
functions of various multiplicative functions. For example, let μ(n) be the Möbius
function, and let M(x) = ∑n≤x μ(n) be its summatory function. In 1897, Mertens [23]
conjectured that ∣M(x)∣ ≤

√
x for all x ≥ 1, an assertion that subsequently became

known as the Mertens conjecture. Similarly, let λ(n) = (−1)Ω(n) be the Liouville
function, and let L(x) = ∑n≤x λ(n) be its summatory function. In 1919, Pólya [31]
asked whether L(x) ≤ 0 holds for all x, a question that became known as the Pólya
problem (often mistakenly called “Pólya’s conjecture”).

One of the motivations for studying these problems was the fact that a positive
answer to either would imply the Riemann hypothesis (RH), as Pólya noted for L(x)
in [31]. Indeed, by 1942, it was “well known,” as reported by Ingham [14], that both RH
and the simplicity of all zeros of the Riemann zeta function ζ(s) would follow from
either of M(x)/

√
x or L(x)/

√
x being bounded either above or below by an absolute

constant. However, Ingham showed that any of these one-sided bounds would also
imply that there were infinitely many linear relations with integer coefficients among
the positive imaginary parts of the zeros of ζ(s), which cast doubt upon both the
Mertens conjecture and a positive answer to the Pólya problem.
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2 G. Martin and C. Yip

The Pólya problem was first resolved in the negative by Haselgrove [12], who
showed that L(x) changes sign infinitely often. Similarly, the Mertens conjecture was
first disproved by Odlyzko and te Riele [29]. Currently, the best known lower bound on
lim supx→∞ L(x)/

√
x and the best known upper bound on lim inf x→∞ L(x)/

√
x are

due to Mossinghoff and Trudgian [28], and the corresponding best known bounds for
M(x)/

√
x are due to Hurst [13]. We still do not know how to disprove either L(x) ≪√

x or M(x) ≪
√

x or even any of the corresponding one-sided bounds. The Mertens
conjecture and the Pólya problem motivated substantial work in comparative prime
number theory; we refer the reader to an annotated bibliography for comparative
prime number theory [20] for further sources.

Recently, Martin, Mossinghoff, and Trudgian [19] developed comparative number-
theoretic results for a family of arithmetic functions they called “fake μ’s,” which are
multiplicative functions f such that for each positive integer j, there is a constant
ε j ∈ {−1, 0, 1} such that f (p j) = ε j holds for all primes p. We say f is defined via the
sequence (ε j)∞j=1, and throughout this article, we always identify f with its defining
sequence (ε j)∞j=1. Certainly fake μ’s include the Möbius function (the real μ!) and the
Liouville function. These authors focused on the “persistent bias” and “apparent bias,”
at the scale of

√
x, of the summatory function of a fake μ. In particular, they showed

[19, Theorem 3] that if f is a fake μ with ε1 = −1 and ε2 = 1, then its summatory function
F f (x) satisfies

F f (x) − a
√

x = Ω±(
√

x),(1.1)

where the apparent bias a is twice the residue at s = 1
2 of the meromorphic func-

tion defined by the Dirichlet series ∑∞n=1 f (n)n−s . In other words, F f (x) − a
√

x is
infinitely often larger than some positive constant times

√
x and also infinitely often

smaller than some negative constant times
√

x (these constants can depend on f ).
There is a small gap in their proof, but it can be filled with a few additional observations
(see Example 3.1).

These authors included the comment that “a function with no bias at scale
√

x
could well see one at a smaller scale.” This remark motivates the study of the current
article, namely, to establish new oscillation results for the summatory functions of
a larger family of fake μ’s, with oscillations at potentially smaller scales than

√
x.

Indeed, we will unconditionally establish such an oscillation result for the summatory
function of every nontrivial fake μ (see Theorems 1.7, 1.10, 1.14, and 3.10 below). We also
establish upper bounds, both unconditional and assuming RH, on the error terms in
the asymptotic formulas for all these summatory functions (see Theorems 1.16 and 1.18
below).

1.1 Existing examples of fake μ’s

Before introducing our main results formally, we first describe a few subfamilies of fake
μ’s whose summatory functions have been studied extensively. (We refer the reader to
the survey [32, Chapter VI] for more results related to these fake μ’s.) These examples
also motivate us to divide fake μ’s into three categories (see Definition 1.8).
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Oscillation results for the summatory functions of fake μ’s 3

Example 1.1 (Tanaka’s Möbius functions) Given an integer k ≥ 2, recall that an
integer is called k-free if it is not divisible by the kth power of any prime (for k = 2
and k = 3, these numbers are commonly called squarefree and cubefree, respectively).
Tanaka [35] defined the generalized Möbius function μk by declaring that μk(n) =
(−1)Ω(n) if n is k-free and μk(n) = 0 otherwise. Note that these functions interpolate
between the Möbius and Liouville functions in the sense that μ2 = μ and limk→∞ μk =
λ as a pointwise limit.
• We see that μk is the fake μ corresponding to the sequence (ε j)defined by ε j = (−1) j

for 1 ≤ j ≤ k − 1 and ε j = 0 for j ≥ k.
• The corresponding Dirichlet series ∑∞n=1 μk(n)n−s can be written down explicitly

and admits a nice factorization in terms of the Riemann zeta function. For example,
when k ≥ 3 is odd, we have the identity∑∞n=1 μk(n)n−s = ζ(2s)ζ(ks)/ζ(s)ζ(2ks).

• Let Mk(x) = ∑n≤x μk(n). Tanaka [35] showed that Mk(x) − τk
√

x = Ω±(
√

x),
where τ2 = 0, τk = ζ( k

2 )/ζ(
1
2)ζ(k) if k ≥ 3 is odd, τk = 1/ζ( 1

2)ζ(
k
2 ) if k ≥ 4 is even,

and τ∞ = 1/ζ( 1
2). These statements are special cases of the result (1.1) that was

proved later.

Example 1.2 (Indicator functions of k-free numbers) Note that μ2
k(n) is the indicator

function of k-free numbers (generalizing the fact that μ2(n) is the indicator function
of squarefree numbers).
• We see that μ2

k is the fake μ corresponding to the sequence defined by ε1 = ⋅ ⋅ ⋅ =
εk−1 = 1 and ε j = 0 for j ≥ k.

• The corresponding Dirichlet series also factors nicely in terms of ζ(s): we have the
identity∑∞n=1 μ2

k(n)n−s = ζ(s)/ζ(ks).
• Let Qk(x) be the number of k-free numbers up to x, and let Rk(x) = Qk(x) −

x/ζ(k). Montgomery and Vaughan [24] showed under RH that Rk(x) ≪ε
x 1/(k+1)+ε . (This result has been slightly improved by various authors; for k suf-
ficiently large, the best known bound is due to Graham and Pintz [11].) Meng
[21] gave, under the additional assumption ∑0<γ≤T ∣ζ′(ρ)∣2 ≪ε T 1+ε for all ε > 0,
a bound on an integral involving Rk(x) which implies that Rk(x) ≪ x 1/2k on
average.

• On the other hand, Evelyn and Linfoot [9] first proved that Rk(x) = Ω±(x 1/2k).
The recent paper [27] by Mossinghoff, Oliveira e Silva, and Trudgian provides the
best known explicit lower bounds on the oscillations of the error term (see also the
survey [30] by Pappalardi).

Example 1.3 (Apostol’s Möbius functions) Apostol [1] described a different gener-
alization of the Möbius function. For each k ≥ 1, let νk be the multiplicative function
such that for each prime p, we set νk(p j) = 1 if j < k, νk(p j) = −1 if j = k, and νk(p j) =
0 if j > k. Note that ν1 = μ.
• We see that νk is the fake μ corresponding to the sequence defined by ε1 = ⋅ ⋅ ⋅ =

εk−1 = 1, εk = −1, and ε j = 0 for j ≥ k + 1.
• While the corresponding Dirichlet series does not admit (for k ≥ 2) an exact

factorization in terms of ζ(s), it does possess [3, Lemma 2.5] a useful partial
factorization of the form ζ(s)/ζ(ks)2 ⋅ A∗k(s), where A∗k(s) is an Euler product that
is absolutely convergent (and thus analytic) for R(s) > 1/(k + 1).
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4 G. Martin and C. Yip

• For k ≥ 2, Apostol [1] showed that there is a constant ϕk such that ∑n≤x νk(x) =
ϕk x + O(x 1/k log x); the factor multiplying x 1/k in the error term has recently been
improved by Banerjee et al. [3]. Under RH, Suryanarayana [34] improved the error
term to O(x4k/(4k2+1) exp(C log x

log log x )) for some positive constant C.

Example 1.4 (Indicator functions of k-full numbers) Given an integer k ≥ 2, recall
that an integer is called k-full if every prime that divides it does so with multiplicity
at least k (for k = 2 these numbers are commonly called powerfull or squarefull
numbers).
• We see that the indicator function of k-full numbers is the fake μ corresponding to

the sequence defined by ε1 = ⋅ ⋅ ⋅ = εk−1 = 0 and ε j = 1 for j ≥ k.
• When k = 2, the corresponding Dirichlet series is exactly ζ(2s)ζ(3s)/ζ(6s). When

k ≥ 3, the corresponding Dirichlet series admits [2, Proposition 1] the useful partial
factorization

(
2k−1
∏
j=k

ζ( js)/
4k+3
∏

j=2k+2
ζ( js)a j)V(s),

where a j are particular integers and where V(s) is an Euler product that is
absolutely convergent (and thus analytic) for R(s) > 1/(4k + 4).

• Let Nk(x) be the number of k-full numbers up to x; then Nk(x) admits an
asymptotic formula of the form Nk(x) = ∑k≤ j≤2k−1 a f ( j)x 1/ j + ΔNk(x). Various
upper bounds on ΔNk(x) can be found in [18, 22] and the references therein; in
particular, under the Lindelöf hypothesis, Ivić [15] showed that ΔNk(x) ≪ε x 1/2k+ε .

• Bateman and Grosswald [4] showed that if ρ is any zero of the Riemann zeta
function such that ζ( ρ

2 ) ≠ 0 and ζ( ρ
3 ) ≠ 0, then ΔN2(x) = Ω±(xR(ρ)/6). Thus,

in particular, by taking ρ = 1
2 ± i ⋅ 14.1347 . . . to be a zero of the zeta function

closest to the real axis, their result implies that ΔN2(x) = Ω±(x 1/12). Balasubra-
manian, Ramachandra, and Subbarao [2] showed that ΔN2(x) = Ω(x 1/10) and that
ΔNk(x) = Ω(x 1/(2k+

√
8k+3)) for k ≥ 3; more precisely, they showed that ΔNk(x) =

Ω(x 1/2(k+r)), where r is the smallest positive integer such that r(r − 1) ≥ 2k.

One commonality of the above examples is the idea of factoring out powers of ζ(s),
ζ(2s), and so on from a Dirichlet series, either resulting in a complete factorization
or else leaving a remaining factor with nicer analytic properties (a larger half-plane of
absolute convergence, for example). This theme is present in many guises in analytic
number theory. For example, if f (n) is a multiplicative function such that κ is the
average value of f (p) over primes p, the Selberg–Delange method (see, for example,
[36, Chapter II.5]) finds an asymptotic formula for the summatory function of f (n)
by factoring ζ(s)κ out of the corresponding Dirichlet series, so that the leftover factor
is typically analytic in a neighborhood of s = 1.

If in fact f (p) = κ exactly for all primes p, then the resulting factorization is
∑∞n=1 f (n)n−s = ζ(s)κU1(s), where U1(s) is a Dirichlet series whose coefficients are
supported on squarefull numbers. If f (p2) is also independent of p, one can further
write∑∞n=1 f (n)n−s = ζ(s)κζ(2s)κ′U2(s) for an appropriate constantκ′ and a Dirich-
let series U2(s) whose coefficients are supported on 3-full numbers, and so on. These
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Oscillation results for the summatory functions of fake μ’s 5

partial zeta-factorizations are already beneficial for analytic methods, and sometimes
one can consider analogous total zeta-factorizations ∑∞n=1 f (n)n−s = ∏∞v=1 ζ(vs)av .
For example, Moree [26, Sections 2 and 3] and other authors have used these zeta-
factorizations as a means of calculating certain number-theoretic constants to high
precision; in another vein, Dahlquist [7, Section 2] recognized the importance of finite
zeta-factorizations in the study of the natural boundary of analytic continuation for
Dirichlet series (see also the later chapters of [8]). Moreover, when the exponents av
are integers, then the resulting functions are meromorphic and we expect Perron’s
formula and contour integration to yield asymptotic formulas, and explicit formulas
involving the zeros of ζ(s), for our summatory functions.

Returning now to the examination of fake μ’s, it turns out that partial zeta-
factorizations of this type are important not only for the proofs, but even for the
statements, of our oscillation results. In Section 2, we will describe an algorithm for
computing such zeta-factorizations that is designed specifically for the Dirichlet series
of fake μ’s. We will write the result of such a zeta-factorization in the form

∞
∑
n=1

f (n)n−s =
�

∏
j=1

ζ( js)a j ⋅U�(s),(1.2)

where a1 , . . . , a� are integers and U�(s) is of the form

U�(s) =∏
p
(1 +

∞
∑

j=�+1

η j

p js )(1.3)

for certain constants η j (so that the coefficients in the Dirichlet series for U�(s) are
supported on (� + 1)-full numbers).

We now proceed to define the terminology required to state our main results.

1.2 Main results

We quickly observe that not all fake μ’s exhibit oscillations in their partial sums. For
instance, if f is the indicator function of n = 1 (corresponding to the case ε j ≡ 0),
there is no oscillation result. Similarly, if f is the indicator function of kth powers
for some k ≥ 1 (that is, if ε j = 1 when k ∣ j and ε j = 0 otherwise), then there is no
oscillation result either beyond the trivial ∑n≤x f (n) − x 1/k = ⌊x 1/k⌋ − x 1/k = Ω−(1).
For this reason, we call the fake μ’s mentioned above trivial fake μ’s. These observations
lead to the following definition.

Definition 1.5 Let F be the set of arithmetic functions consisting of all fake μ’s that
are not trivial. In other words, f ∈ F precisely when f (n) is a multiplicative function
such that:
(a) there exists a {−1, 0, 1}-valued sequence (ε j)∞j=1 such that f (p j) = ε j for every

prime p;
(b) f (n) is neither the indicator function of {1}, nor the indicator function of the set

of kth powers for any k ≥ 1.
For any f ∈ F, define F f (x) = ∑n≤x f (n) to be the summatory function of f, and
define D f (s) = ∑∞n=1 f (n)n−s to be the Dirichlet series associated with f.
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6 G. Martin and C. Yip

Our goal is to deduce an oscillation result for F f (x) based on analytic properties
of D f (s), stated with the help of the indices introduced in the following definition.

Definition 1.6 If f ∈ F is defined via the sequence (ε j), we define the initial index of
f to be the smallest number j such that ε j ≠ 0. We define the critical index of f to be
the smallest number j for which a power of ζ( js) appears in the denominator of the
zeta-factorization of D f (s). More precisely, if for σ > 1 we can write D f (s) in the form
given in equations (1.2) and (1.3), then the critical index of f equals � precisely when
a1 , a2 , . . . , a�−1 ≥ 0 and a� < 0.

Given a zeta-factorization (1.2), we expect (when U� is nicely behaved) that the
right-hand side will have real poles at s = 1

j whenever a j > 0 (so that ζ( js) appears to
some power in the numerator); we further expect that it will have complex poles with
real parts equal to 1

2 j whenever a j < 0 (so that ζ( js) appears to some power in the
denominator). When using Perron’s formula and contour integration, the real poles
are associated with the main term of the asymptotic formula, and the complex poles
are associated with oscillatory terms. Consequently, we expect a main term for F f (x)
of the form

G f (x) =
2�
∑
j=1

Res(D f (s)
x s

s
, 1

j
),(1.4)

where Res(g(s), s0) denotes the residue of g(s) at s = s0. We will study oscillation
results and upper bounds for the error term

E f (x) = F f (x) −G f (x).(1.5)

Note that � here denotes the critical index of f, and that the sum defining G f has been
deliberately taken up to exactly 2� for the following reason. As a function of x, the
residue at s = 1

j in equation (1.4) will have order of magnitude x 1/ j , while the residues
at the complex poles with real part equal to 1

2� will oscillate with order of magnitude
x 1/2�. Therefore, the rightmost 2� potential real poles should be taken into account
in the main term, but we expect that all subsequent real poles will give a negligible
contribution compared to the oscillations of the error term.

We are now able to state the most general form of our main oscillation result, which
holds for every nontrivial fake μ.

Theorem 1.7 Let f ∈ F. If � is the critical index of f, then E f (x) = Ω±(x 1/2�). In other
words,

F f (x) = G f (x) + E f (x) =
2�
∑
j=1

Res(D f (s)
x s

s
, 1

j
) +Ω±(x 1/2�).

(In this theorem and throughout this article, all implicit constants in Ω and O-
notation may depend upon f.)

Given more information about the specific f ∈ F, of course, we should be able to be
more specific about this main term and oscillation term. We would like to determine
when the residues on the right-hand side equal 0 (as many of them will) and to
write the nonzero residues more explicitly; we would like to increase the size of the
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oscillation term when possible (even if just by a logarithmic factor); and we would like
to more explicitly determine what the critical index � actually is. As it happens, we can
already be quite a bit more specific simply by dividing the set of nontrivial fake μ’s into
three types.

Definition 1.8 Let f ∈ F be a nontrivial fake μ.
(a) We say that f is of Möbius-type if the initial index k ≥ 1 of f has the property

that εk = −1. The Möbius function μ and the Liouville function λ are certainly
of Möbius-type, as are Tanaka’s Möbius functions μk from Example 1.1. As we will
see in Theorem 1.10, the critical index also equals k in this case.

(b) We say that f is of powerfree-type if ε1 = 1 (so that the initial index of f is 1). When
k ≥ 2, the indicator functions μ2

k of k-free numbers (see Example 1.2) are certainly
of powerfree-type, as are Apostol’s Möbius functions νk from Example 1.3. In this
case, it is important to consider the smallest positive number k with εk ≠ 1, which
is in some sense a “measure of powerfreeness” (since this yields the correct value of
k when f = μ2

k , and also when f = νk). As we will see in Theorem 1.14, the critical
index equals this value of k in this case.

(c) We say that f is of powerfull-type if the initial index of f is k ≥ 2 and εk = 1. When
k ≥ 2, the indicator functions of k-full numbers (see Example 1.4) are certainly of
powerfull-type. The initial index k is in some sense a “measure of powerfullness”
of f. Unlike the previous two cases, there is no simple formula for the critical index,
although in Section 2, we give an algorithm for computing the critical index from
the defining sequence (ε j).

We will be able to be more concrete about the main terms for our summatory
functions of fake μ’s with the following notation.

Definition 1.9 For any f ∈ F and any positive integer j, define

a f ( j) = j Res(D f (s), 1
j ) and b f ( j) = j2 Res((s − 1

j )D f (s), 1
j ).

If D f (s) has at most a double pole at s = 1
j , then the principal part of D f (s) is

b f ( j)
j2(s − 1/ j)2 +

a f ( j)
j(s − 1/ j) ,

so that subtracting this expression from D f (s) results in a function that is analytic at
s = 1

j . Note that either or both of a f ( j) and b f ( j)might equal 0.

We may now state the following refinement of Theorem 1.7 for Möbius-type fake
μ’s.

Theorem 1.10 Let f ∈ F be of Möbius-type with initial index k. Then, the critical index
of f also equals k. Moreover,

G f (x) = ∑
k+1≤ j≤2k

ε j=1

a f ( j)x 1/ j and E f (x) = Ω±(x 1/2k).

Remark 1.11 A particular case of this theorem is when f ∈ F has ε1 = −1 and ε2 = 1, in
which case f is of Möbius-type with initial index k = 1. We thus see that Theorem 1.10
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8 G. Martin and C. Yip

generalizes [19, Theorem 3] as stated in equation (1.1), which itself includes the
Möbius function μ, the Liouville function λ, and Tanaka’s Möbius functions μk from
Example 1.1 as special cases.

Remark 1.12 When we provide upper bounds for E f (x) in Theorem 1.18, we will see
that assuming RH, this oscillation result Ω±(x 1/2k) for fake μ’s of Möbius type is best
possible up to factors of x ε .

Remark 1.13 A tempting heuristic suggests that Theorem 1.7 and its refinements
might always yield best-possible oscillation results: One can write E f (x) = F f (x) −
G f (x) as a contour integral involving a meromorphic function whose rightmost
singularities are the poles coming from the negative power of ζ(�s) in equation (1.2)
(where � is the critical index of f ), since G f (x) is designed to cancel all the real poles of
D f (s) with R(s) > 1

2� . Assuming RH, these rightmost singularities are all on the line
R(s) = 1

2� , and contour integration might plausibly result in an explicit formula whose
dominant terms have order of magnitude x 1/2�. However, estimating the contribution
to F f (x) from the shifted contour is not straightforward, and indeed we know that
this heuristic can fail in general – a counterexample is given by the indicator function
of k-full numbers (see Example 2.12 and Remark 2.13 below for more details).

We continue by stating the following refinement of Theorem 1.7 for powerfree-type
fake μ’s.

Theorem 1.14 Let f ∈ F be of powerfree-type, and let k be the smallest positive integer
such that εk ≠ 1. Then, the critical index of f equals k, and

G f (x) = a f (1)x + ∑
k+1≤ j≤2k−1

ε j>ε j−1

a f ( j)x 1/ j + ∑
k+1≤ j≤2k−1
ε j=1, ε j−1=−1

b f ( j)x 1/ j( 1
j log x − 1)

+
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if ε2k − ε2k−1 + εk ≤ 0,
a f (2k)x 1/2k , if ε2k − ε2k−1 + εk = 1,
a f (2k)x 1/2k + b f (2k)x 1/2k( 1

2k log x − 1), if ε2k − ε2k−1 + εk = 2.

Moreover, E f (x) = Ω±(x 1/2k(log x)∣εk ∣).
Remark 1.15 Since the indicator function of k-free numbers is a powerfree-type fake
μ, we see that Theorem 1.14 recovers the result of Evelyn and Linfoot [9] mentioned
in Example 1.2 on oscillations of the error term in the counting function for k-free
numbers. Theorem 1.14 also provides the first oscillation result for Apostol’s Möbius
functions νk from Example 1.3.

For the third category of fake μ’s, namely, those of powerfull-type, a more precise
statement is much more complicated, in large part because even computing the critical
index itself is not straightforward. In Theorem 3.10, we will give a detailed version of
our oscillation result for powerfull-type fake μ’s.

We complement the oscillation results described above with upper bounds on the
error terms E f (x). Since we are partly motivated by trying to understand how strong
those oscillation results are, we provide two such results: the first one is unconditional,
and the second one assumes RH.
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Theorem 1.16 Let f ∈ F. Unconditionally, we have the following upper bounds on
E f (x):
(a) If f is of powerfull-type with initial index k, then E f (x) ≪ε x 1/(k+1)+ε for each ε > 0.
(b) If f is of Möbius-type or powerfree-type with critical index k, then

E f (x) ≪ x 1/k exp( − c (log x)3/5

(log log x)1/5 ),(1.6)

where c is some absolute positive constant.

Remark 1.17 Note that if f ∈ F has initial index k, then the first nonzero contribution
to the main term (1.4) for F f (x) has order of magnitude x 1/k . Therefore, these
unconditional upper bounds for the error term are only of modest strength for
powerfull-type fake μ’s, and when f is of Möbius-type we do not even have power
savings in x. This challenge is already reflected in the classical cases f = μ and f = λ,
where the upper bound (1.6) with k = 1 is the best known estimate for the Mertens
sum M(x) and for the error term ΔL(x) = L(x) −

√
x/ζ( 1

2 ) in Pólya’s problem.

Theorem 1.18 Let f ∈ F. Assuming RH, we have the following upper bounds on E f (x):
(a) If f is of Möbius-type or powerfull-type with initial index k, then there exists a

positive constant C such that E f (x) ≪ x 1/2k exp(C log x
log log x ).

(b) If f is of powerfree-type with critical index k, then E f (x) ≪ε x 1/(k+1)+ε for each
ε > 0.

Remark 1.19
(a) When f is of Möbius-type, Theorem 1.18(a) implies (assuming RH) that the

oscillations given in Theorem 1.10 are essentially best possible, as mentioned in
Remark 1.12.

(b) When f = μ, the best-known conditional upper bound on M(x)
is due to Soundararajan [33], where he showed that M(x) ≪
x 1/2 exp ((log x)1/2(log log x)14).

(c) When f is the indicator function of k-full numbers, Theorem 1.18(a) improves
Ivić’s result mentioned in Example 1.4, although his result requires only the
Lindelöf hypothesis rather than the full RH.

(d) There exist examples (see Example 2.10 below) of powerfull-type fake μ’s
with initial index k where the error-term oscillations are as large as E f (x) =
Ω±(x 1/(2k+2)); so Theorem 1.18(a) is at least reasonably sharp for powerfull-type
fake μ’s.

(e) Theorem 1.18(b) extends the result of Montgomery and Vaughan’s result concern-
ing the indicator function of k-free numbers (see Example 1.2) to all powerfree-
type fake μ’s with critical index k. In particular, Theorem 1.18(b) applies when
f = νk (see Example 1.3) and improves Suryanarayana’s result [34] that E f (x) ≪
x4k/(4k2+1)+o(1).

The examples in Section 1.1 are far from being a complete list of fake μ’s already
studied in the literature. We introduce one additional family of fake μ’s to further
illustrate Theorems 1.16 and 1.18.
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Example 1.20 Bege [5] introduced the following generalization of Apostol’s Möbius
functions: given integers 2 ≤ k < m, the function μk ,m is the fake μ defined via the
sequence (ε j)∞j=1 with

ε j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if 1 ≤ j ≤ k − 1,
−1, if j = m,
0, otherwise.

Note that μk ,m is of powerfree-type with critical index k. Theorem 1.16(b) recov-
ers Bege’s unconditional bound [5, Theorem 3.1], while Theorem 1.18(b) improves
Bege’s conditional bound Eμk ,m(x) ≪ x2/(2k+1)+o(1) [5, Theorem 3.2] under RH to
Eμk ,m(x) ≪ x 1/(k+1)+o(1).

Notation. We use several notational conventions that are standard in analytic
number theory. In this article, p always denotes a prime, and ∑p and ∏p represent
sums and products over all primes. For a complex number s, we write s = σ + it, so
that σ =R(s) and t = I(s). In addition, ρ = β + iγ denotes a general nontrivial zero
of the Riemann zeta function ζ(s), so that β =R(ρ) and γ = I(ρ). We write f (x) =
Ω(g(x)) to mean lim supx→∞ ∣ f (x)∣/g(x) > 0, and f (x) = Ω±(g(x)) to mean both
lim supx→∞ f (x)/g(x) > 0 and lim inf x→∞ f (x)/g(x) < 0.

Outline of the article. In Section 2, we provide an algorithm to compute the critical
index of a function f ∈ F. In Section 3, we prove an oscillation result for E f (x) based
on its critical index and a few other parameters from the algorithm (Theorem 3.5
is the most general statement). In particular, in Section 3.4, we complete the proofs
of Theorems 1.10 and 1.14, which apply to Möbius-type and powerfree-type fake μ’s,
respectively, as well as giving a general result (Theorem 3.10 below) for powerfull-type
fake μ’s. Together these three results imply Theorem 1.7. Finally, in Section 4, we study
upper bounds on the error term E f (x) and prove Theorems 1.16 and 1.18.

2 Zeta-factorizations and the critical index

In this section, we provide some precise statements about the (partial) zeta-
factorizations mentioned in the introduction, including closed formulas and bounds
for the resulting exponents and coefficients. With these statements in place, we
then describe an algorithm for computing zeta-factorizations with enough factors to
determine the critical index of a fake μ (recall Definition 1.6). We also provide several
zeta-factorization examples using this algorithm, which we compare to known results
from the literature.

One viewpoint we wish to stress is that given a specific Euler product with
known numerical coefficients, all analytic number theorists who produced a zeta-
factorization of that Euler product would arrive at the same numerical answer using
essentially the same procedure as one another. The difficulties lie not in the calcula-
tions themselves, but rather in finding an accessible notation we can use to record the
results of zeta-factorizations in a general setting.
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2.1 Zeta-factorization of Dirichlet series

We start with the following lemma for “one-step” zeta-factorization for a family of
Dirichlet series relevant to our discussions. Later, we will apply the lemma recursively
to obtain “multi-step” zeta-factorizations.

Lemma 2.1 Let t be a positive integer, and let (η j)∞j=t be a sequence of integers. Assume
that the Euler product

A(s) =∏
p
(1 +

∞
∑
j=t

η j

p js )

converges absolutely for σ > 1. Then for σ > 1,

A(s) = ζ(ts)η t ⋅∏
p
(1 +

∞
∑

j=t+1

η′j
p js ),

where the first several values of η′j are

η′j =
⎧⎪⎪⎨⎪⎪⎩

η j , if t + 1 ≤ j ≤ 2t − 1,
η2t − 1

2 (η
2
t + ηt), if j = 2t.

Moreover, ∣η′j ∣ ≤ (2 j∣ηt ∣)2∣η t ∣maxn≤ j ∣ηn ∣ for all j ≥ t + 1.

Proof For convenience, we extend the sequence (η j) to all integers indices by
defining η0 = 1 and η j = 0 when 1 ≤ j ≤ t − 1 or j ≤ −1. Assume throughout that σ > 1.
Then

ζ(ts)−η t A(s) =∏
p
(∑

j∈Z

η j

p js )(1 − 1
pts )

η t

.(2.1)

The lemma is trivial if ηt = 0; we consider two cases according to the sign of ηt .
If ηt > 0, then equation (2.1) becomes

ζ(ts)−η t A(s) =∏
p
(∑

j∈Z

η j

p js)(
η t

∑
m=0

(−1)m(η t
m)

pmts ) =∏
p
(∑

k∈Z

1
pks

η t

∑
m=0
(−1)m(ηt

m
)ηk−tm).

It follows that

A(s) = ζ(ts)η t ⋅∏
p
(1 +∑

j∈Z

η′j
p js ) with η′j =

η t

∑
m=0
(−1)m(ηt

m
)η j−tm .(2.2)

In particular,

η′j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η j = 0, if j ≤ −1 or 1 ≤ j ≤ t − 1,
η0 = 1, if j = 0,
ηt − (η t

1 )η0 = 0, if j = t,
η j − (η t

1 )η j−t = η j , if t + 1 ≤ j ≤ 2t − 1,
η2t − (η t

1 )ηt + (η t
2 )η0 = η2t − 1

2 (η
2
t + ηt), if j = 2t.
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From equation (2.2), we also deduce that

∣η′j ∣ ≤
η t

∑
m=0
(ηt

m
)∣η j−tm ∣ ≤max

n≤ j
∣ηn ∣

η t

∑
m=0
(ηt

m
) ≤ 2η t max

n≤ j
∣ηn ∣,

which establishes the lemma in the ηt > 0 case.
On the other hand, if ηt < 0, then equation (2.1) becomes

ζ(ts)−η t A(s) =∏
p
(∑

j∈Z

η j

p js )(
∞
∑
m=0

(m−η t−1
−η t−1 )
pmts )

=∏
p
(∑

k∈Z

1
pks

∞
∑
m=0
(m − ηt − 1
−ηt − 1

)ηk−tm).

and it follows that

A(s) = ζ(ts)η t ⋅∏
p
(1 +∑

j∈Z

η′j
p js ) with η′j =

∞
∑
m=0
(m − ηt − 1
−ηt − 1

)η j−tm(2.3)

holds for all j ≥ 0. In particular, we have η′0 = 1, and

η′j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η j = 0, if j ≤ −1 or 1 ≤ j ≤ t − 1,
η0 = 1, if j = 0,
ηt + (−η t

1 )η0 = 0, if j = t,
η j + (−η t

1 )η j−t = η j , if t + 1 ≤ j ≤ 2t − 1,
η2t + (−η t

1 )ηt + (1−η t
2 )η0 = η2t − 1

2 (η
2
t + ηt), if j = 2t.

From equation (2.3), we also deduce that

∣η′j ∣ ≤
⌊ j/t⌋
∑
m=0
(m − ηt − 1
−ηt − 1

)∣η j−tm ∣ ≤max
n≤ j
∣ηn ∣

⌊ j/t⌋
∑
m=0
(m + ∣ηt ∣ − 1
∣ηt ∣ − 1

)

=max
n≤ j
∣ηn ∣ ⋅

1
∣ηt ∣
⌊ j

t
+ 1⌋(⌊ j/t⌋ + ∣ηt ∣

∣ηt ∣ − 1
)

≤max
n≤ j
∣ηn ∣(

j
t
+ 1)( j

t
+ ∣ηt ∣)

∣η t ∣

≤max
n≤ j
∣ηn ∣(2 j∣ηt ∣)2∣η t ∣ ,

which establishes the lemma in the ηt < 0 case. ∎

A follow-up lemma puts into context the significance of the coefficient bound at
the end of Lemma 2.1.

Lemma 2.2 Let n be a nonnegative integer. Suppose that there are positive constants
A, B such that the Euler product

Un(s) =∏
p
(1 +

∞
∑

j=n+1

η j

p js )(2.4)

satisfies ∣η j ∣ ≤ (Aj)B for all j. Then, Un(s) converges absolutely to an analytic function
for σ > 1

n+1 .
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Proof To show absolute convergence, we must bound

∑
p

∞
∑

j=n+1

∣η j ∣
∣p js ∣ ≤ ∑p

∞
∑

j=n+1

(Aj)B

p jσ = AB∑
p

1
p(n+1)σ

∞
∑
i=0

(i + n + 1)B

piσ

≤ AB∑
p

1
p(n+1)σ

∞
∑
i=0

(n + 1)B(i + 1) ⋅ ⋅ ⋅ (i + B)
piσ

= AB∑
p

(n + 1)B

p(n+1)σ B!(1 − p−σ)−B−1 ≪A,B ,n ∑
p

1
p(n+1)σ

which converges by the assumption σ > 1
n+1 . Moreover, this convergence is locally

uniform in s, which implies that the infinite product is indeed analytic. ∎

2.2 An algorithm for computing the critical index of f ∈ F

We begin by using Lemma 2.1 to quickly compute the desired factorization of Dirichlet
series D f (s) for a Möbius-type fake μ.

Proposition 2.3 Let f ∈ F be of Möbius-type with initial index k. Then, the critical
index of f also equals k. Moreover, for σ > 1,

D f (s) = U2k(s) ⋅
2k
∏
j=k

ζ( js)ε j , where U2k(s) =∏
p
(1 +

∞
∑

j=2k+1

η j

p js )(2.5)

with ∣η j ∣ ≤ (2 j)2(k+1).

Remark 2.4 The coefficient bound ∣η j ∣ ≤ (2 j)2(k+1) implies, by Lemma 2.2, that
U2k(s) is analytic for σ > 1/(2k + 1).

Proof of Proposition 2.3 We begin by setting θ(k)j = ε j for all j and writing

Uk(s) =∏
p
(1 +

∞
∑
j=k

θ(k)j

p js ) = D f (s).(2.6)

We claim that for each t = k, k + 1, . . . , 2k + 1, we can write

D f (s) = Ut(s)
t−1
∏
j=k

ζ( js)ε j with Ut(s) =∏
p
(1 +

∞
∑
j=t

θ(t)j

p js ),

where θ(t)j = ε j for all t ≤ j ≤ 2k and ∣θ(t)j ∣ ≤ (2 j)2(t−k) for all j ∈ N. The base case
t = k is exactly equation (2.6), whereas deriving the case t + 1 from the case t is a
direct application of Lemma 2.1. (In the first step going from t = k to t = k + 1, it is
important to note that εk = −1 implies that ε2k − 1

2 (ε
2
k + εk) = ε2k . The fact that εk = −1

also confirms that the critical index of f equals k.) At the end of this recursive process,
the final case t = 2k + 1 is the statement of the proposition, with η j = θ(2k+1)

j . ∎

Next, we consider f ∈ F of powerfree-type and powerfull-type. In this case, before
applying Lemma 2.1, we need to first determine the critical index of f. Algorithm 1
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below computes the critical index of f, as well as principal indices of f defined
below. Based on the algorithm, we further establish Theorem 2.6 on the partial zeta-
factorization of D f (s) into the desired form (1.2). The introduction of principal indices
plays a crucial role in describing Algorithm 1 as well as in stating Theorem 2.6.

Definition 2.5 Suppose that f ∈ F is defined via the sequence (ε j) and has critical
index �, so that we can write D f (s) in the form given in equations (1.2) and (1.3) with
a1 , a2 , . . . , a�−1 ≥ 0 and a� < 0. We define the principal indices of f to be those numbers
1 ≤ j ≤ � − 1 for which a j > 0 (indicating that a power of ζ( js) is truly present in the
numerator of the zeta-factorization (1.2)).

In the algorithm below, for a positive integer j and a set of positive integers
{c1 , c2 , . . . , cm}, we define the number of representations of j from {c1 , c2 , . . . , cm},
denoted by n j in the algorithm, to be the number of nonnegative integer solutions
(α1 , α2 , . . . , αm) to the equation∑m

i=1 α i c i = j.

Algorithm 1: Compute the critical index and principal indices of f ∈ F.
c1 ← initial index of f
m ← 1
j ← c1 + 1
while true do

n j ← the number of representations of j from {c1 , c2 , . . . , cm}
if n j = 0 and ε j = 1 then

cm+1 ← j
m ← m + 1

if n j > ε j then
M ← m
�← j
return �, c1 , c2 , . . . , cM

j ← j + 1

Theorem 2.6 Let f ∈ F be of powerfree-type or powerfull-type. Algorithm 1 terminates
in finitely many steps and computes the critical index of f (denoted by �), as well as the
principal indices c1 < c2 < ⋅ ⋅ ⋅ < cM of f. Moreover, for σ > 1, we have the factorization

D f (s) = U2�(s) ⋅
∏M

j=1 ζ(c js)
ζ(�s)n�−ε�

⋅
2�
∏

j=�+1
ζ( js)a j ,(2.7)

with

a j =
⎧⎪⎪⎨⎪⎪⎩

∑I⊂{1, . . . ,M}(−1)#I ε j−∑i∈I c i , if � + 1 ≤ j ≤ 2� − 1,
− (ε�−n�)2+ε�−n�

2 +∑I⊂{1, . . . ,M}(−1)#I ε2�−∑i∈I c i , if j = 2�,
(2.8)

where M < � and n� are defined in Algorithm 1, and we have set ε0 = 1 and ε j = 0 for
j < 0. Furthermore,
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U2�(s) =∏
p
(1 +

∞
∑

j=2�+1

η j

p js ),

and there exist constants A and B, depending only on �, such that ∣η j ∣ ≤ (Aj)B for all
j ≥ 2� + 1.

Remark 2.7 Again, the coefficient bound ∣η j ∣ ≤ (Aj)B implies that U2�(s) is analytic
for σ > 1/(2� + 1) by Lemma 2.2.

Proof of Theorem 2.6 We first show that Algorithm 1 terminates in finitely many
steps; equivalently, we show that the critical index of the sequence (ε j) is finite. If there
is a positive integer j such that ε j = −1, then the second if statement of the algorithm
ensures that the critical index of (ε j) is at most j. Thus, we can assume that ε j ∈ {0, 1}
for all j. Let k be the initial index of f.
• If ε j = 0 for all indices j that are not multiples of k, then let k′ be the smallest multiple

of k such that εk′ ≠ 1 (such a k′must exist by the exclusion of trivial fake μ’s from the
family F). Then, the second if statement of the algorithm ensures that the critical
index of (ε j) is at most k′.

• Otherwise, let k′ be the smallest integer with ε j = 1 that is not a multiple of k. Then,
the first if statement of the algorithm sets c2 = k′. Since lcm(k, k′) has at least two
representations from {k, k′} = {c1 , c2}, the second if statement of the algorithm
ensures that the critical index of (ε j) is at most lcm(k, k′).

Next, we make the initial definitions D0(s) = D f (s) and θ(0)j = ε j for all j.
Main goal: We will show inductively, for each 1 ≤ m ≤ M, that cm is the smallest

positive integer j such that θ(m−1)
j is nonzero, and moreover that θ(m−1)

cm = 1. These
claims are trivial for m = 1, as c1 is the initial index of f, and εc1 = 1 since f is not of
Möbius-type.

For the inductive step, fix 1 ≤ m ≤ M − 1, and assume both that cm is the smallest
positive integer j such that θ(m−1)

j is nonzero and that θ(m−1)
cm = 1. We write θ(m−1)

0 = 1,
and for convenience, we adopt the convention that θ(m−1)

j = 0 when j ≤ −1. Set
Dm(s) = Dm−1(s)/ζ(cms), and let θ(m)j be defined by

Dm(s) =∏
p
(
∞
∑
j=0

θ(m)j

p js )

for σ > 1. By the definition of Dm(s), we have θ(m)j = θ(m−1)
j − θ(m−1)

j−cm
, and then by

induction, it is easy to show that

θ(m)j = ∑
I⊂{1, . . . ,m}

(−1)#I θ(0)j−∑i∈I c i
= ∑

I⊂{1,. . . ,m}
(−1)#I ε j−∑i∈I c i .(2.9)

We define three parameters rm , sm , tm as follows. Let rm be the smallest positive
integer with εrm ≠ 0 such that rm has no representations from {c1 , c2 , . . . , cm}. Let
sm be the smallest positive integer with εsm ≠ 1 that has exactly one representation
from {c1 , c2 , . . . , cm}. Finally, let tm be the smallest positive integer that has at least
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two representations from {c1 , c2 , . . . , cm}. If any of these numbers rm , sm , tm does not
exist, we regard it as +∞.

Now set cm+1 =min{rm , sm , tm}; we claim that cm+1 is finite. This is easy to see for
m ≥ 2, since, in this case, c1c2 has at least two representations from {c1 , c2 , . . . , cm}
and thus cm+1 ≤ tm ≤ c1c2. It remains to consider the case m = 1, in which every
nonnegative integer automatically has at most one representation from {c1}. But r1 =
s1 = +∞ would mean that ε j = 1 if j is a multiple of c1 and ε j = 0 otherwise; however,
this sequence results in a trivial fake μ which has been ruled out in the definition of
the family F.

Subgoal: Next, we consider the range 1 ≤ j ≤ cm+1 and determine the values θ(m)j in
this range. We will show that θ(m)j = 0 when j < cm+1, and also that θ(m)cm+1 = εcm+1 −
ncm+1 ≠ 0. We will need to consider three different cases depending on which of
rm , sm , tm is smallest. Note that cm+1 ≤ rm and cm+1 ≤ sm and cm+1 ≤ tm by definition,
so we will not need to consider values of j above any of these parameters.
(a) Assume that j has no representations from {c1 , c2 , . . . , cm}. For each subset I of
{1, . . . , m}, it follows that j −∑i∈I c i has no representations from {c1 , c2 , . . . , cm}
either and thus ε j−∑i∈I c i = 0 by the definition of rm . Equation (2.9) then implies
that θ(m)j = ε j . By the definition of rm , if j < rm then θ(m)j = ε j = 0, while if j = rm

then j = cm+1 and θ(m)cm+1 = εcm+1 ∈ {−1, 1}.
(b) Next, assume that j = ∑m

i=1 α i c i has exactly one representation from
{c1 , c2 , . . . , cm}. Let X = {1 ≤ i ≤ m∶ α i > 0}. Then for each subset I of X, it
follows that j −∑i∈J c i also has exactly one representation from {c1 , c2 , . . . , cm}
and thus ε j−∑i∈J c i = 1 by the definition of sm . On the other hand, if I is a subset
of {1, . . . , m} such that I /⊂ X, then j −∑i∈I c i has no representations from
{c1 , c2 , . . . , cm}, and thus ε j−∑i∈I c i = 0 by the definition of rm . Equation (2.9) and
the binomial theorem then imply that

θ(m)j = ∑
I⊂X
(−1)#Iε j−∑i∈I c i = ε j +

#X
∑
b=1
(−1)b(#X

b
) = ε j − 1.

By the definition of sm , if j < sm then θ(m)j = ε j − 1 = 0, while if j = sm then
j = cm+1 and θ(m)cm+1 = εcm+1 − 1 ∈ {−2,−1}.

(c) Finally, assume that j has n j ≥ 2 representations from {c1 , c2 , . . . , cm}; by the
definition of tm , we must have j = tm = cm+1. Write these representations as j =
∑m

i=1 α(h)i c i for 1 ≤ h ≤ n j . Let Xh = {1 ≤ i ≤ m∶ α(h)i > 0}; we claim that Xh are
pairwise disjoint. Indeed, if we had α(h1)

i > 0 and α(h2)
i > 0 for some 1 ≤ i ≤ m

and 1 ≤ h1 < h2 ≤ n j , then j − c i would have at least two representations from
{c1 , c2 , . . . , cm}, violating the definition of tm .

Let I be a nonempty subset of {1, . . . , m}. Then, j −∑i∈I c i has at most one
representation from {c1 , c2 , . . . , cm} by the definition of tm . If I ⊂ Xh for some 1 ≤
h ≤ n j , then j −∑i∈I c i > 0 does have a representation from {c1 , c2 , . . . , cm}, and
thus ε j−∑i∈I c i = 1 by the definition of sm and the assumption that tm < sm . On the
other hand, if I /⊂ Xh for every 1 ≤ h ≤ n j , then j −∑i∈I c i has no representations
from {c1 , c2 , . . . , cm} (for any such representation would induce an additional
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Oscillation results for the summatory functions of fake μ’s 17

representation of j itself). Thus, it follows that ε j−∑i∈I c i = 0 by the definition of
rm and the assumption that tm < rm . Equation (2.9) and the binomial theorem
then imply that

θ(m)tm
= εtm +

n j

∑
h=1
∑

I⊂Xh
I≠∅

(−1)#Iεtm−∑i∈I c i = εtm +
n j

∑
h=1

#Xh

∑
b=1
(−1)b(#Xh

b
) = εtm − n j ≤ −1.

We have therefore achieved our subgoal of showing that θ(m)j = 0 for j < cm+1 and that
θ(m)cm+1 = εcm+1 − ncm+1 ≠ 0. We now consider the sign of θ(m)cm+1 :

• The only way that θ(m)cm+1 > 0 is when εcm+1 = 1 and ncm+1 = 0, and thus θ(m)cm+1 = 1.
Therefore, we have finished the proof for the induction step for m + 1. At this point,
the first if statement of the algorithm appends cm+1 to the list of principal indices,
increases m by 1, and repeats the while loop.

• On the other hand, θ(m)cm+1 < 0 means that εcm+1 < ncm+1 . In this event, the second if
statement sets � = cm+1 and m = M and terminates the algorithm.

These observations complete the verification of our main goal.
Note that for σ > 1,

DM(s) =
D f (s)

∏M
j=1 ζ(c js)

=∏
p
(
∞
∑
j=0

θ(M)j

p js ).(2.10)

We have shown that θ(M)j = 0 for 1 ≤ j < � and that θ(M)� = ε� − n� < 0. Also, note that
equation (2.9) implies that ∣θ(M)j ∣ ≤ 2M for all j. In particular,

∣θ(M)2� −
(θ(M)� )2 + θ(M)�

2
∣ ≤ 2M + 4M + 2M

2
< 22M+1 .

Now, we can apply Lemma 2.1 inductively � + 1 times to DM(s) to obtain

DM(s) =
2�−1
∏
j=�

ζ( js)θ(M)
j ⋅ ζ(2�s)θ(M)

2�
− 1

2 ((θ
(M)
�
)2+θ(M)

�
)U2�(s),(2.11)

where

U2�(s) =∏
p
(1 +

∞
∑

j=2�+1

η j

p js )

with ∣η j ∣ ≤ 2M(2 j ⋅ 22M+1)4M+1(�+1). (Note that this bound can be made to depend upon
� alone since M < �.) Combining equations (2.9)–(2.11) establishes equation (2.7),
which completes the proof of the theorem. ∎

2.3 Examples of applying Algorithm 1

It will be illuminating to give several examples of fake μ’s where we see explicitly
the zeta-factorization resulting from Algorithm 1. In some of these examples, we will
take note of the oscillation results implied by Theorem 1.7, even though that theorem
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has not yet been proved; we assure the reader that these examples are merely for the
purposes of illustration and will not be used when we prove Theorem 1.7 in Section 3.

First, we apply Theorem 2.6 to study the factorization of D f (s) for a powerfree-type
fake μ.

Proposition 2.8 Let f ∈ F be of powerfree-type, and let k be the smallest positive integer
such that εk ≠ 1. Then, the critical index of f equals k. Moreover, for σ > 1, we can write

D f (s) =
ζ(s)

ζ(ks)1+∣εk ∣
(

2k−1
∏

j=k+1
ζ( js)ε j−ε j−1)ζ(2ks)ε2k−ε2k−1−∣εk ∣U2k(s),

where

U2k(s) =∏
p
(1 +

∞
∑

j=2k+1

η j

p js )

has the property that there exist A, B > 0 such that ∣η j ∣ ≤ (Aj)B for all j.

Proof We follow the notation used in Algorithm 1. We have c1 = 1 and thus n j ≥ 1
for all j since j = 1 + 1 + ⋅ ⋅ ⋅ + 1. Since ε2 = ⋅ ⋅ ⋅ = εk−1 = 1 and εk < 1 = nk , we have � =
k and M = 1. Also, note that εk ∈ {−1, 0} implies that − 1

2 ((εk − 1)2 + εk − 1) = εk =
−∣εk ∣. The conclusion thus follows immediately from Theorem 2.6. ∎

For powerfull-type fake μ’s, there is no general way to simplify the factorization of
D f (s) obtained in Theorem 2.6. For one thing, the initial index places no restriction
at all on the critical index, as the following example shows.

Example 2.9 Given integers N > k ≥ 2, suppose that

ε j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if j < N and k ∣ j,
0, if j < N and k ∤ j,
−1, if j = N .

Then (regardless of the values of ε j for j > N) Algorithm 1 terminates with M = 1 and
c1 = k and � = N , so that the initial index is k and the critical index is N.

In particular, for powerfull-type fake μ’s, it is possible for any index exceeding the
initial index to be the critical index. (Proposition 2.8 gives the same conclusion for
powerfree-type fake μ’s. For Möbius-type fake μ’s, the initial and critical indices always
coincide by Proposition 2.3.)

We can, however, give several examples of powerfull-type fake μ’s for which the
critical index can be deduced.

Example 2.10 Given integers k > h ≥ 1, suppose that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ε j = 0, if 1 ≤ j ≤ k − 1,
ε j = 1, if j = k,
ε j ∈ {0, 1}, if k + 1 ≤ j ≤ k + h − 1,
ε j = −1, if j = k + h,
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giving a powerfull-type fake μ with initial index k. Algorithm 1 reveals (regardless of
the values of ε j for j > k + h) that the principal indices correspond to those k ≤ j ≤
k + h − 1 with ε j = 1, and that the critical index equals k + h; more precisely

D f (s) = ∏
k≤ j≤k+h−1

ε j=1

ζ( js) ⋅ 1
ζ((k + h)s)Uk+h(s)

where the Dirichlet series coefficients of Uk+h(s) are supported on (k + h + 1)-free
numbers.

Note that in this case, Theorems 1.7 and 1.18 imply that E f (x) = Ω±(x 1/2(k+h)) and
(under RH) E f (x) ≪ε x 1/2k+ε . When h is small, these oscillation and upper bound
results for E f (x) are close to each other. In particular, when h ≤

√
2k, the oscillation

result we obtain is better than the oscillation results mentioned in Example 1.4 for the
indicator function of the k-full numbers themselves.

Example 2.11 Given integers k′ > k ≥ 2 such that k ∤ k′, suppose that

ε j =
⎧⎪⎪⎨⎪⎪⎩

1, if j = ak + bk′ for some nonnegative integers a and b,
0, otherwise.

Then, the initial index is k, and Algorithm 1 yields the principal indices {k, k′}. Note
that the only way to have n j > ε j in the second if statement is for n j ≥ 2, since by
construction, the number of representations of j from {k, k′} is n j = 0 when ε j = 0.
Therefore, the critical index of (ε j) equals � = lcm[k, k′], which is the smallest integer
that can be written as a nonnegative integer combination of {k, k′} in two different
ways. In fact, since every integer of the form ak + bk′ can be written uniquely in this
form with 0 ≤ a < �

k , in this case, we have the exact zeta-factorization

D f (s) =∏
p
(1 + ∑

j≥1
j=ak+bk′ for some a ,b≥0

1
p js )

=∏
p

⎛
⎝

�/k−1

∑
a=0

∞
∑
b=0

1
p(ak+bk′)s

⎞
⎠
=∏

p

⎛
⎝

�/k−1

∑
a=0

1
paks

⎞
⎠∏p

⎛
⎝
∞
∑
b=0

1
pbk′s

⎞
⎠
= ζ(ks)

ζ(�s) ζ(k′s).

One special case of this family is when k = 2 and k′ = 3, so that ε1 = 0 while ε j = 1
for all j ≥ 2, which recovers the factorization ζ(2s)ζ(3s)/ζ(6s) for the Dirichlet series
corresponding to the indicator function of squarefull numbers.

Our last example is an in-depth examination of the Dirichlet series corresponding
to the indicator function of k-full numbers.

Example 2.12 Let k ≥ 3, and let f be the indicator function of k-full numbers,
corresponding to the sequence with ε j = 0 when j ≤ k − 1 and ε j = 1 when j ≥ k. Then,
D f (s) has a zeta-factorization of the form

D f (s) = ∑
nk-full

n−s =
2k−1
∏
j=k

ζ( js) ⋅
4k+4
∏

j=2k+2
ζ( js)a j ⋅U4k+4(s),(2.12)
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where the Dirichlet series coefficients of U4k+4 are supported on (4k + 5)-full num-
bers (a nearly equivalent statement appears as [2, Proposition 1(b)], for instance). We
apply Theorem 2.6 to compute the exponents a j explicitly.

Following the notation used in Algorithm 1, observe that the principal indices are
(c1 , . . . , ck) = (k, k + 1, . . . , 2k − 1). Note that 2k = k + k and 2k + 1 = k + (k + 1) have
unique representations from (c1 , . . . , ck), while 2k + 2 = k + (k + 2) = 2(k + 1) has
two representations from (c1 , . . . , ck). Therefore, the critical index equals � = 2k + 2,
and a2k = ε2k − n2k = 1 − 1 = 0 and similarly a2k+1 = 0, while a2k+2 = ε2k+2 − n2k+2 =
1 − 2 = −1. Note that the fraction in the second case of equation (2.8) equals 0, and so
the formula for a2� = a4k+4 is the same sum as the formula for a2k+3 , . . . , a4k+3.

For example, when k = 3, the zeta-factorization from Theorem 2.6 turns out to be

∑
n3-full

n−s = ζ(3s)ζ(4s)ζ(5s)
ζ(8s)

ζ(13s)ζ(14s)
ζ(9s)ζ(10s) U16(s),

while when k = 4, the zeta-factorization from Theorem 2.6 turns out to be

∑
n4-full

n−s = ζ(4s)ζ(5s)ζ(6s)ζ(7s)
ζ(10s)

ζ(16s)ζ(17s)2ζ(18s)2ζ(19s)2ζ(20s)
ζ(11s)ζ(12s)2ζ(13s)ζ(14s) U20(s).

In both examples, the first fraction reflects the information in the previous paragraph,
while the second fraction results from applying the formula in equation (2.8).

Going forward, we assume k ≥ 5. Recall that ε j = 1 when j ≥ k or j = 0, and ε j = 0
otherwise; recall also that c i = k + i − 1 for 1 ≤ i ≤ k. To compute the exponents a j in
equation (2.12) for 2k + 3 ≤ j ≤ 4k + 4, we apply equation (2.8), which we can write in
the form

a j =
k
∑
t=0
(−1)t(St( j) + Tt( j)),(2.13)

where

St( j) = #{I ⊂ {1, . . . , k}, #I = t∶ j −∑
i∈I
(k + i − 1) ≥ k}

= #{I ⊂ {1, . . . , k}, #I = t∶∑
i∈I

i ≤ j − t(k − 1) − k},

Tt( j) = #{I ⊂ {1, . . . , k}, #I = t∶ j −∑
i∈I
(k + i − 1) = 0}

= #{I ⊂ {1, . . . , k}, #I = t∶∑
i∈I

i = j − t(k − 1)}.

Note that we can restrict the sum in equation (2.13) to 0 ≤ t ≤ 3, since j − t(k −
1) ≤ (4k + 4) − 4(k − 1) = 8 when t ≥ 4 but the sum of any four distinct elements of
{1, . . . , k} is at least 10.

Therefore, computing a2k+3 , . . . , a4k+4 reduces to finding, for 0 ≤ t ≤ 3, the number
of t-element subsets of {1, . . . , k} whose sum equals or is bounded by particular
numbers. This is an elementary but tedious problem, and we record only the results
here, valid for all k ≥ 5 and all 2k + 3 ≤ j ≤ 4k + 4:
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• S0( j) = 1 and T0( j) = 0;
• S1( j) =min{k, j − 2k + 1} and T1( j) = 0;

• S2( j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if j ≤ 3k,
⌊ 1

4( j − 3k + 1)2⌋, if 3k + 1 ≤ j ≤ 4k − 1,
⌊ 1

4( j − 3k + 1)2⌋ − ( j−4k+2
2 ), if j ≥ 4k;

• T2( j) =
⎧⎪⎪⎨⎪⎪⎩

⌊ 1
2(k − ∣ j − 3k + 1∣)⌋, if j ≤ 4k − 2,

0, if j ≥ 4k − 1;
• S3( j) =max{0, j − 4k − 2};

• T3( j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if j ≤ 3k,
[ 1

12( j − 3k)2], if 3k + 1 ≤ j ≤ 4k,
[ 1

12( j − 3k)2] − ⌊ 1
4( j − 4k + 1)2⌋, if j ≥ 4k + 1.

For T3( j), we have used [x] to denote rounding x to the nearest integer, in contrast to
the greatest-integer function ⌊x⌋ that also appears.

These formulas, together with equation (2.13), allow for the full computation of the
zeta-factorization (2.12) for the indicator function of the k-full numbers, for all k ≥ 5.
For example, when 2k + 3 ≤ j ≤ 3k − 1 the formula (2.13) simplifies to a j = k − ⌊ j

2 ⌋.
Remark 2.13 The previous example has an interesting consequence for oscillations of
the error term E f (x) of the counting function F f (x) for k-full numbers; let us restrict
to k ≥ 16 for ease of exposition. In Example 2.12, we saw that the critical index of f
equals � = 2k + 2, and thus Theorem 1.7 implies that E f (x) = Ω±(x 1/(4k+4)). But in
addition, Remark 1.13 described a tempting heuristic suggesting that these oscillations
might be essentially best possible. We are now in a position to show that this heuristic
does not hold here.

We computed in Example 2.12 that a2k = a2k+1 = 0 and a2k+2 = −1, and that a j =
k − ⌊ j

2 ⌋ < 0 for 2k + 3 ≤ j ≤ 3k − 1. In particular, in view of equation (2.12), the Dirich-
let series D f (s) is analytic at 1

j for all 2k ≤ j ≤ 3k − 1. Therefore, the expression (1.4)
for the main term G f (x) of the counting function F f (x) can be written as

G f (x) =
2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
) +

4k+4
∑
j=3k

Res(D f (s)
x s

s
, 1

j
)

=
2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
) + O(x 1/(3k−1)).

On the other hand, we saw in Example 1.4 that

F f (x) =
2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
) +Ω(x 1/(2k+

√
8k+3)).

Since 2k +
√

8k + 3 < 3k − 1 when k ≥ 16, we conclude that E f (x) = F f (x) −G f (x) =
Ω(x 1/(2k+

√
8k+3)), which is rather larger than the x 1/(4k+4) suggested by the heuristic.

In summary, for a general f ∈ F, the heuristic prediction E f (x) ≪ε x 1/2�+ε can
be far away from the truth, and it is not immediately clear what the true order of
magnitude of E f (x) should be in general.
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3 Oscillation results for E f (x)

In this section, we prove a general oscillation result for the error term E f (x) of the
summatory function F f (x) of a fake μ, based on the analytic properties of its Dirichlet
series D f (s). More precisely, we state Theorem 3.5 in Section 3.1 and prove it in
Section 3.3. From that theorem, we then deduce Theorems 1.10 and 1.14, which apply
to Möbius-type and powerfree-type fake μ’s, respectively, as well as giving a general
result (Theorem 3.10) for powerfull-type fake μ’s. Together these three results imply
Theorem 1.7.

3.1 A motivating example and a general strategy

As an illustration, we begin with the family of fake μ’s discussed in [19, Theorem 3],
both to fill a gap in the original proof by Martin, Mossinghoff, and Trudgian, and to
motivate our approach for the remainder of this section.

Example 3.1 Let f ∈ F with ε1 = −1 and ε2 = 1. This family of Möbius-type fake μ’s
was studied in [19]: it was shown there that D f (s) = U2(s)ζ(2s)/ζ(s), where

U2(s) =∏
p

C̃p(s) with C̃p(s) = 1 +∑
j≥3

ε j−1 + ε j

p js .

(Our Proposition 2.3 contains this expression as a special case, other than the exact
expression for C̃p(s) which, in this case, is easy to work out from the given zeta-
factorization.) Their result [19, Theorem 3], translated into our notation, is that
E f (x) = Ω±(

√
x). We point out two small mistakes in their proof, partially to show

how those gaps can be filled, and partially because describing the proof will help us
motivate the approach we take in this section for general fake μ’s.

From an integral representation for D f (s) − cζ(2s) for real constants c, they use a
classical method of Landau to argue that if E f (x) is eventually of one sign then D f (s)
must be analytic for σ > 1

2 . Normally, this would imply RH, as is stated in the first line
of [19, p. 3242]; but in this case, the fact that U2(s)ζ(2s)/ζ(s) is analytic for σ > 1

2
implies the slightly weaker statement that ζ(s) cannot have any zeros off the critical
line except possibly at zeros of U2(s). While the authors of [19] did not directly use the
assertion of RH in their proof, this detail helps us see why it is important to compare
the zeros of the various terms in a partial zeta-factorization (as we will do explicitly in
Proposition 3.4 below).

The proof of [19, Theorem 3] is then carried out using the assertion that U2(ρ1) ≠ 0,
where ρ1 = 1

2 + iγ1 ≈ 1
2 + i ⋅ 14.135 is the lowest zero of ζ(s) in the upper half-plane. The

authors claim that U2(ρ1) ≠ 0 follows from the fact that U2(s) is absolutely convergent
for σ > 1

3 , so that 1/U2(s) is analytic there. However, this argument actually shows
that U2(ρ1) ≠ 0 unless one of the individual Euler factors C̃p(ρ1) vanishes. (Indeed,
the vanishing of an individual Euler factor is a significant contributor to [19, Theorem
1(iii)].) It is impossible for any of these factors with p ≥ 3 to vanish, since by the triangle
inequality

∣C̃p(ρ1)∣ ≥ 1 −∑
j≥3

2
p j/2 = 1 − 2

p3/2(1 − p−1/2) ≥ 1 − 2
3
√

3 − 3
> 0
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(this argument appears at the top of [19, p. 3238]). We now show that C̃2(ρ1) ≠ 0 to fill
this small gap in their proof.

If we look at that Euler factor

C̃2(ρ1) = 1 +∑
j≥3

ε j−1 + ε j

2 jρ1
= 1 + 1 + ε3

23ρ1
+

6
∑
j=4

ε j−1 + ε j

2 jρ1
+
∞
∑
j=7

ε j−1 + ε j

2 jρ1
,

then another triangle-inequality argument gives

∣C̃2(ρ1)∣ ≥ ∣1 +
1 + ε3

23ρ1
+

6
∑
j=4

ε j−1 + ε j

2 jρ1
∣ −

∞
∑
j=7

2
2 j/2

= ∣1 + 1 + ε3

23ρ1
+

6
∑
j=4

ε j−1 + ε j

2 jρ1
∣ − 1

4
√

2 − 4
.

We can split into 81 cases based on the values ε3 , . . . , ε6 ∈ {−1, 0, 1}; in each case, we
directly compute the expression on the right-hand side, and in all 81 cases, the quantity
happens to exceed 0.055. These inequalities prove that the Euler factor C̃2(s) cannot
vanish at s = ρ1, which finishes the justification that U2(ρ1) ≠ 0.

In Example 3.1, the critical index was � = 1, meaning that a power of ζ(s) was
present in the denominator of our zeta-factorization; the fact that we were considering
a zero of ζ(s) on the critical line is the reason why the geometric series we studied had
common ratios whose size was p−1/2. For general critical indices �, the corresponding
series evaluated at a zero of ζ(�s)would have common ratios of size p−1/2� and would
thus converge more slowly. In principle, we could try to extend the above triangle-
inequality arguments, although at the very least we would have to consider more
primes in addition to p = 2 and more terms in each series; but such an extension would
work only for one fixed � at a time in any case.

Instead, we exploit the fact that the specific zero ρ1 is not important to us –
we can use any convenient zero of ζ(s), indeed without even needing to know its
exact identity. We therefore adopt a suitably specified version of this strategy in
Proposition 3.4 below. To facilitate precise statements of our results, we introduce
some notation that will be in force throughout Section 3. We precede that notation
with a lemma that will be familiar to analytic number theorists.

Lemma 3.2 Fix σ0 > 0, and let h(s) be a meromorphic function with a pole of order ξ at
σ0. Then for any real number x > 1, the residue of h(s)x s/s at s = σ0 equals P(log x)xσ0

for some polynomial P(t) (depending on h(s)) whose degree is ξ − 1.

Note that the second sum in Theorem 1.14 contains expressions of exactly this type
coming from poles of order ξ = 2.

Proof Since h(s)/s is also meromorphic with a pole of order ξ at σ0, we can write

h(s)
s
=
∞
∑

k=−ξ
ck(s − σ0)k and x s = xσ0 e(s−σ0) log x = xσ0

∞
∑
k=0

(s − σ0)k

k!
(log x)k

for some constants ck with c−ξ ≠ 0. When we multiply these series together, the
coefficient of (s − σ0)−1 depends on the first ξ terms in each series; more precisely,
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the residue we seek equals

xσ0
ξ−1
∑
j=0

(log x) j

j!
c−1− j = P(log x)xσ0 where P(t) =

ξ−1
∑
j=0

c−1− j

j!
t j .

∎

Notation 3.3 Let f ∈ F be defined via the sequence (ε j). Let � be the critical index of
f. By Proposition 2.3 and Theorem 2.6, there are integers a1 , a2 , . . . , a2� and a function
U2�(s) such that the following conditions hold:

• We have a j ≥ 0 for 1 ≤ j ≤ � − 1, while a� < 0;
• For σ > 1, we can write

D f (s) = U2�(s) ⋅
2�
∏
j=1

ζ( js)a j where U2�(s) =∏
p
(1 +

∞
∑

j=2�+1

η j

p js );(3.1)

• There are positive constants A, B, depending only on �, such that ∣η j ∣ ≤ (Aj)B for all j;
in particular, U2�(s) is analytic for σ > 1

2�+1 by Lemma 2.2, and is nonzero provided
each of its factors is nonzero.

• Given equation (3.1), in the region σ > 1
2�+1 , the only possible real poles of D f (s) are

at s = 1, 1
2 , . . . , 1

2� . Let ξ j be the order of the pole of D f (s) at s = 1
j , so that ξ j = 0 if

a j ≤ 0 and 0 ≤ ξ j ≤ a j if a j ≥ 1.
• By Lemma 3.2, equation (1.4) becomes

G f (x) =
2�
∑
j=1

Res(D f (s)
x s

s
, 1

j
) = ∑

1≤ j≤2�
ξ j≥1

Pj(log x)x 1/ j ,

where each Pj(t) is a polynomial of degree ξ j − 1.
• As always, we have F f (x) = ∑n≤x f (n) and E f (x) = F f (x) −G f (x).

We are now in a position to state an important proposition, which asserts that a zero
of ζ(s) exists at which other zeta-factorization factors do not vanish, as motivated by
the above discussion. Establishing this proposition is the goal of Section 3.2.

Proposition 3.4 In the situation described by Notation 3.3, there exists a zero ρ of ζ(s)
with R(ρ) ≥ 1

2 such that

U2�(
ρ
�
) ⋅ ∏

1≤ j≤2�
j≠�

ζ( jρ
�
) ≠ 0.(3.2)

That proposition will allow us to prove the following general oscillation theorem
in Section 3.3.

Theorem 3.5 In the situation described by Notation 3.3,

E f (x) = Ω±(x 1/2�(log x)∣a�∣−1).
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3.2 Finding a zero where other factors do not vanish

This section is devoted to the proof of Proposition 3.4. We begin by recording some
consequences of classical zero-counting functions for ζ(s) and the Landau–Gonek
formula.

Lemma 3.6 Given � ∈ N and T ≥ 3, define

Z�(T) = {ρ = β + iγ∶ ζ(ρ) = 0, 0 < γ ≤ T , �

2� + 1
< β < � + 1

2� + 1
,

∏
1≤ j≤2�

j≠�

ζ( jρ
�
)ζ( j(1 − ρ)

�
) ≠ 0}.

Then, #Z�(T) = T
2π log T + O�(T).

Proof In the usual notation

N(T) = #{ρ = β + iγ∶ ζ(ρ) = 0, 0 < γ ≤ T}
N(σ , T) = #{ρ = β + iγ∶ ζ(ρ) = 0, 0 < γ ≤ T , β ≥ σ},

we know that N(T) = T
2π log T + O(T) (see, for example, [25, Corollary 14.2]), while

well-known zero-density estimates (first proved by Bohr and Landau [6]) imply that
N(σ , T) ≪σ T for σ > 1

2 . We use this latter estimate to bound how many of the N(T)
zeros up to height T are not included in Z�(T). For the rest of this proof, all implicit
constants may depend on �.

The upper bound β < �+1
2�+1 excludes N( �+1

2�+1 , T) ≪ T zeros; also, by the symme-
tries of ζ(s), the lower bound β > �

2�+1 excludes N(1 − �
2�+1 , T) ≪ T zeros. Suppose

that ρ is a zero that has not been excluded so far. If � + 1 ≤ j ≤ 2�, then R( j
�

ρ) ≥
�+1
�

�
2�+1 =

�+1
2�+1 >

1
2 , and so the number of these j

�
ρ that can be zeros of ζ(s) is at

most N( �+1
2�+1 , T) ≪ T . Similarly, if 1 ≤ j ≤ � − 1, then R( j

�
ρ) ≤ �−1

�
�+1

2�+1 <
1
2 , and so

the number of these j
�

ρ that can be zeros of ζ(s) is at most N(1 − �−1
�

�+1
2�+1 , T) ≪

T . Similar observations hold for the ζ( j(1−ρ)
�
) factors. We conclude that #Z�(T) =

N(T) + O�(T) = T
2π log T + O�(T) as desired. ∎

Lemma 3.7 If x > 0 with x ≠ 1, then

∑
0<γ≤T

xρ ≪x T .

Proof Landau’s formula [17] tells us that if x > 1,

∑
0<γ≤T

xρ = − T
2π

Λ(x) + O(log T),

where Λ(x) is the von Mangoldt function when x is an integer and Λ(x) = 0
otherwise. When 0 < x < 1, one can derive from Landau’s formula (see, for example,
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[10, “Corollary”]) that

∑
0<γ≤T

xρ = −Tx
2π

Λ( 1
x
) + O(log T).

In both cases, the right-hand side is≪x T as required. ∎

It will be helpful to give names to the Euler factors appearing in Notation 3.3.

Notation 3.8 For each prime p, define

Cp(s) = 1 +
∞
∑
j=1

ε j

p js and C̃p(s) = 1 +
∞
∑

j=2�+1

η j

p js ,

so that D f (s) = ∏p Cp(s) for σ > 1 and U2�(s) = ∏p C̃p(s) for σ > 1
2�+1 . Note that the

bounds ∣ε j ∣ ≤ 1 and ∣η j ∣ ≤ (Aj)B imply that the series defining Cp(s) and C̃p(s) both
converge for σ > 0.

Lemma 3.9 In the situation described by Notation 3.3, there exists a positive integer P,
depending only on �, such that for each zero ρ of ζ with R(ρ) > �

2�+1 ,

U2�(
ρ
�
) ≠ 0 if and only if ∏

p≤P
Cp(

ρ
�
) ≠ 0.

Proof We certainly have

∣1 − C̃p(
ρ
�
)∣ ≤

∞
∑

j=2�+1

(Aj)B

p jRρ/� <
∞
∑

j=2�+1

(Aj)B

p j/(2�+1) .

The right-hand side is a positive series that is decreasing in p and tends to 0 termwise;
by the monotone convergence theorem, the series itself tends to 0 as p →∞. In
particular, there exists a positive integer P such that the series is less than 1 when p ≥ P,
and for these primes, we deduce that C̃p(ρ/�) ≠ 0. Moreover, since A and B depend
only on �, the same is true of P.

As we observed in Notation 3.3, U2�(ρ/�) = 0 only if C̃p(ρ/�) = 0 for some prime
p, and such a prime must necessarily be less than P. On the other hand, observe
that equation (3.1) implies that C̃p(s) = Cp(s)∏2�

j=1(1 − p− js)−a j for Rs > 1, and so
this identity remains true in the larger-half plane Rs > 0 where all terms converge.
In particular,

C̃p(
ρ
�
) = Cp(

ρ
�
)

2�
∏
j=1
(1 − p− jρ/�)−a j ,

and thus C̃p(ρ/�) = 0 if and only if Cp(ρ/�) = 0, which completes the proof of the
lemma. ∎

We now have all the ingredients to establish Proposition 3.4.
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Proof of Proposition 3.4 For notational convenience, set ε0 = 1. Note that uniformly
for all primes p, all positive integers n, and all zeros ρ of ζ(s) with R(ρ) ≥ �

2�+1 ,

Cp(
ρ
�
) =

n
∑
j=0

ε j

p jρ/� + O(
∞
∑

j=n+1

1
p jRρ/� )

=
n
∑
j=0

ε j

p jρ/� + O(
∞
∑

j=n+1

1
p j/(2�+1))

=
n
∑
j=0

ε j

p jρ/� + O( 1
p(n+1)/(2�+1) ).

Let P be the positive integer (depending only on �) from Lemma 3.9, and set

Qn = {∏
p≤P

pα(p)∶0 ≤ α(p) ≤ n}.

Note that ∣Qn ∣ ≤ (n + 1)P . By expanding the product, we see that uniformly for all
n ∈ N and for all zeros ρ of ζ(s) with �

2�+1 <R(ρ) <
�+1

2�+1 ,

∏
p≤P

Cp(
ρ
�
)Cp(

1 − ρ
�
)

= ∏
p≤P
(

n
∑
j=0

ε j

p jρ/� + O( 1
p(n+1)/(2�+1) ))(

n
∑
j=0

ε j

p j(1−ρ)/� + O( 1
p(n+1)/(2�+1) ))

= ( ∑
q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� ) + O((n + 1)2P − 1

2(n+1)/(2�+1) ).

In particular, we can choose n sufficiently large in terms of � so that

∣ ∏
p≤P

Cp(
ρ
�
)Cp(

1 − ρ
�
)∣ ≥ ∣( ∑

q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� )∣ −

1
2

.(3.3)

For each nontrivial zero ρ of ζ , we have

( ∑
q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� ) = ∑

q1 ,q2∈Qn

f (q1) f (q2)
q1/�

2

(q2

q1
)

ρ/�

= ∑
q∈Qn

f (q)2

q1/� + ∑
q1 ,q2∈Qn

q1≠q2

f (q1) f (q2)
q1/�

2

(q2

q1
)

ρ/�

.

By Lemma 3.7, for each q1 , q2 ∈ Qn with q1 ≠ q2,

∑
0<γ≤T

(q2

q1
)

ρ/�

≪ T ;
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while the implicit constant depends on q1 and q2, both numbers come from the finite
set Qn which depends only on �. We conclude that

∑
0<γ≤T

( ∑
q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� ) = ( ∑

q∈Qn

f (q)2

q1/� )N(T) + O�(T)

≥ 1 ⋅ N(T) + O�(T) =
T
2π

log T + O�(T),

since f (1) = 1. Also, note that for each nontrivial zero ρ of ζ(s), the trivial bound
∣ f (q)∣ ≤ 1 implies that

∣( ∑
q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� )∣ ≤ ∣Qn ∣2 ≤ (n + 1)2P .

Since the set Z�(T) defined in Lemma 3.6 excludes ≪� T zeros up to height T, it
follows that

∑
ρ∈Z�(T)

( ∑
q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� )

= ∑
0<γ≤T

( ∑
q∈Qn

f (q)
qρ/� )( ∑

q∈Qn

f (q)
q(1−ρ)/� ) + O�(T(n + 1)2P)

≥ T
2π

log T + O�(T).

Finally, equation (3.3) implies that

∑
ρ∈Z�(T)

(∏
p≤P

Cp(
ρ
�
)Cp(

1 − ρ
�
)) ≥ T

2π
log T + O�(T) −

1
2

#Z�(T)

≥ T
4π

log T + O�(T).

In particular, when T is sufficiently large in terms of �, there exists ρ ∈ Z�(T) such that

∏
p≤P

Cp(
ρ
�
)Cp(

1 − ρ
�
) ≠ 0,

which implies that

U2�(
ρ
�
)U2�(

1 − ρ
�
) ≠ 0

by Lemma 3.9.
Since ρ ∈ Z�(T) implies 1 − ρ ∈ Z�(T), we may assume thatRρ ≥ 1

2 . Then ζ(ρ) = 0
and

∏
1≤ j≤2�

j≠�

ζ( jρ
�
) ≠ 0.

by the definition of Z�(T), and we have just shown that U2�( ρ
�
) ≠ 0, which confirms

equation (3.2) and hence establishes the proposition. ∎
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3.3 The general oscillation result

We are now able to establish our most general oscillation result: in the situation
described by Notation 3.3 (which is used throughout the proof), we need to show
that E f (x) = Ω±(x 1/2�(log x)∣a�∣−1).

Proof of Theorem 3.5 We show that E f (x) = Ω−(x 1/2�(log x)∣a�∣−1), as the proof of
the corresponding Ω+ result is almost identical. For each 1 ≤ j ≤ 2� with ξ j ≥ 1, let the
coefficients b j,k for 0 ≤ k ≤ ξ j − 1 be defined by Pj(y) = ∑ξ j−1

k=0 b j,k yk . Define

D̃(s) = D f (s) − ∑
1≤ j≤2�

ξ j≥1

ξ j−1

∑
k=0

b j,k s ⋅ k!
(s − 1

j )k+1 .

Note that for each k ≥ 0,

k!
(s − 1

j )k+1 = ∫
∞

1

x 1/ j(log x)k

x s+1 dx .

It follows that

D̃(s) = s∫
∞

1

E f (x)
x s+1 ,

and thus D̃(s) has no real pole with s ≥ 1
2� .

Let r > 0 be a constant to be chosen later, and define

H(s) = D̃(s) + rs(∣a�∣ − 1)!
(s − 1

2�)−a�
.

Then for σ > 1,

H(s) = s∫
∞

1

E f (x) + rx 1/2�(log x)∣a�∣−1

x s+1 dx .(3.4)

Suppose that E f (x) + rx 1/2�(log x)∣a�∣−1 is positive when x is sufficiently large. Note
that D̃(s) has no real singularity with s ≥ 1

2� , and the smallest real singularity of (s −
1

2�)
a� is at s = 1

2� . Thus, Landau’s theorem (see, for example, [25, Lemma 15.1]) implies
that H(s) is analytic for σ > 1

2� and equation (3.4) holds for σ > 1
2� . On the other hand,

by Proposition 3.4, there is a nontrivial zero ρ of ζ such that R(ρ) ≥ 1
2 and

U2�(
ρ
�
) ⋅ ∏

1≤ j≤2�
j≠�

ζ( jρ
�
) ≠ 0.(3.5)

In particular, since ζ(�s) has a zero at ρ/�, D f (s) does indeed have a pole at ρ/� by
equation (3.1), and thus so does H(s). Since H(s) is analytic for σ > 1

2� , we deduce
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that R(ρ) = 1
2 . Set ρ = 1

2 + iγ and γ′ = γ/�. Equation (3.4) implies that for σ > 1
2� ,

∣H(σ + iγ′)∣ ≤ ∣σ + iγ′∣ ∫
∞

1

∣E f (x) + rx 1/2�(log x)∣a�∣−1∣
xσ+1 dx

= ∣σ + iγ′∣
σ

H(σ) < 2�∣ρ∣H(σ).

Let m be the order of ρ as a zero of ζ(s), and set m′ = ∣a�∣m. The above inequality
implies that

lim
σ→ 1

2�
+
(σ − 1

2�
)

m′

∣H(σ + iγ′)∣ ≤ 2�∣ρ∣ lim
σ→ 1

2�
+
(σ − 1

2�
)

m′

H(σ).(3.6)

Since D̃(s) is analytic at σ = 1
2� , the right-hand side of inequality (3.6) is equal to

2�∣ρ∣ lim
σ→ 1

2�
+
(σ − 1

2�
)

m′

∣ rσ(∣a�∣ − 1)!
(σ − 1

2�)−a�
∣ =
⎧⎪⎪⎨⎪⎪⎩

r∣ρ∣(∣a�∣ − 1)!, if m = 1,
0, if m > 1.

Since ρ is a zero of ζ(s) of order m, the left-hand side of inequality (3.6) is equal to

lim
σ→ 1

2�
+
(σ − 1

2�
)

m′

∣D f (σ + iγ′) − ∑
1≤ j≤2�

ξ j≥1

ξ j−1

∑
k=0

b j,k s ⋅ k!
(σ + iγ′ − 1

j )k+1 +
r(σ + iγ′)(∣a�∣ − 1)!
(σ + iγ′ − 1

2�)−a�
∣

= lim
σ→ 1

2�
+
(σ − 1

2�
)

m′

∣D f (σ + iγ′)∣ = ( m!
�m ∣ζ(m)(ρ)∣)

−a�

∣U2�(
ρ
�
)∣ ∏

1≤ j≤2�
j≠�

∣ζ( jρ
�
)∣

a j

.

Now inequality (3.5) implies that m = 1 and thus

∣U2�( ρ
�
)∣

(�∣ζ′(ρ)∣)−a�
⋅ ∏

1≤ j≤2�
j≠�

∣ζ( jρ
�
)∣

a j

≤ r∣ρ∣(∣a�∣ − 1)!.(3.7)

Note that inequality (3.5) implies that the left-right side of inequality (3.7) is nonzero,
and thus inequality (3.7) can only hold when r is sufficiently large. In other words, for
smaller positive values of r, the difference E f (x) + rx 1/2�(log x)∣a�∣−1 cannot be always
positive for sufficiently large x, which shows that E f (x) = Ω−(x 1/2�(log x)∣a�∣−1) as
required. ∎

3.4 Applications

It is now a simple matter to use Theorem 3.5 to derive Theorems 1.10 and 1.14, which
apply to Möbius-type and powerfree-type fake μ’s, respectively. We also use Theo-
rem 3.5 to give a general result (Theorem 3.10 below) that is our strongest oscillation
result for powerfull-type fake μ’s. Together these three results imply Theorem 1.7.

Proof of Theorem 1.10 For each 1 ≤ j ≤ 2k, Proposition 2.3 tells us that D f (s) has at
most a simple pole at s = 1

j ; therefore, the residue of D f (s) ⋅ x s

s at s = 1
j is a f ( j)x 1/ j ,
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where a f ( j) is the constant from Definition 1.9. The theorem then follows from
Theorem 3.5 by applying the partial zeta-factorization of D f (s) in Proposition 2.3. ∎

Combining Theorem 2.6 and Theorem 3.5 results immediately in the following
theorem.

Theorem 3.10 Let f ∈ F be of powerfree-type or powerfull-type. In the notation in
Theorem 2.6,

G f (x) =
M
∑
j=1

Res(D f (s) ⋅
x s

s
, 1

c j
) +

2�
∑

j=�+1
Res(D f (s) ⋅

x s

s
, 1

j
)

E f (x) = Ω±(x 1/2�(log x)n�−ε�−1).

Proof of Theorem 1.14 Let 1 ≤ j ≤ 2k. By Proposition 2.8, D f (s) has a pole at s = 1
j

with order at most 2. By Definition 1.9, the principal part of D f (s) is

b f ( j)
j2(s − 1/ j)2 +

a f ( j)
j(s − 1/ j) .

Thus, the residue of D f (s) ⋅ x s

s at s = 1
j is given by

lim
s→ 1

j

d
ds

D f (s) ⋅
x s

s
= lim

s→ 1
j

d
ds
(

b f ( j)
j2(s − 1/ j)2 +

a f ( j)
j(s − 1/ j)) ⋅

x s

s

= a f ( j)x 1/ j + b f ( j)x 1/ j( log x
j
− 1).

The theorem now follows from Proposition 2.8 and Theorem 3.10. ∎

4 Upper bounds on E f (x)

In this section, we prove our upper bounds on E f (x), both unconditional (Theo-
rem 1.16, which is proved in Section 4.2) and assuming RH (Theorem 1.18, which is
proved for powerfree-type f in Section 4.2 and for Möbius- and powerfull-type f in
Section 4.3). Our main motivation for establishing these upper bounds is to provide
some sort of calibration against which to gauge the strength of our oscillation results.
As it happens, this exercise also allows us to gather techniques from the literature
and generalize their scope to all fake μ’s; in doing so, we have often recovered, and
sometimes even improved, the best known upper bounds for error terms in special
cases. We will combine two different methods to prove upper bounds on E f (x),
namely, the convolution method (or Dirichlet hyperbola method) and the method
of contour integration.

4.1 Upper bounds on E f (x) for a special family of fake μ’s

In this section, we prove Theorems 1.16 and 1.18 for a special family of fake μ’s of
powerfree-type.

Definition 4.1 For each k ≥ 1, let hk(n) be the multiplicative function appearing in
the Dirichlet series ζ(ks)−2 = ∑∞n=1 hk(n)n−s . We can check that hk(pk) = −2 (so that
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hk is not quite a fake μ) and hk(p2k) = 1 and that hk(p j) = 0 for all other j ≥ 1. Define
Hk(x) = ∑n≤x hk(n).

Moreover, for each k ≥ 1, let gk be the fake μ defined via the sequence (ε j)∞j=1 with
ε j = 1 for 1 ≤ j ≤ k − 1 and ε j = −1 for k ≤ j ≤ 2k − 1 and ε j = 0 for j ≥ 2k. We can check
that gk is the Dirichlet convolution of hk and the constant function 1, which is the
same as saying that the sequence (1, ε1 , ε2 , . . .) is the convolution of (1, 1, 1, . . .) and
(1, hk(p1), hk(p2), . . .); in particular, Dgk(s) = ∑∞n=1 gk(n)n−s = ζ(s)ζ(ks)−2. Note
that g1 = μ.

The proof of our more general results for all fake μ’s of powerfree-type will build
on the upper bounds on Egk(x) in Propositions 4.5 and 4.7 below. As preparation,
we need the following lemmas. In this section, τ(n) denotes the number of positive
divisors of n.

Lemma 4.2 We have ∣h1(n)∣ ≤ τ(n) for all n ≥ 1.

Proof Since both h1 and τ are multiplicative, it suffices to observe that ∣h1(p j)∣ ≤
j + 1 = τ(p j) for all prime powers p j . ∎
Lemma 4.3 For all k ≥ 1,∑n≤x ∣hk(n)∣ ≪ x 1/k log x.

Proof Note that hk(n) = h1(m) if n = mk is a perfect kth power and otherwise
hk(n) = 0. It follows that ∑n≤x ∣hk(n)∣ = ∑n≤x 1/k ∣h1(n)∣; thus it suffices to prove the
lemma for k = 1. But since ∣h1(n)∣ ≤ τ(n) for all n ≥ 1, the estimate ∑n≤x ∣h1(n)∣ ≪
x log x follows immediately from the classical evaluation of ∑n≤x τ(n) (see, for
example, [25, Theorem 2.3]). ∎
Lemma 4.4 There exists an absolute constant c > 0 such that Hk(x) ≪ x 1/k exp ( −
c (log x)3/5

(log log x)1/5 ) for all k ≥ 1.

Proof We have Hk(x) = H1(x 1/k) by the same reasoning as in the proof of
Lemma 4.3, and so it suffices to prove the lemma for k = 1. We leverage a known result
for the Mertens function M(x) = ∑n≤x μ(n), which uses contour integration to show
that

M(x) ≪ x exp( − c (log x)3/5

(log log x)1/5 )(4.1)

for some absolute positive constant c (see, for example, [16, Theorem 12.7]). It is
possible to slightly modify that proof to deal with H1(x); instead, however, we give
an alternative derivation that uses the result (4.1) directly rather than modifying its
proof.

Since h1 is the Dirichlet convolution of μ with itself, the hyperbola method implies
that

H1(x) = ∑
n≤
√

x
μ(n)M( x

n
) + ∑

m≤
√

x
μ(m)M( x

m
) −M(

√
x)M(

√
x)

≪ ∑
n≤
√

x
∣M( x

n
)∣ + ∣M(

√
x)∣2 .(4.2)
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Inequalities (4.1) and (4.2) imply that there are absolute constants 0 < c′′ < c′ < c such
that

H1(x) ≪ ∑
n≤
√

x

x
n

exp( − c (log(x/n))3/5

(log log(x/n))1/5 ) + x exp( − 2c (log
√

x)3/5

(log log
√

x)1/5 )

≪ ∑
n≤
√

x

x
n

exp( − c′ (log x)3/5

(log log x)1/5 )

≪ x log x ⋅ exp( − c′ (log x)3/5

(log log x)1/5 ) ≪ x exp( − c′′ (log x)3/5

(log log x)1/5 ),

as desired. ∎

We now have the tools we need to establish an unconditional upper bound for the
error term associated with the function gk from Definition 4.1.

Proposition 4.5 There exists an absolute constant c > 0 such that

Egk(x) ≪ x 1/k exp( − c (log x)3/5

(log log x)1/5 )

for all k ≥ 2.

Proof Since Dgk(s) = ζ(s)ζ(ks)−2, we have Ggk(x) = x/ζ(k)2. Since gk is the
Dirichlet convolution of hk and 1, we can apply the hyperbola method, with a
parameter z ∈ (

√
x , x) to be determined and with y = x

z :

Fgk(x) = ∑
mn≤x

hk(n) = ∑
n≤z

hk(n)⌊
x
n
⌋ + ∑

m≤y
Hk(

x
m
) − ⌊y⌋Hk(z)

= x ∑
n≤z

hk(n)
n

+ O(∑
n≤z
∣hk(n)∣ + ∑

m≤y
∣Hk(

x
m
)∣ + y∣Hk(z)∣).

Since∑∞n=1 hk(n)/n = 1/ζ(k)2, we use Lemma 4.3 to conclude that

Egk(x) = Fgk(x) −Ggk(x) ≪ x∣ ∑
n>z

hk(n)
n
∣ + z1/k log z + ∑

m≤y
∣Hk(

x
m
)∣ + y∣Hk(z)∣.

(4.3)

By Lemma 4.4 and partial summation,

1
ζ(k)2 − ∑

n≤z

hk(n)
n

≪ ∣Hk(z)∣
z

+ ∫
∞

z

∣Hk(t)∣
t2 dt

≪ z1/k−1 exp( − c (log z)3/5

(log log z)1/5 ).(4.4)
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Since y ≤
√

x, we have x/m ≥
√

x for each m ≤ y. Thus, by Lemma 4.4, there is a
constant c′ ∈ (0, c) such that

∑
m≤y
(Hk(

x
m
) −Hk(z)) ≪ ∑

m≤y
( x

m
)

1/k

exp( − c (log(x/m))3/5

(log log(x/m))1/5 )

≪ x 1/k ∑
m≤y

m−1/k exp( − c′ (log x)3/5

(log log x)1/5 )

≪ x
z1−1/k exp( − c′ (log x)3/5

(log log x)1/5 ).(4.5)

Combining inequalities (4.3)–(4.5), we conclude that

Eg(x) ≪
x

z1−1/k exp( − c′ (log x)3/5

(log log x)1/5 ) + ∑
n≤z
∣hk(n)∣

≪ x
z1−1/k exp( − c′ (log x)3/5

(log log x)1/5 ) + z1/k log x .(4.6)

If we set

z = x exp( − c′ (log x)3/5

(log log x)1/5 ),

then we conclude that there exists c′′ ∈ (0, c′) such that Eg(x) ≪ x 1/k exp
( − c′′ (log x)3/5

(log log x)1/5 ). ∎

If we assume RH, then we can strengthen the above bound on Egk(x). To do so, we
first need a conditional estimate on the tail of the Dirichlet series for 1/ζ(s)2, which
we express in the following lemma using the function h1 from Definition 4.1.

Lemma 4.6 Assume RH. Let ε > 0 and σ0 ≥ 1
2 + ε. Uniformly for 1

2 + ε ≤ σ ≤ σ0,

1
ζ(s)2 − ∑

n≤x
h1(n)n−s ≪ε ,σ0 x 1/2−σ+ε .

Proof Recall that∑∞n=1 h1(n)n−s = ζ(s)−2 for σ > 1. Assume that 1
2 + ε ≤ σ ≤ σ0. By

Lemma 4.2, we have ∣h1(n)n−s ∣ < τ(n)n−1/2 ≪ n−1/2+ε . Thus, a truncated Perron’s
formula [25, Corollary 5.3] implies that

∑
n≤x

h1(n)n−s = 1
2πi ∫

2+iT

2−iT

1
ζ(s +w)2

xw

w
dw + R(x),(4.7)

where

R(x) ≪ ∑
x/2<n<2x

n≠x

∣h1(n)n−s ∣min(1, x
T ∣x − n∣ ) +

42 + x2

T

∞
∑
n=1

∣h1(n)n−s ∣
n2 ≪ x2

T
(4.8)

(we may assume that x is an integer). Let ε′ = ε/(σ0 + 5
2 ). We shift the contour integral

in equation (4.7) leftwards from R(w) = 2 to R(w) = 1
2 − σ + ε′, noting that the only
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pole of xw/wζ(s +w)2 inside the contour is the simple pole at w = 0. Thus,

1
2πi ∫

2+iT

2−iT

1
ζ(s +w)2

xw

w
dw

= 1
ζ(s)2 +

1
2πi
(∫

2+iT

1
2−σ+ε′+iT

+∫
1
2−σ+ε′+iT

1
2−σ+ε′−iT

+∫
1
2−σ+ε′−iT

2−iT
) 1

ζ(s +w)2
xw

w
dw .(4.9)

Since ζ(z)−1 ≪ε′ T ε′ holds uniformly for 1
2 + ε′ ≤R(z) ≤ 2 and ∣I(z)∣ ≤ T (see [25,

Theorem 13.23]), it follows that

∫
1
2−σ+ε′+iT

1
2−σ+ε′−iT

1
ζ(s +w)2

xw

w
dw ≪ε′ x 1/2−σ+εT ε′

∫
2±iT

1
2−σ+ε′±iT

1
ζ(s +w)2

xw

w
dw ≪ε′ σT ε′ ⋅ x2

T
≪ε′ ,σ0

x2

T 1−ε′ .

Combining these estimates with equations (4.7)–(4.9), and setting T = x3/2+σ , we
conclude that

1
ζ(s)2 − ∑

n<x
h1(n)n−s ≪ε′ ,σ0 x 1/2−σ+ε′T ε′ + x2

T 1−ε′ +
x2

T

≪ε′ ,σ0 x 1/2−σ+ε′(σ+5/2) ≤ x 1/2−σ+ε

as required. ∎

Proposition 4.7 Let k ≥ 2. Assuming RH, Egk(x) ≪ε x 1/(k+1)+ε for each ε > 0.

Proof We adapt the proof that Montgomery and Vaughan [24] used for the indicator
function of k-free numbers. Recall that hk(n) = h1(m) if n = mk is a perfect kth power
and hk(n) = 0 otherwise. Let y = x 1/(k+1), and define

A(s) = 1
ζ(s)2 − ∑

n≤y
h1(n)n−s .

If we set h̃(n) = hk(n) for n > yk and h̃(n) = 0 otherwise, we see that the Dirichlet
series for h̃ is precisely A(ks). Define g̃ to be the Dirichlet convolution of h̃ and 1,
so that the Dirichlet series for g̃ is ζ(s)A(ks). Also note that ∣g̃(n)∣ ≤ ∑d ∣n ∣h̃(d)∣ ≤
∑d ∣n τ(d) ≪ε nε for each ε > 0 by Lemma 4.2. Using the truncated Perron’s formula
[25, Corollary 5.3] with the choice T = x,

∑
n≤x

g̃(n) = 1
2πi ∫

c+ix

c−ix
ζ(s)A(ks)x s

s
ds + R(x),(4.10)

where c = 1 + 1/(k + 1) and

R(x) ≪ ∑
x/2<n<2x

n≠x

∣g̃(n)∣min(1, x
x∣x − n∣ ) +

4c + x c

x

∞
∑
n=1

∣g̃(n)∣
nc ≪ x ε + x 1/(k+1) .

(4.11)
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We shift the contour leftwards from σ = c to σ = 1
2 and notice that the only pole of

ζ(s)A(ks) inside the contour is the simple pole at s = 1. Thus,

1
2πi ∫

c+ix

c−ix
ζ(s)A(ks)x s

s

= xA(k) + 1
2πi
(∫

1
2+ix

1
2−ix

+∫
c+ix

1
2+ix

+∫
1
2−ix

c−ix
)ζ(s)A(ks)x s

s
ds.(4.12)

By [25, Theorem 13.18], ζ(s) ≪ε x ε uniformly for σ ≥ 1
2 and 1 ≤ ∣t∣ ≤ x. By Lemma 4.6,

A(s) ≪ε y1/2−σ+ε holds uniformly for 1
2 + ε ≤ σ ≤ k + 2, and thus A(ks) ≪ε y1/2−kσ+ε

holds uniformly for 1
2 + ε ≤ σ ≤ c. Therefore

∫
1
2+ix

1
2−ix

ζ(s)A(ks)x s

s
≪ε x 1/2+ε y(1−k)/2+ε ,

∫
c±ix

1
2±ix

ζ(s)A(ks)x s

s
≪ε x c−1+ε y(1−k)/2+ε .

Combining these estimates with equations (4.10)–(4.12), we conclude that

∑
n≤x

g̃(n) = xA(k) + Oε(x 1/(k+1) + x 1/2+ε y(1−k)/2+ε).(4.13)

On the other hand,

∑
mn≤x

(hk(n) − h̃(n)) = ∑
mn≤x
n≤yk

hk(n) = ∑
mnk≤x

n≤y

h1(n) = ∑
n≤y

h1(n)⌊
x

nk ⌋

= x ∑
n≤y

h1(n)
nk + O( ∑

n≤y
∣h1(n)∣)

= x( 1
ζ(k)2 − A(k)) + O(y log y)

by Lemmas 4.6 and 4.3. From this estimate and equation (4.13), it follows that

Fgk(x) = ∑
n≤x

gk(n) = ∑
mn≤x

hk(n)

= ∑
mn≤x

(hk(n) − h̃(n)) + ∑
mn≤x

h̃(n)

= ∑
mn≤x

(hk(n) − h̃(n)) + ∑
n≤x

g̃(n)

= x
ζ(k)2 + Oε(y log y + x 1/(k+1) + x 1/2+ε y(1−k)/2+ε).

Since y = x 1/(k+1), this error term is Oε(x 1/(k+1)+ε) and therefore

Egk(x) = Fgk(x) −Ggk(x) ≪ε x 1/(k+1)+ε

as required. ∎
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4.2 The convolution method

In this section, we apply the convolution method to prove both parts of Theorem 1.16
as well as Theorem 1.18(b). The following key lemma is inspired by [4, Lemma 1].

Lemma 4.8 Let Y(s) = ∑∞n=0 yn n−s and Z(s) = ∑∞n=0 zn n−s be two Dirichlet series;
assume that Y(s) converges absolutely for σ > 1 and that k is a positive integer such that
Z(s) converges absolutely for σ > 1

k+1 . Suppose that the partial sum T(x) = ∑n≤x yn has
the form

T(x) =
k
∑
j=1

Res(Y(s) ⋅ x s

s
, 1

j
) + R(x) =

k
∑
j=1

r jx 1/ j + R(x).(4.14)

Assume further that there is f ∈ F such that D f (s) = Y(s)Z(s) for σ > 1.

(a) If R(x) ≪ 1, then E f (x) ≪ε x 1/(k+1)+ε for every ε > 0.
(b) If θ > 1

k+1 is a real number, and R̃(x) is an eventually increasing function that
satisfies R(x) ≪ xθ R̃(x), then E f (x) ≪ xθ R̃(x).

Remark 4.9 In addition to the dependence on ε in part (a), the implied constants in
the above estimates on E f (x) depend on Y(s) and Z(s), as well as on θ and on the
implied constant in the assumed upper bound for R(x) in part (b). In the applications
below, these ancillary quantities will all be chosen in terms of the function f ∈ F;
consequently, the implied constants will simply depend on f in those cases.

Remark 4.10 In part (b), we see that the deduced upper bound for E f (x) is the
same as the assumed upper bound for R(x) as long as that bound is sufficiently “nice”
with respect to θ. We will have this sort of nice upper bound in all applications of
Lemma 4.8(b) below.

Proof of Lemma 4.8 Let 1 ≤ j ≤ k and assume that D f (s) has a pole at 1
j . Since Z(s)

converges absolutely for σ > 1
k+1 and D f (s) = Y(s)Z(s), it follows that 1

j is a pole of
Y(s), which must be simple since the residues in equation (4.14) have no logarithmic
terms. We deduce that

Res(D f (s) ⋅
x s

s
, 1

j
) = Z( 1

j
)Res(Y(s) ⋅ x s

s
, 1

j
) = Z( 1

j
)r jx 1/ j .(4.15)

By partial summation, it follows that for any 0 < ε < 1
j −

1
k+1 ,

Z( 1
j
) − ∑

n≤x
zn n

−1/ j
≪ ∑

n>x
∣zn ∣n

−1/ j
≤ x 1/(k+1)−1/ j+ε ∑

n>x
∣zn ∣n−(1/(k+1)+ε)

≪ε x 1/(k+1)−1/ j+ε .(4.16)

Since ( f (n)) is the Dirichlet convolution of (yn) and (zn),

F f (x) = ∑
n≤x

f (n) = ∑
n≤x

zn T( x
n
) =

k
∑
j=1
( ∑

n≤x
zn n−1/ j)r jx 1/ j + ∑

n≤x
zn R( x

n
).(4.17)
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In light of the definition (1.4) of G f (x), equations (4.15)–(4.17) together imply that

E f (x) = F f (x) −G f (x) ≪ε x 1/(k+1)+ε + ∑
n≤x
∣zn ∣∣R(

x
n
)∣.

This bound implies both parts of the lemma:
(a) If R(x) ≪ 1, then ∑n≤x ∣zn ∣∣R( x

n )∣ ≪ ∑n≤x ∣zn ∣ ≪ x 1/(k+1)+ε by partial summa-
tion, and thus E f (x) ≪ε x 1/(k+1)+ε as required.

(b) Since θ > 1
k+1 , it follows from the assumptions that

∑
n≤x
∣zn ∣∣R(

x
n
)∣ ≪ xθ R̃(x) ∑

n≤x

∣zn ∣
nθ ≪ xθ R̃(x).

Choosing ε < θ − 1/(k + 1), we conclude that E f (x) ≪ε x 1/(k+1)+ε +
xθ R̃(x) ≪ xθ R̃(x), as required. here

∎

Next, we give the proof of Theorem 1.16 on unconditional upper bounds on E f (x),
the first half of which is extremely short.

Proof of Theorem 1.16(a) Let (yn) be the indicator function of kth powers, whose
Dirichlet series is Y(s) = ∑∞n=0 yn n−s = ζ(ks) and whose summatory function is
∑n≤x yn = x 1/k + O(1). By Theorem 2.6, we can write D f (s) = Y(s)Z(s), where Z(s)
converges absolutely for σ > 1

k+1 . Lemma 4.8(a) then implies that E f (x) ≪ε x 1/(k+1)+ε

for each ε > 0. ∎

Proof of Theorem 1.16(b) We divide our discussion into two cases; in each case, we
will eventually apply Lemma 4.8(b) with the choices

θ ∈ ( 1
k + 1

, 1
k
) and R̃(x) = x 1/k−θ exp( − c (log x)3/5

(log log x)1/5 ).(4.18)

(i) We first consider the case that f is of Möbius-type. Let Y(s) = ζ(ks)−1. By Propo-
sition 2.3, we can write D f (s) = Y(s)Z(s) for σ > 1, where Z(s) is a Dirichlet
series that converges absolutely for σ > 1

k+1 . Let (yn) be the sequence supported
on perfect kth powers such that ymk = μ(m) for each nonnegative integer m, so
that Y(s) = ∑∞n=0 yn n−s . Note that T(x) = ∑n≤x yn = ∑m≤x 1/k μ(m) = M(x 1/k)
in terms of the Mertens function. From the best known error term on M(x)
(see, for example, [16, Theorem 12.7]), we see that T(x) ≪ R(x), where R(x) is
given by the right-hand side of the estimate (1.6). Then, the function R̃(x) given
in equation (4.18) is eventually increasing and satisfies T(x) ≪ xθ R̃(x), and so
Lemma 4.8 implies the required upper bound on E f (x).

(ii) Next, we consider the case that f is of powerfree-type. By Proposition 2.8,
k is the smallest integer such that εk ≠ 1. If εk = 0, let (yn) be the indicator
function of the k-free numbers; if εk = −1, let yn = gk(n), where gk is defined in
Definition 4.1. In both cases, the Dirichlet series of (yn) is Y(s) = ∑∞n=1 yn n−s =
ζ(s)/ζ(ks)1+∣εk ∣, and Proposition 2.8 implies that we can write D f (s) = Y(s)Z(s)
for σ > 1, where Z(s) converges absolutely for σ > 1

k+1 . Let T(x) = ∑n≤x yn =
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x Res(Y(s)x s/s, 1) + R(x). Then, the upper bound on R(x) is exactly the right-
hand side of the estimate (1.6): this is from a result of Walfisz [37, Section 5.6]
when εk = 0, and follows from Proposition 4.5 when εk = −1. The theorem in this
case follows from Lemma 4.8 by setting θ and R̃(x) as in equation (4.18).

∎

We also present the proof of Theorem 1.18(b) on upper bounds on E f (x) for f of
powerfree-type under RH. The proof is very similar to the proof of Theorem 1.16(b)
that just concluded.

Proof of Theorem 1.18(b) As in case (ii) in the proof of Theorem 1.16, we let (yn) be
the indicator function of k-free numbers when εk = 0, and let yn = gk(n) when εk =
−1. We can then write D f (s) = Y(s)Z(s) for σ > 1, where Y(s) is the Dirichlet series
of the sequence (yn) and Z(s) converges absolutely for σ > 1

k+1 . We then have T(x) =
∑n≤x yn = x/ζ(k)1+∣εk ∣ + Oε(x 1/(k+1)+ε) for each ε > 0: this is a result by Montgomery
and Vaughan [24] when εk = 0, and follows from Proposition 4.7 when εk = −1. In
both cases, we have x/ζ(k)1+∣εk ∣ = Res(Y(s)x s/s, 1) and that s = 1 is the only real pole
of Y(s). Thus, by setting θ = 1

k+1 + ε and R̃(x) = 1, Lemma 4.8 implies that E f (x) ≪ε

x 1/(k+1)+ε . ∎

4.3 The Möbius-type and powerfull-type cases under RH

In this section, we prove Theorem 1.18(a) via the method of contour integration. We
need the following upper bounds on ζ(s) and 1/ζ(s).

Lemma 4.11 Assume RH.

(a) For each δ > 0, the bounds ζ(s) ≪δ 1 and ζ(s)−1 ≪δ 1 hold uniformly in the
compact region {s∶ 1

2 ≤ σ ≤ 1 − δ, ∣t∣ ≤ 13}.
(b) There is a positive constant C such that both

∣ζ(s)∣ ≤ exp(C log x
log log x

) and ∣ζ(s)−1∣ ≤ exp(C log x
log log x

)

hold for σ ≥ 1
2 +

1
log log x and 1700 ≤ ∣t∣ ≤ x − 4.

Proof Part (a) is immediate: since all nontrivial zeros ρ of ζ have imaginary part
at least 14, both ζ(s) and ζ(s)−1 are continuous in the compact region {s∶ 1

2 ≤ σ ≤ 1 −
δ, ∣t∣ ≤ 13}, and the statement follows (indeed without even invoking RH).

As for part (b), let x ≥ exp(exp(10)) be fixed. Consider the two functions

g(y) = log y
log log y

and h(y) = log y
log log y

log e log log x
log log y

.

Note that log g(y) = log log y − log log log y and so

g′(y)
g(y) =

1
y log y

− 1
y log y log log y

= 1
y log y

(1 − 1
log log y

) > 0
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when y ≥ ee . Thus, g(y) is increasing when y ≥ 16, and in particular, g(y) ≤ g(x)
when 16 ≤ y ≤ x. Similarly,

h′(y)
h(y) =

1
y log y

− 1
y log y log log y

− 1
y log y

1
log log y

⋅ log e log log x
log log y

.

When 1700 ≤ y ≤ x, we have

1
log log y

+ 1
log log y ⋅ log e log log x

log log y

≤ 2
log log y

< 0.997 < 1;

so h(y) is increasing when 1700 ≤ y ≤ x, and in particular, h(y) ≤ h(x) = g(x)when
1700 ≤ y ≤ x.

Write τ = ∣t∣ + 4 so that bounds involving log τ are valid even when t is small. By
[25, Theorem 13.18], there is an absolute positive constant C such that

∣ζ(s)∣ ≤ exp(C log τ
log log τ

) = exp(Cg(τ))

for σ ≥ 1
2 and ∣t∣ ≥ 1. Thus, when σ ≥ 1

2 and 1 ≤ ∣t∣ ≤ x − 4, we have ∣ζ(s)∣ ≤
exp(Cg(τ)) ≤ exp(Cg(x)).

To bound ∣1/ζ(s)∣, we consider two cases. When σ ≥ 1
2 +

1
log log τ , we apply a similar

argument as above by using the first part of [25, Theorem 13.23]. Next assume 1
2 <

σ ≤ 1
2 +

1
log log τ and 1700 ≤ ∣t∣ ≤ x − 4. In this case, by the second part of [25, Theorem

13.23], there is an absolute positive constant C such that

∣1/ζ(s)∣ ≤ exp(Ch(τ)) ≤ exp(Ch(x)) = exp(Cg(x)),

as required. ∎

We conclude the article with a proof of Theorem 1.18(a).

Proof of Theorem 1.18(a) Let f ∈ F be fixed and let k be its initial index. By the
discussion in Section 3, for σ > 1, we can write

D f (s) =W(s) ⋅
2k−1
∏
j=k

ζ( js)a j ,(4.19)

where a j are integers and W(s) converges absolutely for σ > 1
2k .

Let x > exp(exp(10)) be sufficiently large and set

σ1 =
1
k
( 1

2
+ 1

log log x
), T = x 1−σ1 ,

so that kσ1 = 1
2 +

1
log log x ; note that (2k − 1)σ1 < 1 and 2k(T + 4) < x. Let C0 be the

positive constant from Lemma 4.11(b). Let B = ∑2k−1
j=k ∣a j ∣ and let C1 = BC0.

Since ∣ f (n)∣ ≤ 1 for all n ∈ N, we may assume without loss of generality that x is a
positive integer in the following discussion. Since D f (s) is analytic for σ > 1, we set
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σ0 = 1 + 1
log x . By the truncated Perron’s formula [25, Corollary 5.3],

F f (x) = ∑
n≤x

f (n) = 1
2πi ∫

σ0+iT

σ0−iT
D f (s)

x s

s
ds + R(x),

where

R(x) ≪ ∑
x/2<n<2x

n≠x

∣ f (n)∣min(1, x
T ∣x − n∣ ) +

4σ0 + xσ0

T

∞
∑
n=1

∣ f (n)∣
nσ0

.

Therefore,

R(x) ≪ x log x
T

+ xζ(σ0)
T

≪ x log x
T

.

We shift the contour leftwards from σ = σ0 to σ = σ1. Define the integrals

I1(x) =
1

2πi ∫
σ0+iT

σ0−iT
D f (s)

x s

s
ds, I2(x) =

1
2πi ∫

σ1+iT

σ0+iT
D f (s)

x s

s
ds,

I3(x) =
1

2πi ∫
σ1−iT

σ1+iT
D f (s)

x s

s
ds, I4(x) =

1
2πi ∫

σ0−iT

σ1−iT
D f (s)

x s

s
ds.

Since kσ1 > 1
2 and W(s) is analytic for σ > σ1, the only possible poles of the contour

integral I1 + I2 + I3 + I4 come from s = 1
k , 1

k+1 , . . . , 1
2k−1 . Thus, the residue theorem

implies that

I1(x) + I2(x) + I3(x) + I4(x) =
2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
).

We first bound I3(x). For σ = σ1 and for each k ≤ j ≤ 2k − 1, since 1
2 +

1
log log x ≤

jσ1 ≤ (2k − 1)σ < 1 and j∣t∣ + 4 < 2k(T + 4) < x, it follows from Lemma 4.11 that
ζ( js)a j ≪ exp(∣a j ∣C0

log x
log log x ). Thus, for σ = σ1, we have

D f (s) =W(s) ⋅
2k−1
∏
j=k

ζ( js)a j ≪
2k−1
∏
j=k

ζ( js)a j ≪
2k−1
∏
j=k

exp(∣a j ∣C0
log x

log log x
)

= exp(C1
log x

log log x
).

It follows that

I3(x) ≪ ∫
T

−T
exp(C1

log x
log log x

) xσ1

∣σ1 + t∣ dt ≪ xσ1 exp(C2
log x

log log x
),

where C2 = C1 + 1.
Next, we estimate I2(x). Let k ≤ j ≤ 2k − 1 be fixed. When σ ≥ σ1, we have jσ ≥

kσ1 ≥ 1
2 +

1
log log x . Thus, Lemma 4.11 implies that

ζ( j(σ + iT)) ≪ exp(C0
log x

log log x
) and ζ( j(σ + iT))−1 ≪ exp(C0

log x
log log x

)
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uniformly for σ ≥ σ1, and thus that D(σ + ix) ≪ exp(C2
log x

log log x ) holds uniformly for
σ1 ≤ σ ≤ σ0. Therefore,

I2(x) ≪ ∫
σ0

σ1
exp(C2

log x
log log x

)xσ

T
dσ ≪ xσ0

x
exp(C2

log x
log log x

)

≪ x
T

exp(C2
log x

log log x
).

A similar argument provides the same upper bound for I4(x).
We have shown that

F f (x) −
2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
) ≪ R(x) + I2(x) + I3(x) + I4(x)

≪ x log x
T

+ (xσ1 + x
T
) exp(C2

log x
log log x

).

Since T = x 1−σ1 , it follows that

F f (x) −
2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
) ≪ xσ1 exp(C2

log x
log log x

) ≪ x 1/2k exp(C log x
log log x

),

where C = C2 + 1.
Finally, recall from equation (1.4) that

G f (x) =
2�
∑
j=k

Res(D f (s)
x s

s
, 1

j
) =

2k−1
∑
j=k

Res(D f (s)
x s

s
, 1

j
) + O(x 1/2k(log x)O(1)),

from which we conclude the desired upper bound

E f (x) = F f (x) −G f (x) ≪ x 1/2k exp(C log x
log log x

).

∎
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