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Abstract

We give new presentations of the five Mathieu groups, the simple groups J\, J2, HS, McL,
C03, and some other simple and related groups. All generators in these presentations are
involutions. Our presentations are simpler than the known presentations of this type for the
groups mentioned above.

1980 Mathematics subject classification (Amer. Math. Soc): 20 D 08, 20 F 05.

0. Introduction

In this paper we give a number of presentations of sporadic simple groups of
low order (the Mathieu groups, J\, J2, HS, McL, C03) and some other simple
and related groups. For some of them we give several presentations, for instance
Section 1 contains three different presentations of the Mathieu group Mn. All
generators in our presentations are involutions and we shall refer to such presen-
tations as Coxeter type presentations. For a large number of finite simple and
related groups (covering groups or automorphism groups of simple groups, etc.)
such presentations are given in the recent Atlas of Finite Groups by J. H. Con-
way et al. [4]. Many of the presentations in this Atlas are due to L. Soicher and
appear in his thesis [5], see also his preprint [7].

Our goal was to obtain simpler presentations than those in the Atlas and
also to find Coxeter type presentations for some simple groups for which no such
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144 Dragomir 2. Dokovid [2]

presentation is given in the Atlas. In order to a t tach an objective meaning to the

word "simpler" we introduce the notion of the length of a presentation. Then

"simpler" means jus t "shorter". Let G = {S: R) be a presentation of G. Each

relator r € R is an element of the free groups on S. If l(r) is the length of r as

an element of tha t free group, then the length of the presentation (S: R) is the

number

(If we view our presentation as a character string which is fed into a computer

then we need separators t o separate the defining relators from each other. This

explains the presence of the term \R\ in the above expression.)

We mention tha t the problem of finding a shortest presentation for a given

finite group G is quite open. We do not know the answer even in the case when

G is a cyclic group of prime order.

One possible use of presentations of groups in computer systems for group

theory is the following (suggested by L. Soicher). Assume tha t G has a faithful

transit ive permutat ion representation of degree d (not too big). Then a usual

way to store G in a computer file is to store the generators of G as permutations

on { 1 , 2 , . . . , d}. A be t te r way is to jus t store a presentation of G, say ( 5 : R) and

a set of generators of a one point stabilizer in tha t permutat ion representation.

Then one can recover the permutat ion representation by a coset enumeration

procedure, for example, the s tandard function "cosact image" in CAYLEY. (For

a description of CAYLEY see [1].) The advantage of the latter method is that

the file containing the presentation and the necessary commands to generate the

premutat ion representation is much shorter than the file containing the list of

generators of G as permutat ions . Moreover the presentation file is more reliable

since it is easier to unders tand and to verify its correctness. (We have made a

comparison in the case of the Conway group C03 for which d = 276. In tha t

case our presentation file consists of 10 lines while the permutat ion file cannot

fit on one screen.)

Our presentations, G = (S: R), have the following form. We first give a Cox-

eter diagram for S = {xi,..., xn}. More precisely, each (involutory) generator

is represented by a node in this diagram; two nodes X{ and Xj are joined by an

edge if and only if the order ra^ of the product XiXj is > 3, and in case rriij > 3

the label m ^ is a t tached to this edge.

Next we list the set of generators S, and the defining relators R of G. In

all cases we have tried to reduce R to be a minimal set of defining relators bu t

we do not make any such claim. In fact, we believe tha t in many cases R is

not minimal. As an example we mention the case of the presentation (13.1)

of C03. Originally tha t presentation included the redundant relator a(cdef)4

and then the enumeration of 170,775 cosets of (a, b, c, e,f,g) = 2- SQ(2) in Co3
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took less t han 9 h. of CPU- t ime . When we deleted this relator then the same
enumeration took more t h a n 20 h. of CPU-t ime . (Moreover we had to make
some improvements in our program in order to be able to complete this last
enumeration.) All computa t ions were carried out on a VAX 11/785 computer
running VMS V4.4.

Finally for some subsets T of S we describe the subgroup of G generated by
T and we list some consequences of R.

In the case of Mathieu groups or their covering groups we also specify a
homomorphism of G onto the corresponding Mathieu group, the la t ter group we
consider as being given by its s t andard definition via the M O G or MINIMOG
arrays, see [2], [3] or [5]. For the convenience of the reader we give in Table 1
the labellings for these arrays which exhibit t he maximal subgroups Z/2(23) and

of M24 and M i 2 , respectively, see [3].

TABLE 1

M O G MINIMOG

0
19
15
5

0 0

3
6
9

1
20
14
21

11
4

16
13

2
10
17
7

22
18
8

12

0
5
4

3
9
1

0 0

8
6

2
10
7

All presentations given below were obtained by using CAYLEY and the author ' s
version of the Todd-Coxeter coset enumerat ion procedure. One can verify the
correctness of the listed presentat ions by using CAYLEY, the Todd-Coxeter
procedure, and the recognition theorems for the relevant simple groups. In the
last section of the paper we give details of such verifications for the presentat ions
(7.1), (8.1), and (10.1) of M 2 4 , J i , and HS, respectively.

TABLE 2

Lengths Lengths

Group New Atlas Pres . Group New Atlas Pres .

M n
M i 2

M2 1

2 2 • M 2 i
As
M22

2 - M 2 2

6 • M22
M23

M24

64
76

116
68

103
108
103
91

128
127

68
125
—
—
—

173
—
—

146
162

(1.1)
(2.1)
(3.2)
(3.1)
(4.1)
(5.1)
(5.2)
(5.4)
(6.1)
(7.1)

Ji
HS
McL

S*{2)
2 • Se(2)
2 x 56(2)
2 x 2 - 56(2)
Co3

U3(5)
f/3(5):2

95
119
119
121
142
92

112
174
106
102

134
126
160
—
—

138
—

178
—
—

(9.1)
(10.1)
(11.1)
(12.2)
(12.4)
(12.1)
(12.6)
(13.1)
(14.1)
(14.2)

88 96 (8.1) 4 C / 4 ( 3 ) : 2 2 135 — (14.3)
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In Table 2 we list all groups G for which we provide new presentations. Fol-
lowing the name of the group we give, respectively, the lengths of our shortest
presentation of G and the Atlas presentation of G (if available as Coxeter type
presentation). In fairness one should remark that the Atlas presentations were
not necessarily made with the aim of being as short as possible. The column
labelled "Pres." gives the subsection of this paper containing our shortest pre-
sentation of G.

For describing the group structures we follow the notation given in the At-
las, p. xx. A brief summary of the notations is given below. We wish to
acknowledge the generous support for this work which was provided throught
the WATDEC Research Project. Without many days of free CPU-time, pro-
vided by this project, the presentations listed in this paper could not have been
discovered. This work was also supported by the NSERC Grant A-5285. We are
grateful to L. Soicher for sending us a copy of his thesis and for several helpful
discussions.

Notations
n denotes a cyclic group of order n.
Gk denotes direct product of k copies of G.
Ax B is the direct product of A and B.
nk is a special case of Gk, i.e., it denotes direct product of k copies of

the cyclic group of order n.
A.B denotes any group having a normal subgroups isomorphic to A and

corresponding factor group isomorphic to B.
A.B is an instance of A.B when the extension is split.
A • B is the case of A.B when the extension is not split.
p m + n is a case of pm pn.
Sn is the symmetric group of degree of n.
An is the alternating group of degree n.
Dn (n even) is the dihedral group of order n.
Qs is the quaternion group.
W(S) is the Weyl group of the simple complex Lie algebra with the Dynkin

diagram S.
A*c B is the central product of A and B over their common central sub-

group C. If C is omitted it is a maximal possible such subgroup.
Ln (q) is the projective special linear group PSLn (q) over the Galois field

GF(q).
Sn(<l) {n even) is the projective symplectic group PSpn(q) over the Galois

field GF{q).
Un(q) is the projective special unitary group PSUn{q2) over the Galois field

GFtf).
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1. Presentations of

147

(1.1) Group: Mn.

•-
a

Generators: a, b, c, d, e.
Defining relators: aa, bb, cc, dd, ee, bdbd, bebe, (ab)3, (de)3, (be)5, acece,

a{cd)3.
Length = 64.
Consequences: acac, adad, aeae, (ce)4, (cd)6, (abc)5.
Subgroups:

(a,b,c,d) = (6,c,d)SL2(ll) , {a,b,c,e) = {b,c,e)^S5,

{a,c,d,e) = (c,d,e)^2-S4 = Q8: S3, {a,b,c)^A5.

Isomorphism:

a - (0,9)(4,10)(5,8)(6,7), b -> (0,2)(1,10)(3,5)(6,7),

c - (0,7)(1,3)(4,10)(6,9), d - (0,5)(2,3)(6,7)(8,9),

(1.2) Group: Mn.

Generators: o, 6, c, d.
Denning relators: aa, bb, cc, dd, {ab)3, {be)3, (cd)3, (abdbd)2, (cbdbd)3.
Length = 70.
Consequences: (bd)6.
Subgroups:
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Isomorphism:

a - (0,7)(1,9)(2,5)(3,6), b -» (0,5)(2,3)(6,7)(8,9),

c-+ (0,7)(2,6)(3,5)(4,8), d - (0,7)(l,3)(4,10)(6,9).

(1.3) Group: Mn.

Generators: a,b,c,d.
Defining relators: aa, bb, cc, dd, acac, adad, (o6)3, (6c)3, (cd)3, (bd)5, (abd)5,

(bcdbcdc)3.
Length = 92.
Subgroups:

{b,c,d)=L2{n), (a,b,d)^A5.

Isomorphism:

a -> (0,10)(l, 3)(2,5)(4,7), b - (0,2)(1,10)(3,5)(6,7),

c - (0,5)(1,3)(2,10)(6,8), d - (0,7)(1,3)(4,10)(6,9).

2. Presen ta t ion of M 12

(2.1) Group: M1 2.

Generators: a, b, c, d.
Defining relators: aa, bb, cc, dd, acac, adad, (ab)3, (be)3, (bd)3, {cd)5, (bedbede)3.
Length = 76.
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Subgroups:

Isomorphism:

a - (0,8)(1,6)(2, oo)(3,10)(4,5)(7,9), b -» (0, oo)(l, 10)(2,5)(3,7)(4,8)(6,9),

c->(0,l)(2,oo)(3,4)(5,10)(6,8)(7,9), d -» (0,4)(l,6)(2,oo)(3,9)(5,8)(7,10).

As linear fractional transformation over GF (11) we have

1 2 x - 2 2x + 3
o: x —>—, c:x—> —, a: x —> —.

x x - 2 x - 2

3. Presentations of M21 and 22 • M21

Recall that M21 is isomorphic to £3(4).
(3.1) Group: 22-M2i.

Generators: a,b,c,d.
Denning relators: aa, bb, cc, dd, acac, adad, (ab)3, {be)3, (bd)3, (cd)4, (bed5.

Length = 68.
Subgroups:

{b,c,d)^A6.

The center of G is generated by (abebd)5 and (abeded)5. A homomorphism of G
onto M21 is given by

a - (2,16)(4,22)(5,9)(7,14)(11,21)(12,20)(15,19)(17,18),
b - (4,21)(6,16)(7,13)(8,9)(10,18)(11,15)(12,20)(19,22),
c - (2,22)(3,10)(4,16)(5,11)(6,8)(7,14)(9,21)(12,20),
d -» (2,7)(4,12)(5,18)(9,17)(11,15)(14,16)(19,21)(20,22).
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(3.2) If we we add the relators (abcbd)5 and (abcdcd)5 to the above presenta-
tion then the relator (c / ) 4 becomes redundant and we obtain a presentation of

of length 116.

4. Presentations of A$ = £4(2)

(4.1) Group: A8.

Generators: a, b, c, d, e, f.
Defining relators: aa, bb, cc, dd, ee, ff, adad, bebe, cdcd, (ab)3, {be)3, (de)3,

(ef)3, (bed)3, (cde)3, f(abd)3, a(cef)3.
Length = 103.
Consequences: acac, aeae, afaf, bfbf, cfcf, dfdf, (bd)4, (ce)4.
Subgroups:

(a,b,c,e,f) = (a,b,d,e,f)=24: (S3 x S3), (b,c,d,e) = 23: S4.

Isomorphism:

a - (1,4)(2,7)(3,8)(5,6), b - (1,2)(3,7)(4,8)(5,6),

C-(l,3)(2)5)(4,8)(6,7), d - (1,4)(2,6)(3,8)(5,7),

e - (1,2)(3,8)(4,7)(5,6), / - (1,3)(2,7)(4,8)(5,6).

(4.2) Group: A8.

d e f

Generators: o, b, c, d, e, f.
Denning relators: aa, bb, cc, dd, ee, ff, bebe, cdcd, cfcf, dfdf, (ab)3 (be)3,

(ce)3, (de)3, (ef)3, (bed)3, f(abd)3, a(cdef)3.
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Length = 108.
Consequences: acac, adad, aeae, afaf, bfbf, (bd)4, (bdef)4, (abde)e.
Subgroups:

(a,b,c,e,f)^S6, (a,b,d,e,f) = 24: (S3xS3),

(b,c,d,e) 3 23: L3(2), (c,e,bdbd) £ L3(2).

Isomorphism: The images of a, b,d,e, f are the same as in (4.1) above;

c-(l,8)(2,7)(3,4)(5,6).

5. Presentations of M22, 2 • M22, and 6 • M22

(5.1) Group: M22.

151

e

Generators: a,b,c,d,e.
Denning relators: aa, bb, cc, dd, ee, acac, adad, bebe, cece, (ae)3, (bd)3, (cd)3,

(de)3, {be)4, {abd)3, {abe)3, {bed)5.
Length = 108.
Consequences: (ab)4.
Subgroups:

(a,b,c,d) ES24: A6, (b,c,d,e) s* M21 = L3(4),

(b,c,d) a A6, <a,6,d,e) = ^3(2) = La (7),

{a,c,d,e)^S5, (a,b,c,e)^23:S4.

Isomorphism:

a - (1,3)(2,14)(4,22)(6,13)(7,16)(11,15)(12,20)(19,21),
b - (2,7)(3,11)(4,20)(5,10)(6,21)(8,9)(12,16)(14,22),
c - (2,16)(4,22)(5,9)(7,14)(11,21)(12,20)(15,19)(17,18),
d - (2,22)(3,10)(4,16)(5,11)(6,8)(7,14)(9,21)(12,20),
e -» (4,21)(6,16)(7,13)(8,9)(10,18)(11,15)(12,20)(19,22).
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(5.2) Group: 2 • M22-

e

Generators: a, b, c, d, e.
Defining relators; aa, bb, cc, dd, acac, adad, (ab)3, (be)3, (ce)3, (bd)4, (cd)4,

(cde)3, e{abd)3, (bede)5.
Length - 103.
Consequences: ee, aeae, bebe, dede.
Subgroups:

(a,b,c,e,) = S5, (b,c,d,e) = (b,c,d) = M21,

(a,b,d,e) = (a,b,d)^2xS4, (c,d,e) S S4.

Homomorphism onto A/22 is given by

a -> (1,3)(2,14)(4,22)(6,13)(7,16)(11,15)(12,20)(19,21),

b - (2,22)(3,10)(4,16)(5,11)(6,8)(7,14)(9,21)(12,20),

c - (4,21)(6,16)(7,13)(8,9)(10,18)(11,15)(12,20)(19,22),

d - (2,14)(4,20)(5,17)(7,16)(9,18)(11,19)(12,22)(15,21),

e - (2,16)(4,22)(5,9)(7,14)(11,21)(12,20)(15,19)(17,18).

(5.3) Group: 2 • M22-

Generators: a, b, c, d, e.
Defining relators: aa, bb, cc, dd, ee, acac, adad, aeae, bebe, dede, (ab)3, (be)3,

(cd)3, (ce)3, (bd)4, (abd)3, (bed)5.
Length = 103.
The center is generated by the element (bdbdee)5.
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Subgroups:
(a,b,c,d) ^ A7, (b,c,d,e)^2

{a,b,c,e) = S5, (b,c,d) s A6.

Homomorphism onto M22 sends a, b, c, e to permutations given in (5.2) above
while

d - (2,7)(4,12)(5,18)(9,17)(11,15)(14,16)(19,21)(20,22).

(5.4) Group: 6 • Mw
Diagram: Same as the diagram in (1.3).
Generators: a,b,c,d.
Defining relators: aa, bb, cc, dd, acac, adad, (ab)3, (bd)3, {cd)3, (bd)5, (abd)5,

{abcdb)4.
Length = 91.
The center is generated by (abdcbd)5.
Subgroups:

(a,b,d) ^A5.

Homomorphism onto M22 is given by:

a - (1 ,3)(2,14)(4,22)(6,13)(7,16)(11,15)(12,20)(19,21) ,

b - (2 ,22)(3,10)(4,16)(5,11)(6,8)(7,14)(9,21)(12,20) ,

c - (4 ,21)(6,16)(7,13)(8,9)(10,18)(11,15)(12,20)(19,22) ,

d - • (1 ,16)(3,7)(4,22)(5,8)(10,17)(11,15)(12,21)(19,20) .

6. Presentations of M23

(6.1) Group: M23.

Generators: a,b,c,d,e.
Defining relators: aa, bb, cc, dd, acac, adad, {bd)3, (cd)3, (ce)3, (ab)4, (be)5,

e(abd)3, (bee)5, (ababc)3, (bedbede)3.
Length = 128.
Consequences: ee, aeae, bebe, dede, (abc)6, (bed)11.
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Subgroups:

(b,c,d,e) ^ Mlu{a,b,c,e) ^24: S5,

{b,c,d} = £2(11), (a,b,c) = S5, {b,c,e) = A5.

Isomorphism:

a - (1,13)(4,22)(5,15)(7,14)(8,10)(9,19)(11,17)(18,21),

b -> (0,11)(1,12)(3,13)(4,22)(5,14)(6,20)(10,21)(16,17),

c -» (0,20)(l, 13)(2,3)(4,5)(8, ll)(10,17)(15,22)(18,21),

d - (1,13)(3,6)(4,22)(5,18)(9,17)(11,19)(12,20)(15,21),

e - (1,13)(3,12)(4,22)(5,21)(6,20)(7,8)(10,14)(15,18).

(6.2) Group: M2z-

Generators: a, b, c, d, e.
Defining relators: aa, bb, cc dd, ee, acac, adad, aeae, bdbd, bebe, (ab)3, (cd)3,

(de)3, (ce)4, (6c)5, (bed)5, (bee)5, (dcece)3.
Length = 129.
Consequences: (abc)5, (bede)7, (beded)6.
Subgroups:

(o, b, c, e) = 24:A5, (b, c, d, e) S M22,

(o, b, c, d) s L2(ll), (a, b, c) s (b, c, d) s As,

(b,c,e) 3 24: Dl0, (c,d,e) S L3(2) S L2(7).

Isomorphism:

a - (1,22)(2,15)(3,13)(4,12)(6,20)(8,9)(10,17)(16,21),

6 - (0,20)(l, 13)(2,3)(4,5)(8, ll)(10,17)(15,22)(18,21),

c -» (0,11)(1,12)(3,13)(4,22)(5,14)(6,20)(10,21)(16,17),

d - (0,18)(1,2)(3,13)(6,16)(7,14)(10,17)(15,22)(20,21),

e -» (1,22)(2,3)(4,21)(5,18)(10,17)(12,16)(13,15)(14,19).

(6.3) Group: M23.
Diagram: Same as in (6.1) above.
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Generators: a,b,c,d,e.
Denning relators: aa, bb, cc, dd, ee, acac, adad, aeae, bebe, dede, (bd)3, (cd)3,

(ce)3, (6c)5, (abd)3, (bed)5, (bee)5, {ababc)3.
Length = 130.
Consequences: (ab)4.
Subgroups:

(a,b,c,d) ^ M1U {b,c,d,e)=*24:A7,

(a,b,c,e)^24:S5, (a,b,d) S S4,

Isomorphism: The images of a,b, c,e are the same as in (6.1) above;

d - (1,4)(3,12)(5,15)(6,20)(9,11)(13,22)(17,19)(18,21).

(6.4) Group: M23.
Diagram: Same is in (6.2) above.
Generators: a,b,c,d,e.
Defining relators: aa, bb, cc, dd, ee, acac, adad, aeae, bdbd, bebe, (ab)3, (cd)3,

(de)3, (ce)4, (be)5, (bed)5, (dcece)3, (beded)5.
Length = 139.
Consequences: (abc)5, (bee)6, (bede)7.
Subgroups:

(a,b,c,d)^L2(ll), (a,b,c,e) = 24:A5,

(b,c,d,e) s M22, (c,d,e) s L3(2) a L2(7),

Isomorphism: The images of a, b, c, d are the same in (6.2) above;

e - (0 ,5)(1,13)(2,15)(3,22)(4,20)(6,12)(7,19)(10,17) .

(7.1) Group: M24.

7. Presentation of M24
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Generators: a, b, c, d, e, f, g.
Defining relators: 66, cc, dd, ee, ff, afaf, bdbd, bebe, cece, cfcf, dfdf, efef,

(ab)3, (bf)3, (de)3, (dg)3, (cd)5, (bcf)3, g(abc)3, a{cdef.
Length = 127.
Consequences: aa, gg, acac, adad, aeae, agag, bgbg, cgcg, egeg, fgfg, {be)4,

(edg)5, {dedge)4, (bebed)5, (bededf)5, (abed)10.
Subgroups:

(a, b, c, d, f, g) = (a, b, c,d) a Mn: 2, (a, b,c, f) S 2 3 : S4,

<6 ,c ,d ) s sLa( l l ) :2 , (c,d,e) a 2 x A5, (c,d,g)=A5,

(b,c,f)^S4, (a,b,c)~2xS4.

a - (0,4)(1,6)(2, oo)(3,21)(5,16)(7,15)(8,9)(10,13)

(ll,22)(12,20)(14,17)(18,19),

b - (0,4)(1,5)(2, oo)(3,20)(6,13)(7,9)(8,18)(10,16)

c — (0, oo)(l, 13)(2,4)(3,8)(5,11)(6,10)(9,21)(16,22),

d - (1,15)(2,11)(5,19)(6,7)(8,10)(9,13)(16,18)(22, oo),

e - (0,2)(3,9)(4, oo)(7,20)(8,21)(12,15)(14,19)(17,18),

/ -> (0,3)(1,5)(2,9)(4,21)(6,16)(7,18)(8, oo)(10,22)

(11,13)(12,14)(15,19)(17,20),

g -> (0, oo)(2,4)(3,8)(7,17)(9,21)(12,19)(14,15)(18,20).

8. Presentation of

(8.1) Group: Jx.

10 5
m 9 9

e

Generators: o, b, c, d, e.
Defining relators: 66, cc, dd, ee, bdbd, (ab)3, (cd)3, (de)5, e(bc)5, a(cde)5,

e(abc)5.
Length = 88.
Consequences: aa, acac, adad, aeae, bebe, cece, (be)10.
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Subgroups:

(a,6, c, e) = (a, 6,c) = (a, c,d,e) = (c,d, e) = 2 x A5,

(abcd,ede)^L2(n).

9. Presentation of

(9.1) Group: J2.

5 5
mm*

Generators: a,b,c,d.
Denning relators: aa, bb, cc, dd, acac, adad, bdbd, (cd)3, {ab)5, (be)5, (bed)5,

(a6c(o6c6)2)2.
Length = 95.
Consquences: (abc)6.
Subgroups:

(a, b, c) 2* As x D10, (b, c, d) =* A5.

10. Presentations of HS

(10.1) Groups: HS.

e

Generators: a, b, c, d, e, f.
Denning relators: bb, cc, dd, ee, ff, bdbd, bebe, cfcf, efef, (ab)3, (bf)3, (de)3,

(6c)5, acece, a(cd)3, a(cdf)3, a(def)3, (6c/)5.
Length = 119.
Consequences: aa, acac, adad, aeae, afaf, (ce)4, (df)4, (cd)e, (abc)5, (abfd)4.

https://doi.org/10.1017/S1446788700030068 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030068


158 Dragomir 2. Dokovid [16]

Subgroups:

(a,b,c,d,e) = Mlt, (a,b,c,d,f) = {b,c,d,f)Z=M22,

{a,b,d,e,f)^W(F4)/2, (a,b,c,e,f)^24:S5,

(a:b,c,f)~24:A5, {a,b,c,d} ^

(a,b,c,e) = (b,c,e) S S5.

(10.2) Group: HS.

e

Generators: a, b, c, d, e, f, g.
Denning relators: aa, bb, cc, dd, ee, ff, gg, acac, afaf, bgbg, cgcg, (ab)3,

(off)3, (6c)3, (cd)3, (cf)3, (fg)3, (abf)3, (bfg)3, d[bebf)\ d(abe)3, e(adg)3,
a{cdef)3, {bcf)5.

Length = 165.
Consequences: adad, aeae, bdbd, dede, dfdf, efef, egeg, (ce)3, {be)4, (bf)4,

(dg)4, {dfgf.
Subgroups:

(a, b, c, d, e, f) = (b, c, e, / ) = (b, c, d, f, g) s M22,

(a, b, c,d, e, g) = (a, b, c, d, g) = (a, b, c,e, g) £* 24: S6,

(a,b,c,d,e) = (a,b,c,e)^24: S5,

(a, b, c, /, g) = U3{5), (a, b,c, f) = (b, c, f, g) = A7,

(a,c,d,e,f,g) = (a,c,d,f,g) = (c,d,e,f,g) = M2i = L3{4),

{a,c,d,e,g) = (a,c,d,g) S W{F4)/2,

(b, c, / ) = A6, (b, c, d, f) 3* M2i = L3(4),

(c, d, / , g) S (a, 6, d, e, f, g) = (a, b, d, f, g)=23: L3(2),

{b, c, d, e, g)^(2x A2): S4, (6, c, d,e)~24:S4,

(6,c,e,>S42:53, (a,b,f,g) S L3(2) = La(7),

(a,6,d, e, ?) S (b, d,e, f, g) = (b, e, f, g) = 23:S4,

{a,c,e,f,g)^S6, (a,b,c,g) S S5, (b,e,f)^23:D8,
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(a, d, f, g) S (a, b, e, f) S (c, d, e, f) 2 23 : 54,

(a, 6,e) S* (a,d, <?) S (c,d, (?) = 23: 53, (a, 6, / ) = S4.

11. Presentations of McL

159

(11.1) Group: McL.

Generators: a, b, c, d, e, f.

Defining relators: aa, bb, cc, dd, ee, ff, bebe, bfbf, cfcf, dede, (ab)3, (be)3,
(ce)3, (e/)3, a(cdfd)2, a{def)3, e{abd)3, (bede)5.

Length = 119.

Consequences: acac, adad, aeae, afaf, (bd)4, (cd)4, (df)4, (cde)3, (bebd)5,
(bed)7.

Subgroups:

(a, b, c, d, e) = (a, b, c, d) S M22,

(b, c, d, e) = (6, c, d) S M2i = L3(4),

(a,b,d,e) = (a,b,d) a (a,d,e,f) = (d,e,f) = 2 x S4,

(a, b, c, e, f) = (a, b, d, e, f) 2 S6, (c, d, e,) =* 54,

(a, c, d, e, / ) = (c, d, e, f) = 24:S4,

(b, d, f) S 32: L>8, (c, d, / ) S (J98 * Ds): 2.

(11.2) Group: McL.

e
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Generators: a, b, c, d, e, / , g.

Defining relators: aa, bb cc, dd, ee, ff, gg, aeae, afaf, bgbg, efef, (ag)3, (bf)3,
(ee)3, (c/)3, (fg)3, (dg)4, a(cd)3, (aft/)3, d(abeb)\ d(beff, e(dgf)3, (abed)3,
g(bcec)3.

Length = 162.
Consequences: acac, adad, bdbd, cgcg, dede, dfdf, egeg, (ab)4, (be)4, (be)4,

(cd)6, (abg)3, (adg)3, (cdef)3, (edgd)3, (abe)4, (abe)4, (cde)4, (cdf)4, (beff,
(edgf, (abfcf, (bedef, (bee)7, (bedbff.

Subgroups:

i, (a,b,c,d,f)^24:A7,

{a,c, d, e, f, g) = {c, d, f, g) S U4(2) S S4(3),

(a,b,c,d,g) = (b,c,d,g)^24:S5,

(a,c,e, f,g) = S6, (a,b,c,/)S24: A6,

(a, b, c) S (a, b, d, e) = (a, b, e) = (D8 * D8): 2,

(a ,6, / , f f )s Z,3(2) = L2(7),

(a,c,d,e,g} = S6, (b,c,f)=Ae,
(b,c,e,g) = (b,c,e) S 2 x L3(2) 2 2 x L2(7),

( a ,6 ,d , S )^2 4 :5 3 , (a,c,d,g) a S8>

(a, c, d, e, / ) = (c, d, e, / ) S (a, b, c, d) = (b, c, d) S 23 : S4,

(b,d,e,f,g) = (b,e,f,g) S (a,b,d,e,f) = (a,b,e,f) = 23: 54,
(a, 6, d, e, ff) = (a, 6, e, g) a (a, 6, c, ff) a 23: S4,

(a,b,g) = {a,d,g) ^ (a,b,f) ^ S4,

(6,d,c,/>a(d,g,/>a2x54.

12. Presentations of 56(2) and related groups

The group 2 • 5e(2) is a centralizer of an involution in the smallest Conway
group Co3. All presentations in this section were discovered while searching for
a simple presentation of C03. The group 2 x SQ(2) is isomorphic to the Weyl
group of the simple complex Lie algebra of type E7. As such it has a Coxeter
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type presentation of length 138. We give here a shorter presentation for that
group.

(12.1) Group: 2 x S6(2) a W(E7).

6 /
/

d

/
4

e

6

Generators: a,b,c,d,e.
Denning relators: aa, bb, cc, dd, ee, bebe, (de)3, a(ce)3, c(ad)3, (bde)3, (bee)4,

(ababd)3.
Length = 92.
Subgroups:

(a,c,d,e) = (a,d,e) = (c,d,e) S (32: 3): 22,

(a,b,c) = 2 x 54, (b,d,e) = S4.

(12.2) By adding the relator (abde)7 to the presentation (12.1) we obtain a
presentation of ^ (2) of length 121.

(12.3) Group: S6(2).

Generators: a,b,c,d,e.
Defining relators: aa, bb, cc, dd, ee, bebe, (de)3, (be)4, (bd)4 a(ce)3, c(ad)3,

(bde)3, (abad)3, (ababd)3, (abd)7.
Length = 122.
Subgroups:

(a,b,c,e) = {b,c,e) 2£ 24: D12, (b,c,d) Si 24: Ds,

(a,c,d,e) = (a,d,e) = (c,d,e) a (32: 3): 22.
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(12.4) Group: 2 • S6(2).

Diagram: It is the sub-diagram of the diagram in (13.1) which is obtained by
deleting the vertex d and the two incident edges.

Generators: a, b, c, e, f, g.

Defining relators: aa, bb, cc, ee, ff, gg, acac, aeae, cece, egeg, (ab)3, f(ag)3,
9(bf)3, (cfg)3, e(abc)3, e(acg)4, (bcfcf)3, e(abcf)7.

Length = 142.

Consequences: afaf, efef, fgfg, (be)4, (c/)4, (ag)6, (eg)6.

Subgroups: See presentation (13.1) where this group occurs as a subgroup.

(12.5) By setting e = 1 in the presentation (12.4) we obtain yet another
presentation of ^(2) of length 121.

(12.6) By omitting the denning relator e(abcf)7 in the presentation (12.4) we
obtain a presentation of 2 x 2 • ^(2) of length 112.

13. Presentations of C03

(13.1) Group: Co3.

Generators: a,b,c,d,e, f,g.

Defining relators: aa, bb, cc, dd, ee, ff, gg, acac, adad, aeae, bdbd, cece,
dgdg, egeg, (ab)3, (cd)3, (de)3, f(ag)3, g(bf)3, (cfg)3, e(abc)3, e(acg)\ (bcfcf)3,
e(abcf)7.

Length = 174.

Consequences: afaf, bebe, bgbg, dfdf, efef, fgfg, (be)4, (cf)4, (ag)6, (eg)6,
a(cdef)4, (bede)4.
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Subgroups:

(b, c, d, f, g) = (b, c, d, / ) s (b, c, d, e, g) = McL: 2,

(a, b, c, e, / , g) = (a, b, c, f) = (a, b,c,g)^2- 56(2),

(a,c,d,e,f,g) = (a,c,d,g) = (c,d,e,f,g) 3 U4(2): 2 = 54(3): 2,

(a,b,f,g) = (a,b,f) = (a,b,g) S (c,d,ff> - (32: 3): 22,

(c,f,g)~2xS4, (4,c)})S

(13.2) Group: Co3.

7 5 (

4 \
6

4

\

Generators: a, 6, c, d, e, f, g.
Defining relators: aa, bb, cc, dd, ff, gg, acac, adad, bdbd, dfdf, (ab)s, {cd)3,

(def, (be)*, f(ag)3, g(bf)3, e(cg)\ e(abc)3, (bfcf)3, (bcfcf)3, a(cdef)\ e(bcf)7.
Length = 175.
Consequences: ee, aeae, a /a/ , bebe, bgbg, cece, dgdg, efef, egeg, fgfg, (c/)4,

M 6 , (bf)e, (eg)8, (bede)*.
Subgroups:

(a,b,c,e,f,g) = (a,b,c,f) = (a,b,c,g) = 2
(a,c,d,e,f,g) = (a,c,d,e,g) = (c,d,e,f,g)^ Ss,

(c,e,f,g) = (c,f,g)=24:D4,

(b,c,e,g) = (b,c,g) S (Ds * Qs): D8,

(a, b, f, g) = (a, b, f) - (a, b, g) = (32: 3): 22,

(c,d,e,g) = (c,d,g)=L3(2):2.
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(13.3) Group: Coz.

Generators: a, b, c, d, e, f, g.
Defining relators: aa, bb, cc, dd, ee, ff, gg, adad, afaf, agag, bdbd, bgbg,

cfcf, dfdf, dgdg, (ab)3, (cd)3, (bfbfg)2, e(abc)3, ae(cfgf, e(bcg)4, (bcbfbf)3,
e(bcfgf)7.

Length = 179.
Consequences: acac, aeae, bebe cece, efef, egeg, (de)3, (fg)3, (be)4, (eg)4,

(bff, (bede)4, a(cdeg)4, a(cdfg)4.
Subgroups:

(a, b, c, d, e, g) — {b, c, d, g) = Ss,

(a, M , e,/) = («A c,/) = 2 x t/2 (3): 2,

(b,c,d,e,f)=M2i: 22,

(a,b,c,d,e) ^ (a,b,c,d) ^W(Fi)/2,

(a,c,d,e, f,g) = (c,d,f,g) =W(F4),

(a, b, c, e, g) = (a, b, c, g) S (a, c, d, e, g) = (c, d, e, g) Sf 24: S4,

(aA/)a-(32:3):22, (b,f,g)^32:22,

(b,c,e,f) = (b,c,f)^2xL3(2):2,

(b,c,d,e)^24:D12, (a,b,f,g)^33:D1

14. Presentations of C/3(5), f/3(5): 2, and 4 • C/4(3): 22

(14.1) Group: f/3(5).
Diagram: It is the sub-diagram of the diagram in (10.2) obtained by deleting

the nodes d and e and the four incident edges.
Generators : a, b, c, f, g.
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Defining relators: aa, bb, cc, ff, gg, acac, afaf, bgbg, cgcg, {ab)3, (ag)3,
(be)3, (c/)3, (/ff)3, (abf)3, (bfg)3, (beff.

Length = 106.
Consequences: (bf)4.
Subgroups: See sub-section (10.2) where this group occurs as a subgroup.
We now give a presentation of t/3 (5): 2. Since this group is a maximal sub-

group of the Rudvalis' simple group Ru, this presentation might be extendable
to a presentation of Ru.

(14.2) Group: f/3(5): 2.

8

Generators: a,b,c,d,e.
Defining relators: aa, bb, cc, dd, ee, aeae, bdbd, bebe, dede, (ab)3, (be)3, (ce)3,

a(cd)4, (bedbede)5.
Length = 102.
Consequences: acac, adad, (cd)8.
Subgroups:

(a,b,c,d) = (b,c,d)=L3(2): 2, (a,b,c,e) = S5,

(14.3) Group: 4C/4(3): 22.

Generators: a, b, c, d, e, f.
Defining relators: aa, bb, cc, dd, ff, acac, adad, afaf, bdbd, cfcf, dfdf, efef,

(ab)3, (cd)3, (be)4, (bff, e(abc)3, (abf)6, (bcbfbf)3.
Length = 135.
Consequences: ee, aeae, bebe, cece, (de)6.
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Subgroups:

{a,b,c,d,e) = {a,b,c,d)^24: (S3 x S3),

( & , c , d , e , / ) - 4 - M 2 1 : 2 2 ,

(a,b,c,e,f) = (a,b,cJ)°£2xU3{S):2.

15. Independent verification of some presentations

(15.1) We first describe the method used in deriving the presentations listed
in this paper. We start with a simple group G which is given as a permutation
group. For instance the group Co3 has a faithful permutation representation of
degree 276. It can be generated by two elements: one involution and another
element of order three. We used such a pair of generators from Warboy's paper
[8] in order to define in CAYLEY the group C03 as a permutation group of
degree 276. For many other simple groups, for instance the Matheiu groups,
HS, and McL, such definitions were already available in CAYLEY.

The next most tedious step was to select suitable involutions in G which
generate G, and to search for simple relations satisfied by these involutions. If
S is the set of involutions and R the set of relators that we have selected then
we obtain a homomorphism 4> from the abstrac group given by the presentation
{S: R) onto G. With some luck we can show, using coset enumeration, that this
homomorphism is an isomorphism.

In the case of Mathieu groups or As we list the premutations <f>(S) so that the
verification of the corresponding presentations is relatively easy. We shall give
below the details in the case of the largest Mathieu group MIA- For Mathieu
groups one can use.the MOG (the Miracle Octad Generator) or MINI-MOG in
order to verify that the listed permutations indeed belong to the corresponding
Mathieu group. For that purpose we refer the reader to [2], [3], and [5].

In some other cases one can verify the given presentations by a judicious use
of coset enumeration. As an example we shall give below such a verification for
the presentation (8.1) of 3\. All the remaining presentations can be verified by
using additional tools: CAYLEY and various characterizations of the relevant
simple groups. We give below such a verification of the presentation (10.1) of
HS.

(15.2) Let G = (S: R) be the group given by the presentation (7.1). We know
that there is an epimorphism cj>: G —• M24 as specified in that subsection. Let
K be the subgroup of G generated by the elements a, b, c, d, f, and g. Since
R includes the relators: cc, dd, ee, (de)3, (cd)5 and a(cde)5, it follows that the
relations

aa = acac = adad = 1,
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are valid in G. It is easy to show (using coset enumeration) tha t gg = 1 is a

consequence of the relators: aa, bb, cc, ff, acac, afaf, cfcf, {ab)3, {bf)3, (bcf)3,
and g(abc)3. Another coset enumeration (including the redundant relators aa
and gg) shows that [G: K] = 1,288, that is, it is equal to the index of M\2: 2 in
M24.

Now let H be the group with generators a, b, c, d, f, g whose defining relators
are acac, adad, and the defining relators of G which involve only generators of
H. Yet another coset enumeration shows that the order of H is 12 times the
order of M\i: 2.

The above facts imply that the order of TV = Ker$ divides 12. Since G/N =
M24, it follows that TV is the center of G. It is immediate from the presentation
of G that it is a perfect group. Since the Schur multiplier of M24 is trivial, it
follows that TV = {1}, that is, G = M24.

(15.3) Now let G be the group given by the presentation (8.1), and let H be
its subgroup generated by the elements c, d, and e. A coset enumeration shows
that:

[G: H] = 1,463 = 7-11-19.

Since G collapses (verified via coset enumeration) when either of the relations
a = 1 or cd = 1 is added, it follows that H = 2 x A5. Consequently the order of
G is 175,560. In order to show that G = Ji, it sufficies to prove that G is simple.

Assume that G has a non-trivial proper normal subgroup TV. The facts men-
tioned above imply that NnH = {1}. Since \N\ divides 7-11 19, we may assume
that TV is cyclic of prime order. Since A$ centralizes TV, and G is perfect, we infer
that TV lies in the center of G. On the other hand, by Schur-Zassenhaus theorem
G splits over TV and consquently TV is a direct factor of G. This contradicts the
fact that G is perfect. Hence G is indeed a simple group.

(15.4) As a final example we consider the presentation (10.1) of HS. Let
G = (R: S) be the group defined by that presentation and let

H = (a, b, c, d, f) and K = (a, b, c, d, e)

be its subgroups. By using the presentation (1.1) of My we conclude that K
is isomorphic to Mn or is a trivial group. A coset enumeration shows that the
index [G: K] is 5,600, that is, it is equal to the index of M u in HS. Next we
define a permutation representation <j> of G on the right cosets of H by using
CAYLEY. We then find that the degree of Im (j> is 100 and that it has the same
order as HS. Hence we can conclude that K = Mn and the </> is faithful.
Furthermore, still using CAYLEY, we find that the orbits of H have the sizes

https://doi.org/10.1017/S1446788700030068 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030068


168 Dragomir 1. Dokovid [26]

1, 22, and 77. Since these properties characterize HS, we conclude that indeed
G^HS.

Added in proof

By omitting, in the presentation (13.2) of Co3, the generator d and all the
denning relators which involve that generator, we obtain a presentation of 2-S§{2)
of length 125.
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