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On the Generalized
Cyclic Eilenberg-Zilber Theorem

M. Khalkhali and B. Rangipour

Abstract. We use the homological perturbation lemma to give an algebraic proof of the cyclic

Eilenberg-Zilber theorem for cylindrical modules.

1 Introduction

The original Eilenberg-Zilber theorem (see [7] for a recent account) states that if X

and Y are simplicial abelian groups then the total complex of the bicomplex X ⊗Y is
chain homotopy equivalent to the diagonal complex of X ⊗ Y . This result was then

generalized by Dold and Puppe to bisimplicial abelian groups [4, 7]: if X is a bisim-
plicial abelian group then the total complex and the diagonal complex of X are chain
homotopy equivalent. This extension is important because in many examples (e.g.

the bisimplicial group associated to a group action through its translation category),

X is not decomposable as the tensor product of two simplicial groups.

Thanks to the work of Connes [3], one knows that a general setup for defining and

studying cyclic homology is through cyclic modules. In order to define products and
coproducts in cyclic homology and to prove Künneth type formulas, several authors,
including Kassel [10], Hood-Jones [8], and Loday [11], have proved Eilenberg-Zilber
type theorems for tensor products of cyclic modules associated to algebras. A good

reference that compares various methods used by these authors is A. Bauval’s article
[1]. In ([11], p. 130) one can find an Eilenberg-Zilber theorem for tensor products of
two cyclic modules. The most general result in this direction is stated by Getzler and
Jones in [6]. The proof is however topological in nature, and is based on the method

of acyclic models. In view of the importance of this result for cyclic homology theory,
for example in deriving a spectral sequence for the cyclic homology of the crossed
product algebra for the action of a group, as in [6], or for the action of a Hopf algebra,
we felt it desirable to give a purely algebraic proof of this fact.

In attempting to extend the proof in [11] to this more general setup, we real-

ized that the cyclic shuffle map of [11] has no immediate extension to cylindrical (or
even bicyclic) modules, while the shuffle and Alexander-Whitney maps have more
or less obvious extensions (see the Remark in Section 3 for more on this). It seems
plausible that one should use a different definition for cyclic shuffles. Instead, we

use the homological perturbation lemma to obtain an algebraic proof for the cyclic
Eilenberg-Zilber theorem for cylindrical modules. Our approach is motivated by
A. Bauval’s work [1], where a perturbation lemma is used to give an alternative proof
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of the cyclic Eilenberg-Zilber theorem of [11]. In using the perturbation lemma,
one has to overcome two difficulties: first, showing that the first term in the per-

turbation formula is identical with the boundary operator Bt (Proposition 3.3), and
secondly, proving that all higher order terms in the perturbation formula actually
vanish (Theorem 3.1). We find it remarkable that these results continue to be true in
our cylindrical module context. By making use of explicit formulas for the contract-

ing homotopy in the generalized Eilenberg-Zilber theorem for bisimplicial modules,
one can, in principle, find an explicit formula for a generalized cyclic shuffle map.

We would like to thank Rick Jardine and Jean-Louis Loday for informative discus-
sions on the subject of this paper. We would like also to thank a referee whose critical

comments and suggestions led to a substantial improvement in our presentation.

2 Preliminaries

Let k be a commutative unital ring. Recall that [5] a Λ∞-module is a simplicial
k-module M = (Mn)n≥0 endowed, for each n ≥ 0, with automorphisms τn : Mn →
Mn, such that the following relations hold

δiτn = τn−1δi−1, 1 ≤ i ≤ n,

δ0τn = δn,

σiτn = τn+1σi−1, 1 ≤ i ≤ n,

σ0τn = τ 2
n+1σn.

Here δi and σi are the faces and degeneracies of M. In case τ n+1
n = 1 for all n ≥ 0,

we say that M is a cyclic k-module. We denote the categories of Λ∞ (resp. cyclic)

k-modules by kΛ∞ (resp. kΛ).
For example, to each unital k-algebra A and an algebra automorphism g ∈ Aut(A)

one can associate a Λ∞-module A\
g with A\

g,n = A⊗(n+1), and with faces, degeneracies
and τn defined by

δi(a0 ⊗ · · · ⊗ an) = a0 ⊗ a1 ⊗ · · · ⊗ aiai+1 · · · ⊗ an, 0 ≤ i ≤ n − 1,

δn(a0 ⊗ · · · ⊗ an) = (gan)a0 ⊗ a1 ⊗ · · · ⊗ an−1,

σi(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1 · · · ⊗ an, 0 ≤ i ≤ n,

τn(a0 ⊗ · · · ⊗ an) = gan ⊗ a0 · · · ⊗ an−1.

The cyclic homology groups of a cyclic k-module M can be defined, among other

ways, via the bicomplex B(M) defined by

Bm,n(M) = Mn−m if n ≥ m ≥ 0,

Bm,n(M) = 0 otherwise.

The vertical boundary operator is defined by

b =

m∑

i=0

(−1)iδi : Mm → Mm−1,
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and the horizontal boundary operator is given by

B = Nσ−1(1 − t) : Mm → Mm+1,

where

t = (−1)mτm, σ−1 = τmσm : Mm → Mm, and N = 1 + t + · · · + tm.

One can check that b2
= B2

= bB + Bb = 0. The cyclic homology of M, denoted by

HC∗(M), is defined to be the total homology of the first quadrant bicomplex B(M).
If M is only a Λ∞-module, we can still define the operator B as above and B2

= 0
[6], however bB + Bb need not be zero. As in [6], let T = 1 − bB − Bb.

Recall that a mixed complex (C, b, B) is a chain complex (C, b) with a map of de-

gree +1, B : C∗ → C∗+1, satisfying b2
= B2

= bB + Bb = 0 [11]. To any mixed com-
plex C one associates a bicomplex BC in the first quadrant, defined by BCn,m = Cm−n

if m ≥ n ≥ 0 and 0 otherwise, with horizontal boundary B and vertical boundary
b. By definition, the cyclic homology of C is HC∗(C) = H∗

(
Tot(BC)

)
, and its

Hochschild homology is, HH∗(C) = H∗(C, b). As for cyclic homology of algebras,
here also, we have a short exact sequence of complexes,

0 → (C, b) → Tot(BC)
S
→ Tot(BC)[2] → 0,

where S is the quotient map obtained by factoring by the first column.

An S-morphism of mixed complexes f : (C, b, B) → (C ′, b ′, B ′) is a morphism of
complexes f : Tot(BC) → Tot(BC ′), such that f commutes with S. One can write
an S-morphism as a matrix of maps

f =








f 0 f 1 f 2 · · ·
f −1 f 0 f 1 · · ·
f −2 f −1 f 0 · · ·

...
...

...
. . .








where f i : C∗−2i → C ′
∗, and [B, f i] + [b, f i+1] = 0.

The benefit of S-morphisms may be seen in many cases when we do not have a
cyclic map between cyclic modules but we can have a S-morphism. Every S-morph-
ism induces a map f∗ : HC∗(C) → HC∗(C ′) rendering the following diagram com-

mutative

0 −−−−→ C −−−−→ Tot(BC) −−−−→ Tot(BC)[2] −−−−→ 0

f 0



y f



y f [2]



y

0 −−−−→ C ′ −−−−→ Tot(BC ′) −−−−→ Tot(BC ′)[2] −−−−→ 0

We have the following proposition which follows easily from the five lemma:

Proposition 2.1 ([11]) Let f : (C, b, B) → (C ′, b ′, B ′) be an S-morphism of mixed

complexes. Then f 0
∗ : HH∗(C) → HH∗(C ′) is an isomorphism if and only if

f∗ : HC∗(C) → HC∗(C ′) is an isomorphism.

https://doi.org/10.4153/CMB-2004-006-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-006-x


On the Generalized Cyclic Eilenberg-Zilber Theorem 41

Let Λ∞(resp. Λ) be the ∞-cyclic (resp. cyclic) categories of Feigin-Tsygan [5]
(resp. Connes [3]). We do not need their actual definitions for this paper.

Definition 2.1 ([6]) By a cylindrical k-module we mean a contravariant functor
X : Λ∞ × Λ∞ → k-mod, such that for all p, q, τ q+1t p+1

= id : Xp,q → Xp,q. More

explicitly, we have a bigraded sequence of k-modules Xn,m, n, m ≥ 0, with horizontal
and vertical face, degeneracy and cyclic operators

di : Xn,m → Xn−1,m, n ≥ i ≥ 0,

si : Xn,m → Xn+1,m, n ≥ i ≥ 0,

t : Xn,m → Xn,m,

δi : Xn,m → Xn,m−1, m ≥ i ≥ 0,

σi : Xn,m → Xn,m+1, m ≥ i ≥ 0,

τ : Xn,m → Xn,m,

such that every vertical operator commutes with every horizontal operator and ver-
tical and horizontal operators satisfy the usual Λ∞-module relations. Moreover, for

all p and q the crucial relation τ q+1t p+1
= id : Xp,q → Xp,q holds. In this paper we

denote the horizontal operators by di , si , t and the vertical operators by δi , σi , τ .

Example 2.1 Homotopy colimits of diagrams of simplicial sets are defined as the
diagonal of a bisimplicial set ([7], p. 199). We show that if the indexing category
is a cyclic groupoid and the functor has certain extra properties, we can turn this
bisimplicial set into a cylindrical module. Let I be a groupoid, i.e., a small category

in which every morphism is an isomorphism. Recall from [2] that a cyclic structure
ε on I is a choice of morphisms εi ∈ Hom(i, i) for all i ∈ Obj(I), such that for all
f : i → j, f εi = ε j f . Let (I, ε) be a cyclic groupoid. We call a functor Z : I → kΛ∞

a cyclic functor if Z(εi)|Z(i)n = tn+1
n |Z(i)n. To each cyclic functor Z we associate a

cylindrical k-module BEI Z, such that,

BEI Zm,n =

⊕

i0
g1
→i1

g2
→···

gm
→im

Z(im)n.

We define the following cylindrical structure on BE I Z:

(
δ j(x)

)

i0
g1
→i1

g2
→···

gm
→im

=







(x)
i1

g2
→i2

g3
→···

gm
→im

if j = 0

(x)
i0

g1
→i1

g2
→···

g j−1
→ i j−1

g j+1◦g j
→ i j+1

g j+2
→···

gm
→im

if 1 ≤ j ≤ m − 1
(

g−1
m (x)

)

i0
g1
→i1

g2
→···

gm−1
→ im−1

if j = m,

(
σ j(x)

)

i0
g1
→i1

g2
→···

gm
→im

= (x)
i0

g1
→i1

g2
→···

g j
→i j

id
→i j

g j+1
→···

gm
→im

,

(
τ (x)

)

i0
g1
→i1

g2
→···

gm
→im

=
(

g−1
m (x)

)

im
h
→i0

g1
→···

gm−1
→ im−1

,
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where h = (gm ◦ gm−1 ◦ · · · ◦ g1)−1. The horizontal structure is induced by the cyclic
structure of Z(im). One can check that BEI Z is a cylindrical module.

We apply the above construction to the following situation. Let G be a (discrete)
group acting by unital automorphisms on an unital k-algebra A. Let I = G be the

category with G as its set of objects and Hom(g1, g2) = {h ∈ G | hg1h−1
= g2}.

Define a cyclic structure ε on I by εg = g, for all g ∈ G. Obviously (I, ε) is a cyclic
groupoid. Define a functor Z : I → kΛ∞ by Z(g) = A\

g and Z(h) : Z(g1) → Z(g2) the
map induced by h. It is a cyclic functor. It follows that BE I Z is a cylindrical module.

The cylindrical module X = BEI Z can be identified as follows. We have

Xm,n =

⊕

Gm+1

A⊗(n+1) ∼= kG⊗(m+1) ⊗ A⊗(n+1),

where kG is the group algebra of the group G over k. The isomorphism is defined by

φm,n : BEI Zm,n → kG⊗(m+1) ⊗ A⊗(n+1),

φm,n

(
(a0, a1, . . . , an)

i0
g1
→i1

g2
→···

gm
→im

)
= (i−1

m gm · · · g1, g−1
1 , . . . , g−1

m |a0, a1, . . . , an).

Under this isomorphism the vertical and horizontal cyclic maps are given by:

τ (g0, . . . , gm|a0, . . . , an) = (g0, . . . , gm|g
−1 · an, a0, . . . , an−1),

δi(g0, . . . , gm|a0, . . . , an) = (g0, . . . , gm|a0, . . . , aiai+1, . . . , an), 0 ≤ i < n

δn(g0, . . . , gm|a0, . . . , an) =
(

g0, . . . , gm|(g−1 · an)a0, . . . , an−1

)
,

σi(g0, . . . , gm|a0, . . . , an) = (g0, . . . , gm|a0, . . . , ai , 1, ai+1, . . . , an), 0 ≤ i ≤ n,

t(g0, . . . , gm|a0, . . . , an) = (gm, g0, . . . , gm−1|gm · a0, . . . , gm · an),

di(g0, . . . , gm|a0, . . . , an) = (g0, . . . , gigi+1, . . . , gm|a0, . . . , an), 0 ≤ i < m,

dm(g0, . . . , gm|a0, . . . , an) = (gmg0, g1, . . . , gm−1|gm · a0, . . . , gm · an),

si(g0, . . . , gm|a0, . . . , an) = (g0, . . . , gi, 1, gi+1, . . . , gm|a0, . . . , an), 0 ≤ i ≤ m,

2 where g = g0g1 · · · gm.

This shows that, in this particular case, our cylindrical module BE I Z reduces to

the cylindrical module associated in [6] to the action of a group on an algebra.

3 Proof of the Main Theorem

Let X be a cylindrical k-module, and let Tot(X) denote its total complex, defined by
Tot(X)n =

⊕

p+q=n Xp,q. Consider the horizontal, and vertical b-differentials bh
=

∑n
j=0(−1) j d j and bv

=
∑m

i=0(−1)iδi , and let b = bh + bv. Similarly we define Bh, Bv,

and B = TvBh + Bv, where Tv
= (1 − bvBv − Bvbv). The following lemma is proved

in [6].
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Lemma 3.1
(

Tot(X), b, B
)

is a mixed complex.

We can also define the diagonal d(X) of a cylindrical module X. It is a cyclic

module with d(X)n = Xn,n, and the cyclic structure: diδi as the i-th face, siσi as
the i-th degeneracy and tτ as the cyclic map. Note that the cylindrical condition
τ q+1t p+1

= id : Xp,q → Xp,q is needed in order to show that (τ t)n+1
= id : Xn,n →

Xn,n. Associated to this cyclic module we have a mixed complex
(

d(X), bd, Bd

)
.

The following definition is from [4, 13]. It extends the standard shuffle map, orig-

inally defined on the tensor product of simplicial modules, to bisimplicial modules.

Definition 3.1 Let X be a bisimplicial module. Define ∇n,m : Xn,m → Xn+m,n+m by

∇n,m =

∑

η∈Shm,n

(−1)ηsη̄(n+m) · · · sη̄(m+1)ση̄(m) · · ·ση̄(1),

where Shm,n ⊂ Sn+m, is the set of shuffles in the symmetric group of order n + m,
defined by η ∈ Shm,n if and only if η(1) < η(2) < · · · < η(m), and η(m + 1) < · · · <

η(m + n). Here η̄( j) = η( j) − 1, 1 ≤ j ≤ n + m. We define the shuffle map

Sh :
⊕

p+q=n

Xp,q → Xn,n,

by

Sh =

∑

p+q=n

∇p,q.

Proposition 3.1 The shuffle map Sh : Tot(X) → d(X) is a map of b-complexes of

degree 0.

Proof We must show that bd ◦ Sh = Sh ◦ bh + Sh ◦ bv. All elements in the left hand
side are of form

diδisµ̄(m+n) · · · sµ̄(m+1)σµ̄(m) · · ·σµ̄(1).

It would be better to divide these elements into five parts:

1. i = 0, or i = m + n.
2. 1 ≤ i ≤ m + n, and i ∈ {µ(1), . . . , µ(m)}, i + 1 ∈ {µ(m + 1), . . . , µ(m + n)}.
3. 1 ≤ i ≤ m + n, and i + 1 ∈ {µ(1), . . . , µ(m)}, i ∈ {µ(m + 1), . . . , µ(m + n)}.

4. 1 ≤ i ≤ m + n, and i, i + 1 ∈ {µ(1), . . . , µ(m)}.
5. 1 ≤ i ≤ m + n, and i, i + 1 ∈ {µ(m + 1), . . . , µ(m + n)}.

For part 1, let i = 0 (we leave to the reader the rest of this case). We have

d0δ0sµ̄(m+n) · · · sµ̄(m+1)σµ̄(m) · · ·σµ̄(1) = s ¯̄µ(m+n)
· · · s ¯̄µ(m+1)

σ ¯̄µ(m)
· · ·σ ¯̄µ(2)

d0.

It is obvious that if we define ρ(i) = µ(i +1)−1, then ρ is also a shuffle and the result
is in Sh ◦bv. For case 2, let µ(k) = i, and µ( j) = i + 1, where m + 1 ≤ i ≤ m + n, and
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1 ≤ j ≤ m. Now let α = µ ◦ (i, i + 1). Then it is easy to check that α is also a shuffle
and we have i + 1 ∈ {α(1), . . . , α(m)} and i ∈ {α(m + 1), . . . , α(m + n)}. On the

other hand we have

diδisᾱ(m+n) · · · sᾱ(m+1)σᾱ(m) · · ·σᾱ(1) = diδisµ̄(m+n) · · · sµ̄(m+1)σµ̄(m) · · ·σµ̄(1),

and sign µ = − sign α. So elements of case 2 cancel the elements of case 3. Now let

us do case 4. We assume µ(s) = i, µ(s + 1) = i + 1, where 1 ≤ s ≤ m. We have

diδisµ̄(m+n) · · ·sµ̄(s+2)sisi−1sµ̄(s−1) · · · sµ̄(m+1)σµ̄(m) · · ·σµ̄(1)

= s ¯̄µ(m+n)
· · · s ¯̄µ(s+2)

si−1sµ̄(s−1) · · · sµ̄(m+1)σθ̄(m) · · ·σθ̄(1),

where

θ( j) =

{

µ( j) if µ( j) < i

µ̄( j) if µ( j) > i + 1.

It is easy to show that the permutation

(
1 2 · · ·m m + 1 · · · s − 1 s s + 1 · · ·m + n − 1

θ(1) θ(2) · · · θ(m) µ(m + 1) · · ·µ(s − 1) i − 1 µ̄(m + 1) · · · µ̄(m + n)

)

is a (m − 1, n)-shuffle. Similarly one can do case 5 and then by counting the proof is

finished.

In a similar way to the shuffle map, the Alexander-Whitney map also extends to
bisimplicial modules [13]. Define Ap,q : Xn,n → Xp,q, where p + q = n, by

Ap,q = (−1)p+qδp+1 · · · δn d0 · · · d0
︸ ︷︷ ︸

p times

,

and let
A =

∑

p+q=n

Ap,q : d(X)n → Tot(X)n.

Both maps Sh and A induce maps on the normalized complexes, denoted by

Ā : d̄(X) → Tot(X) and Sh : Tot(X) → d̄(X).

Remark If X = M ⊗ N is the tensor product of two cyclic modules, one can define
the cyclic shuffles [11]

Sh ′ : Mp ⊗ Nq → Mp+q+2 ⊗ Np+q+2.

For example, if M = A\ and N = B\ are cyclic modules of associative unital algebras,
we have Sh ′

p,q(x, y) = σ−1(x) ⊥ σ−1(y), where

⊥ : A\
p ⊗ B\

q → (A ⊗ B)\
p+q,
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is defined by

(a0, a1, . . . , ap) ⊥ (b0, b1, . . . , bq) =

∑

µ

µ−1 · (a0 ⊗ b0, a1 ⊗ 1, . . . ap ⊗ 1, 1 ⊗ b1, . . . 1 ⊗ bq).

The summation is over all cyclic (p, q)-shuffles in Sp+q. The point is that one has

to use µ−1, as opposed to µ as appears in [11] (p. 127), in the above formula. This
was also noticed by Bauval [1] and Loday (private communication). When A and B

are commutative algebras, the definition of cyclic shuffle, and the fact that (Sh, Sh ′):
Tot(X) → d̄(X) defines an S-map which is a quasi-isomorphism, are essentially due

to G. Rinehart (cf. [11]).

Now, one approach to prove the cyclic Eilenberg-Zilber theorem for cylindri-
cal modules would be to extend this cyclic shuffle map to the case where X is not

decomposable to a tensor product. However, no natural extension exists, exactly
because one has to use µ−1 in the above formula for the cyclic shuffles. For ex-
ample, with p = 2 and q = 0, Sh ′

2,0(a0, a1, a2|b0) contains a term of the form

(1, a0, a2, 1, a1|1, 1, 1, b0, 1), corresponding to the cyclic shuffle
(

1 2 3 4
1 3 4 2

)
. It is clear

that a term like (a0, a2, a1) can not be produced from (a0, a1, a2) via the cyclic or
simplicial maps.

Proposition 3.2 Sh and Ā define a deformation retraction of d̄(X) to Tot(X), i.e.

there is a homotopy h : d̄(X) → d̄(X) such that Ā ◦ Sh = 1 and Sh ◦ Ā = 1 + bh + hb.

Proof The existence of h is part of the generalized Eilenberg-Zilber theorem [7]. We
just prove that Ā ◦ Sh = 1. Let us calculate the action of Ā ◦ Sh on a typical element

x ∈ Xp,q. For every Ap ′,q ′ with (p ′, q ′) 6= (p, q), we have Ap ′,q ′ ◦ Sh(x) = 0, so we

should only check the identity Ap,q◦Sh(x) = x. For µ ∈ Sh p,q for simplicity let µ·x =

(−1)µsµ̄(n) · · · sµ̄(p+1)σµ̄(p) · · ·σµ̄(1)(x), and µp,q = (q + 1, . . . , n, 1, . . . , q). Then it is
not difficult to verify that Ap,q(µ.x) = 0 for every µ 6= µp,q, and Ap,q(µp,q.x) = x.

The first applications of perturbation theory to cyclic homology go back to the
work of C. Kassel in [9]. Our proof of the generalized Eilenberg-Zilber theorem,

Theorem 3.1 below, is also based on homological perturbation theory. We recall
the necessary definitions and results from [1, 9]. A chain complex (L, b) is called a
deformation retract of a chain complex (M, b) if there are chain maps

L
g
→ M

f
→ L

and a chain homotopy h : M → M such that

f g = idL and g f = idM +bh + hb.
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The retraction is called special if in addition

hg = f h = h2
= 0.

It is easy to see that any retraction data as above can be replaced by a special re-
traction [9]. Now we perturb the differential of the “bigger” complex M to b + B so

that (b + B)2
= 0. It is natural to ask whether the differential of L can be perturbed to

a new differential b+B∞ so that (L, b+B∞) is a deformation retraction of (M, b+B).
The homological perturbation lemma asserts that, under suitable conditions, this is
possible. More precisely, assume the retraction is special, L and M have bounded

below increasing filtrations, g and f preserve the filtration and h decreases the filtra-
tion. Then it is easy to check that the following formulas are well defined and define
a special deformation retract of (M, b + B) to (L, b + B∞):

h∞ = h
∑

m≥0

(Bh)m,

g∞ = (1 + h∞B)g,

f∞ = f (1 + Bh∞),

B∞ = f (1 + Bh∞)Bg.

To apply the perturbation lemma to our problem, we need to know that the per-

turbed differential b+B∞ coincides with the existing differential. This means we have
to show that the first term in the series for B∞ coincides with Bt and all other terms
vanish. The next proposition verifies the first part of the claim. It is a generalization
of Lemma IV.1 in [1].

Proposition 3.3 Let X be a cylindrical module and let Bt = TvBh + Bv and Bd =

BhBv be the total and diagonal B-differentials on Tot(X) and d̄(X), respectively. Then

ĀBdSh = Bt .

Proof Let x ∈ Xp,q. As in the proof of Proposition 3.2, we have

Sh(x) =

∑

µ∈Sh p,q

µ · x.

Let n = p + q. In

ĀBdSh(x) =

∑

r+s=n+1

Ār,sBdSh(x),

because we are working with normalized chains, all parts are zero except for r = p+1,

s = q or r = p, s = q + 1. We denote the first part by S1 and the second part by S2.
We show that S1 = TvBh(x) and S2 = Bv(x).

For 0 ≤ i ≤ n and µ ∈ Sh p,q, let

S1(i, µ) = Āp+1,qτn+1σntn+1snτ
i
nt i

n(µ.x).
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The reader can easily check that S1(i, µ) = 0 for all 0 ≤ i ≤ q − 1 and all µ ∈ Sh p,q.
For the rest of the elements in S1, we have S1(i, µ) = 0 for all q ≤ i ≤ n and all

µ 6= µp,q,i , where

µp,q,i = (1, 2, . . . , n − i, n + q − i + 1, . . . , n, n − i + 2, . . . , n + q − i).

Now, we have S1(i, µp,q,i) = (−1)(i−q)ptp+1spt
i−q
p τ

q+1
q . We have shown that S1 =

TvBh(x).
Next, we compute S2. For 0 ≤ i ≤ n and µ ∈ Sh p,q let

S2(i, µ) = Āp,q+1τn+1σntn+1snτ
i
nt i

n(µ.x).

For q + 1 ≤ i ≤ p + q and all µ ∈ Sh p,q we have S2(i, µ) = 0, and if we denote

αi,p,q = (q − i + 1, . . . , n − i, 1, 2, . . . , q − i, n − i + 1, . . . , n),

then S2(i, µ) = 0 for all 0 ≤ i ≤ q and all µ 6= αp,q,i . Finally, we have S2(i, αp,q,i) =

(−1)iqτq+1σqτ
i
q for 0 ≤ i ≤ q. We have shown that S2 = Bv(x). The proposition is

proved.

Now we are in a position to combine the perturbation lemma with the above
proposition to prove:

Theorem 3.1 Let X be a cylindrical module. Then there exists an S-map of mixed

complexes, f : Tot(X) → d(X), such that f0 = Sh is the shuffle map and f is a quasi-

isomorphism.

Proof It suffices to prove the statement for the normalized complexes. By Propo-
sition 3.2,

(
Tot(X), b

)
is a deformation retract of

(
d̄(X), b

)
. So, applying the per-

turbation lemma, we have to show that all the extra terms in the perturbation series
vanish. Now the normalized homotopy operator is induced from the original ho-
motopy operator h : Xn,n → Xn+1,n+1. Dold and Puppe show that the operator h is
universal, in the sense that it is a linear combination (with integral coefficients) of

simplicial morphisms of X (p. 213, Satz 2.9 in [4]). One knows that any order pre-
serving map Φ : [n] → [m] between finite ordinals can be uniquely decomposed
as,

Φ = δi1
δi2

· · · δir
σ j1

σ j2
· · ·σ js

,

such that i1 ≤ i2 ≤ · · · ≤ ir and j1 < j2 < · · · < js and δik
are cofaces and σ jk

are
codegeneracies (cf. e.g. Loday [11], p. 401). On dualizing this and combining it with
the Dold-Puppe result, it follows that the homotopy operator h : Xn,n → Xn+1,n+1 is a
linear combination of operators of the form σv

i σ
h
i ◦ g, where σv

i , σh
i are vertical and

horizontal degeneracy operators and g is another operator whose specific form is not
important for the sake of this argument. Now we look at the perturbation formula.
We are claiming that the induced operator on the normalized chains

Ā ◦ Bd ◦ h∞ ◦ Bd ◦ Sh : Tot(X) → Tot(X),

where h∞ = h
∑

m≥0(Bdh)m is zero. This follows from the above observation since

Image(Bd ◦ h∞ ◦ Bd ◦ Sh) ⊂ Image(Bd ◦ h) ⊂ degenerate chains.
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