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Abstract. An improvement of an existing three-dimensional analytical model de-
scribing the solar wind flow near a reconnection site at the dayside magnetopause
is reported. Introducing an arbitrary orientation of the reconnection line, general
solutions for the plasma velocity and magnetic field during the transition of the
magnetopause are presented, together with the development of the magnetopause
transition layer away from the reconnection site.

1. Introduction
Recently, Westerberg and Åkerstedt (2006) made a three-dimensional analysis
covering the solar wind flow near a reconnection site at the terrestrial magneto-
pause. The objective of their study was to obtain a description of the velocity
and magnetic field structure during the transition from the magnetosheath to the
magnetosphere, together with the development of the magnetopause transition
layer separating magnetosheath plasma from magnetosphere plasma. However,
their model covers only a special case where the reconnection line is aligned with
the y-axis. The main objective of the present paper is to present an extension of
the previous analysis by introducing an orientation of the reconnection line that is
arbitrary in the yz-plane (Fig. 1(b)), and solve the governing equations for a new
set of coordinates.
Considering a three-dimensional flow we let

u = uxx̂+ uyŷ+ uz ẑ, (1.1a)

B = Bxx̂+ Byŷ+ Bz ẑ, (1.1b)

where x̂, ŷ, ẑ represent a local plane coordinate system close to the reconnection
line, with x̂ pointing in the normal direction of the magnetopause, ẑ pointing in
the tangential direction, and ŷ completing the right-hand system. The coordinates
x, y, z are thus identical to the local plane magnetopause coordinates L, M , N
(Russell and Elphic 1978), such that z = L, y = M , and x = N (see Fig. 1(a)).
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Figure 1. Curvilinear coordinate system and orientation of the reconnection line.
(a) The curvilinear coordinate system with conventional labels for the coordinate axis, with x
pointing in a normal direction to the magnetopause surface, z in the corresponding tangential
direction, and y completing the right-hand system. It is identical to the magnetopause
boundary coordinates (L,M,N) (Russell and Elphic 1978), with z = L, y = M , and x = N .
(b) The orientation of the reconnection line with a new coordinate system, where z′ is normal
to the reconnection line, y′ is aligned with the reconnection line, and x′ = x.

The dimensionless equations describing the plasma properties north and south
of a reconnection line are (Westerberg and Åkerstedt 2006)
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Uy,z are the respective components of the DeHoffmann–Teller (DHT) velocity
(DeHoffmann and Teller 1950; Westerberg and Åkerstedt 2006), α = (1 + ηd/ν)
where ηd is the magnetic diffusivity and ν the kinematic viscosity, and u

(0)
y,z are the

respective components of the plasma velocity with respect to the DHT frame of
reference. ξ is the re-scaled x-coordinate such that ξ = R1/2x. See Westerberg and
Åkerstedt (2006) for details of the analysis.

2. Solutions
For the solution to (1.2) and (1.3) the DHT velocities are expanded such that

Uy = U0
y , (2.1a)

Uz = U0
z . (2.1b)
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In order to match the analytical solutions with satellite data only the leading-
order term in z is utilized. Matching higher-order terms requires gradients of the
magnetic field and velocity field, which are not known from satellite data. The
DHT velocity as it is defined in the analysis is related to the experimental value
of the DHT velocity obtained through minimisation of the residual electric field
(Sonnerup and Scheible 2000), such that

UDHT = VDHT − VDHT,n. (2.2)

The DHT velocity to be used is thus the difference between the experimentally
calculated DHT velocity and its component normal to the magnetopause boundary.
Transforming to the x′y′z′-coordinate system (Fig. 1(b)) we obtain

y′ = y cos(φ) + z sin(φ), (2.3a)

z′ = −y sin(φ) + z cos(φ), (2.3b)

ξ′ = ξ, (2.3c)
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Applying (2.1) and (2.3) to (1.2) and (1.3), the equation system can be written as
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Using the Jordan matrix (J) we can express the system as
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P =

⎡
⎢⎢⎢⎣

0
2(2U0

z U0
y sin(φ) cos(φ) − U0

z
2cos(φ)2 − U0

y
2 + U0

y
2cos(φ)2)

U0
y

2

1 −U0
z

U0
y

⎤
⎥⎥⎥⎦ , (2.8)

A =

[
2U0

z cos(φ) − U0
y sin(φ) −U0

z sin(φ)

U0
y cos(φ) −2U0

y sin(φ) + U0
z cos(φ)

]
, (2.9)

u =

⎡
⎣u

(0)
z

u
(0)
y

⎤
⎦ . (2.10)

Introducing V = Pu such that
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Having (2.13) in parabolical form, we seek to find a self-similar solution of the form

η = ξ′g(Z ′) =
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, (2.15a)

Z ′ = z′ − z′
0, (2.15b)

where δ(Z ′) is the transition layer thickness as a function of the distance from the
reconnection line. This results in a new set of partial derivatives
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Equation (2.13) can then be written in terms of the new variables as
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For the solution to (2.17) we expand V1 and V2 such that

V1 = V10(η) + Z ′V11(η), (2.18a)

V2 = V20(η) + Z ′V21(η). (2.18b)

Applying (2.18) in (2.17) gives to lowest order

V ′′
20 +

b

α
δ′δηV ′

20 = 0, (2.19a)

V ′′
10 +

2b

α
δ′δηV ′

10 = −2
a
V ′′

20, (2.19b)

with solutions

V20 = C1 + C2 · erf
(

1
2

√
2k1η

)
, (2.20a)

V10 =
2C2 cos(φ)

U0
y

(U0
z cos(φ) − U0

y sin(φ)) · erf
(

1
2

√
2k1η

)
(2.20b)

+
C3

2
√

k1/π
· erf(

√
k1η) + C4, (2.20c)

where k1 = bδ′δ/α is a constant. This results in the expression for the transition
layer thickness
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In order to obtain real solutions, k1 has to be positive. Furthermore, a condition
for φ is obtained to satisfy (U0

z cos(φ) − U0
y sin(φ)) > 0 when Z ′ > 0 (north of

the reconnection line), and (U0
z cos(φ) − U0

y sin(φ)) < 0 when Z ′ < 0 (south of the
reconnection line).
Figure 2 shows an example of the development of u and B north of the recon-

nection site, during the transition of the magnetopause. Matching conditions from
measurements made by Cluster spacecraft 4 during a magnetopause crossing on
13 January 2002. For U0

z = 1.5, U0
y = 1, and k1 chosen to be equal to 2, we obtain

the condition −90◦ < φ < 56◦. Each graph includes plots for φ = 54◦, φ = 30◦, and
φ = −89◦.
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Figure 2. Example of the development north of the reconnection line for u and B during the
transition of the magnetopause. The current length scale on the x-axis is in Earth radii (RE).
The asterisk denotes dimensional quantity. Here U0

z = 1.5 and U0
y = 1, giving the condition

−90◦ < φ < 56◦. The solid line, dashed line, and dotted line represent φ = 54◦, φ = 30◦, and
φ = −89◦, respectively.

3. Summary
In this paper we have introduced an orientation of the reconnection line that is
not limited to being aligned with the y-axis, and a development of an existing 3D
analytical model covering the plasma flow behaviour near a reconnection site is
presented. Using satellite data gathered by the Cluster 4 spacecraft, we present a
case where the reconnection line is located in the interval −90◦ < φ < 56◦ (Fig. 2).
Furthermore, it is shown that near the upper limit the effect of plasma flux pile up
is significant. It is also shown that the thickness of the transition region decreases
from a maximum near the lower limit of φ, when approaching the upper limit.
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