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Introduction

In the classification problems of manifolds, the connected sums of
sphere bundles over spheres appear frequently. In fact, the manifolds with
certain tangential and homotopy properties come to such connected sums
(cf. Tamura [15], [16], Ishimoto [6], [8], [9]). Motivated by those, in this
paper and the subsequent paper, we classify connected sums of sphere
bundles over spheres up to homotopy equivalence by extending the results
of I. M. James and J. H. C. Whitehead [10], [11], which correspond to the
case that the connected sums of the above happen to be single sums. We
also use Wall [17] in the case when the fibres and the base spaces of
bundles are same dimensional.

In this paper®’, we treat with the case that bundles admit cross-sec-
tions, and in the subsequent paper, we discuss the general case.

Let A be a p-sphere bundle over a g-sphere (p,q > 1) which admits
a cross-section, and consider the diagram

o ai(80) %> 7,_(S0,.)
n,,(S”)<: lJ lJ
P o8 —Esx,, (87,

where 9, i, belong to the homotopy exact sequence of the fibering SO,
- 80,., — S* = S0,.,/SO,, P =1[,¢] (the Whitehead product with the
orientation generator ¢, of n,(S?)), E is the suspension homomorphism,
and J means the J-homomorphism. The diagram commutes up to sign,
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* The following results were previously announced without detailed proofs in Proc.
Japan Acad. 55 (1979), 306-308.
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thatis, P= —Jo0, EodJ = —Joi,. We denote the characteristic element
of A by a(A). Since A has a cross-section, a(4) = i,& for some ¢ € z,_,(SO,).
Then, {J&} € Jr,_(SO,)[Pr,(S?) does not depend on the choice of & We
denote it by A(A) (James-Whitehead [10]).

Let A, i =1,2,--.,r, be p-sphere bundles over g-spheres which admit
cross-sections. It is understood that each A, also denotes the total space
of the bundle and has the differentiable structure induced from those of
the fibre and the base space. §i., A, means the connected sum A, £ A, #
... # A, of the total spaces. When given another set of such bundles 47,
i=12---,r, if #7Z, A] has the homotopy type of #]_, A, then r’ must be
equal to r by those homological aspect.

TuEOREM 1. Let A, A, i=1,2,---,r, be p-sphere bundles over gq-
spheres which admit cross-sections, and assume that 2p >q, q > 1, p +#q.
Then, the connected sums §i., A,, #;_, A; are of the same homotopy type if
and only if there exists a unimodular (r X r)-matrix L of integer components
such that

A(A,) A(A)
=1
A(A,) AAD/
where the abelian group Jx,_,(SO,)/Pxz(S?) is considered as a left Z-module.
Let H be a free abelian group of finite rank. The homomorphisms
f.f : H— Jr,_(SO,)Pr,(S*) are said to be equivalent if and only if there
exists an isomorphism A: H — H such that f = f’oh. Then, the following

is an equivalent form of Theorem 1 and is easily verified.

TuEOREM 1. Let 2p>q, q>1, p+#q, and let r be fixed. Then,
homotopy equivalence classes of connected sums consisting of r p-sphere
bundles over q-spheres which admit cross-sections correspond bijectively with
equivalence classes of homomorphisms of H to Jx, (SO,)/Pz/(S?), where
H is a free abelian group of rank r.

The case p = q is complicated and we can’t apply the technique used
in the proof of Theorem 1. But, in this case, the manifolds which we
are considering are (p — 1)-connected and 2p-dimensional. So that, Wall
[17] is applicable. We have the following analogue of Theorem 1.

THEOREM 2. Let A, A, i=1,2,-..,r, be p-sphere bundles over p-
spheres and assume that p > 2 and p #+ 4,8. Then, the connected sums
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4., A, 40 Al are of the same homotopy type if and only if there exists a
unimodular (r X r)-matrix L of integer components such that
A(Ay) A(A)
)=
A(A,) (A7)

In the case p = q, 2(4), 2(4), i=1,2,.-.,r, belong to
Jr,_(SO,)/Pr,(S?) = Jr,_(SO) = ZImZ ,
where

1 if p = 3,5,6, 7 (mod 8),
m=12 if p = 1,2 (mod8),
m(2s) if p = 4s (s > 0),

and m(2s) is the denominator of B,/4s (Adams [1]). Represent i(A,), A(A7)
by the integers 4, 2, respectively such that 0 <4, ,<m—1,i=1,2,

--,r. Then, it is easily seen that the following is an equivalent form
of Theorem 2 for r > 1.

THEOREM 2. Let A, A,,i=1,2,---,r (r > 1), be p-sphere bundles over
Dp-spheres and assume that p > 2 and p + 4,8. Then, the connected sums
#7.. A, #7., A} are of the same homotopy type if and only if G.C.D. (4,, -- -,
A,m) = G.CD.(2,---,2,m). Especially, if p=1,2 (mod8), then m = 2
and therefore, the connected sums are of the same homotopy type if and
only if they have simultaneously non-trivial bundles or only trivial bundles.

(Note: Originally, Theorem 2 was a little more complicated in form-
ulation. The above simple forms which are equivalent to the original one
were remarked to the author by J. Yoshida.)

Remark 1. In Theorem 2 and 2/, if p = 8,5, 6, 7 (mod 8), the theorems
hold trivially since =,_,(SO,.,) = 0.

Remark 2. In Theorem 2 and 2/, even if p = 4, 8, the theorems hold
if all w(A,), a(A}) are even, that is, #_, A,, #]_, A] are of type II (cf. Milnor
[14]). In the case that there are odd numbers in a(A4,), a(4),i=1,2,---,r,
that is, #7_, A,, #7_, A] are of type I (cf. Milnor [14]), we can also mention
the necessary and sufficient condition for #;_, A,, #., A; to be homotopy
equivalent using the invariants A(4,), A(4)), i = 1,2, --.,r, though it is
complicated.
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Remark 3. In the above theorems, 1(A;) can be replaced by —J(a(A,))
since the sequence

7d(S?) —E> 7y 0 (8) > 7, (S

is exact if 2p > q — 1. (cf. James-Whitehead [10, (1.10)] and (7.7) of James
[12]).

Our results make sense for r > 1, but if r = 1, coincide with those of
James-Whitehead [10] except precise conditions on p, q. The proofs of
the above theorems are given in the following sections.

1. Cell structures of connected sums

Let A, i=1,2,..--,r, be p-sphere bundles over g-spheres (p,q > 1)
which admit cross-sections. Let a(4,) = i,(&,;) for some given &, € n,_,(SO,),
i=12,---,r, and let S? be the cross-section of A; determined by &, as
an orbit of the north pole of the p-sphere. Let S? be a fibre of A, suitably
chosen, i =1,2,..-.,r. For each i, S? N 8¢ is a single point e?. We
assume that S?, S?, and A,, i = 1,2, ---,r, are oriented compatibly.

Since A, — (S? U S?) is an open (p + g)-cell, A, has the cell structure
A, = (S? U S U,, D2*? and the interior of D?*? may be assumed to be
imbedded differentiably. By (8.7) of James-Whitehead [10], the homotopy
class of the attaching map ¢;:9D?*? = SP+e-1 — SP U S¢ is given by

(1) {¢i} = [;Oﬂi + [‘z’ l;)] ’

where 7, = J§&, and ¢, ¢, are the orientation generators of z,(S?), =,(S9
respectively. We adopt e, = (0, ---,0,1) as the base point of S?*?7, and
assume that ¢,(e;) = €.

Let r=2. A, # A, can be regarded as the union of A, — Int (3D?+9)
and A, — Int (}D2*9) identified at 3SP*¢~! = 3(1DP+?) and }Sp+¢~! = a(1D2+9)
orientation reversingly, i.e. by the map r(x,, - - -, %,,,) = (— %, %a, - - *, Xp10)s
where $D?%? is the (p + g)-disk of radius 1 with center o of D?*?, i =1,2.
Let b,=(0,---,0,3) be the base point of 1S?*¢ and join b, to the base
point e, of SP*¢~* by a segment w,, where i = 1,2. Then, ¢} is joined to €3
by the path w = wi* w, in A, # A,. D?*? — Int (3D?*?) can be considered
as the product S?*¢-' X [, 1] where w, corresponds to e; X [},1]. Hence,
there is a canonical map ¥,: C, X [}, 1] — D?*? — Int (3D?*9), where C; is
a (p 4+ q — 1)-disk, which carries C; X 3}, dC; X [},1], and C; X 1 to $S?+2,
w;, and SP*¢! respectively and is a homeomorphism from (C;)° X (3,1)
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onto the complement of S?*¢~' U w, U $S?*?"*. In fact, let n;: C, —» Sr+¢?
= C,;/0C, be the canonical map. Then =, X 1: C; X [}, 1] — SP+e! X [4, 1]
will correspond to ¥',.

Let EF*%, i = 1,2, be copies of the unit (p + ¢)-disk and let T7+*" =
oE?" = U U Ur, i = 1,2, where Uy (U;) is the right (left) hemisphere
of Tr+e-l, i=1,2, ie. UNU;) = {(x), -, %0 TP 2, =0 (x; < 0)}.
Let V;* (V;) be the subspace of U; (U;) such that %, =>1/vV2 (x, <
—1/4/2) and W; (W;) be the subspace of U} (U;) such that x, <1/v/ 2
(%, = —1/¥/2). Then, there are canonical homeomorphisms 0,: EP*? — C,
X [3,1], i = 1,2, such that 0, (0,) maps U (U;"), Wi (Wy), and Vi (V)
respectively to C, X 1 (C, X 1), aC, X [4,1] 0C, X [},1]), and C, X } (C, X 3).

Let @, =7,00,, i =1,2, and let E**? = Ef** U EF*? identified at Vi
and V; orientation reversingly. Then, E?*? is a (p 4+ g)-cell and a map
@: E7*1— Dr+e ¢ Die ig defined by @ = @, U @,, where D?*? 4 D¢*? is the
union of D?*? — Int(3D?+9), i = 1,2, identified at $S?*¢* and 1S?*¢* ori-
entation reversingly. @ maps the interior of E?*? onto the complement
of Sp+e-' J wit-w, U SP*7"! homeomorphically, and carries U, W;* U W,
and Uj, respectively to SP+¢7!, wil -w,, and S§+?7%,

Let p,: (TP, Up) — (St e), oy (Tp*e, Uy) — (SP**,e) be the
maps of degree 1, and put ¢, = ¢,0p,, B, = @0 p,. Since p;: TP~ — Spre-l)
i = 1,2, are respectively homotopic to the identity, @,, i = 1,2, are homo-
topic to ¢;, i = 1,2, respectively. Now, A, # A, has the cell structure
(SPUSH U wit-w, U (S U SH) U E***, where E?*? ig attached by the map
¢ which is equal to ¢,0® =@, on Uy, ¢,09 = ¢, on U, and @ on W}
U W;. Hence, if we shrink the 1-cell w = w;*-w, to a point, E?*? may
be regarded as the unit disk D?*? and the homotopy class of the attach-
ing map ¢ comes to {¢} = {3} + {¢:} = {@.} + {.}. Thus, we know that
A, # A, has the homotopy type of {\/1..(S?V SH)}J, D*** and by (1) the
homotopy class of the attaching map ¢ is given by

(2) 0} = 2 Gone+ b aD

where 7,,,.,(S?V S}, i=1,2, are considered as direct summands of
Tpig-1 (\/%:1 (Sf \Y% qu))-
Similar arguments hold for r > 2. Thus we have

LemMMA 1.1. Let A, i=1,2,...,r, be p-sphere bundles over q-spheres
(p,q > 1) with characteristic elements o(A,) = i,&, for some given &,¢
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7,..(SO), i =1,2,---,r. Then, #:_, A, has the homotopy type of {\/%-,(S?
V SH} U, D+ and the homotopy class of the attaching map ¢ is given by

(o) = 2 Gon+ (4D,

where ¢, ¢t are the orientation generators of n,(S?), n/(S#) respectively, »,
=dJ¢&, and 7,,,..(S?PV SH), i=1,2, ---,r, are considered as direct
summands of w1 (Vi1 (S?V S9).

2. Exchange of the representation

Let A, i=1,2,...,r, be p-sphere bundles over g-spheres (p,q > 1,
p # q) which admit cross-sections and let A4, i =1,2,--.,r, be (p + 1)-
disk bundles over g-spheres associated with A, i = 1,2, ..., r, respectively.
We assume that A, and A, are oriented compatibly for each i. Put W =
A, b--- 4 A, the boundary connected sum of A, i=1,2,---,7. Then,
oW=A4---4A,. W is considered to be a handlebody of s#(n,r, q),
n=p+q-+ 1. Since each A, has a cross-section, the inclusion map
i:0W— W induces the isomorphism i,: H(0W) — H (W) (p # q). Let g,
i=1,2,---,r, be the basis of H, (W) represented by zero cross-sections of
A,i=12---,r,and let f,, i=1,2,.--,r, be the basis of H(0W) de-
termined by cross-sections of 4,, i = 1,2, -..,r. Since f, = i3'(g,), i = 1,2,
..., r, those are independent of the choice of cross-sections. Let e, i =
1,2, ---,r, be the basis of H,(6W) respesented by fixed fibres of 4,,i = 1,2,
---,r. The bases {e,, ---,e,} and {f;, ---,f,} are called to be fibre and sec-
tional with respect to the representation oW = A, % -.- # A,. They satisfy
e,-f; = 6, for each i, j.

LEmMmA 2.1. Let 2p=>q+ 1, ¢ > 1, and p+q. For any bases {é,
..., 8} of H@®W) and {f,, ---,f,} of H,(0W) such that &,f, = 6,;, i,j = 1,2,
.«.,r, there exists a representation dW = A, 4 ... 4 A, by p-sphere bundles
over q-spheres which admit cross-sections, such that the bases {é,, ---,&,}
and {f,, .- -,f,} are fibre and sectional with respect to it.

Proof. Let ¢: H(W) X H(W) — =, (S?*') be Wall’s pairing” [18]. Then,
#g,8) =0 if i+#j. Since each A, admits a cross-section, ¢(g;, 8:;) =
(Eormy) (@) = 0 for all i by Theorem 1 of [18], where «, is the characteristic

1) In the original paper of Wall, the symbol 2 is used. But, we have already used
it in this paper.
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elementof 4,,i = 1,2, ---,r, my: 7, (S0,.) — n,_,(S?) is the homomorphism
induced from the projection z:SO,,, — SO,,,/SO, = S?, and E: z,_(S?) —
7, (S?*') is the suspension homomorphism. Thus, ¢ is trivial since it is
bilinear. So that, any representation of W by a basis of H,(W) comes to
a boundary connected sum of r (p + 1)-disk bundles over g-spheres. In
fact, since ¢ is trivial, the imbedded g-spheres which represent the given
basis elements of H(W) can be taken to be disjoint in the interior of W
(cf. Ishimoto [7]). Then, by tying the thin closed neighborhoods of the
imbedded spheres with bands in Int W, we obtain a boundary connected
sum of (p 4+ 1)-disk bundles over g-spheres which is diffeomorphic to W.

Let g, = i*(f,), i=12 ---,r, be the basis of H(W) and represent
W by it. Then, dW has a representation W = A, # --- # A,. Here, each
A, is a p-sphere bundle over a g-sphere and admits a cross-section since
En @) = ¢(8., &) = 0, where &, is the characteristic element of A,. Then,
up to orientation, any cross-section of A, represents f,, and a fibre .§{’ of
A, with canonical orientation represents &, since (S?)- f; =6, =é.f, for
each i,j. This completes the proof.

Let A}, i=1,2,---,r, be another set of p-sphere bundles over q-
spheres which admit cross-sections (p,q>1, p+#4q). A, i=12,.---,r1,
W' = Ajf.--4A,, and then W’ = A4 ... 4 A/, are similar as in the
above, and those are oriented canonically. The isomorphism i : H,@W’)
— H(W’), the basis {g/,---,8} of H(W’), and the fibre and sectional
bases {e, - - -, e} of H,@W’), {f{, ---,f} of H(dW’) are respectively defined
similarly.

By Lemma 1.1, oW = A4 ---# A, and oW = A{#--- § A, have the
homotopy type of CW-complexes X = {\/7_,(S? V 8P}, e?*? and X' =
(Vi (S2 V S/9} U, €7+® respectively, associated with the representations.
Suppose that W has the homotopy type of dW’ by an orientation pre-
serving homotopy equivalence g:9W — odW’. Then, g induces a homotopy
equivalence f: X — X’ of degree 1 and we may assume that f is a cellular
map. We consider #,(S?) and =,(Sy) as direct summands of =, (\/7-, (8? \V S9))
and =, (\/7., (S? \V S9)) respectively, for each i. Similar identifications are
made about 7,(S/?), n,(S/%), i =1,2,.-.,r. Note that =, (\/i_,(S? V Sp) =
T (X), 7, (Vi1 (S V 89, Vit S = 72X, Vie S if n<p + g — 1, and the
gituation is quite similar about X’, (X7, \/7., S/?).

Lemma 2.2. If g.(e) =€, g«(f)=f; for all i,j=1,2,---,r, then f
satisfies the following properties: Let 1 <p < q.
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(i) fulb=1¢}, i=1,2,---,1, where
Fuimy (V. S2V SD) >, (V (82 V 8,

and ¢, ¢ are the orientation generators of =,(S?), n,(S{?) respectively.
(11) J*(f*‘q) = J:k‘;l, l = 1’ 29 Py where

Fuima (V. (S S9) >, (V (S vV 80, Y S7)
i=1 i=1 i=1

J is the inclusion map, and ¢, ¢} are the orientation generators of =, (S?),

7 ,(S;9) respectively.

(iil) f.«(@0) = 0¢’, where o,d’ are the orientation generators of
Tpeo X, V121 (8P V 89), 7, (X!, Vi1 (87 §]9) respectively and 3 means the
boundary homomorphism.

If p>q>1, replace p and q each other in the above.

Proof. (i) e, e; correspond to (S?), (S») in H,(\/i.,(S?V SY9),
H,(\/5..(S/? \V S{?) respectively, which are isomorphic to =, (\/i_, (S? \V SY)),
7, (V1.1 (S7? V §/9) respectively (1<p<g). So that g,(e) = e, induces
fs(&t) = ¢}, where i =1,2,---,r

(ii) We have the following commutative diagram:

we (V. (87V 89) —Z sz, (V (5 v Si0)

n<~z

f*l ,-*l
( Sy vV 89, \/ Sp> -—]i*—) T, (\/ (Siz v/ Sl9), \/ v S/p>
B, (Vs v s,V 8¢) L H, (Y, (57 v 819,/ 57)
j*TE J;T;

hlz hl;
H,(V v sn) —L—m,(V s vsm),

l!<~z

where A is the Hurewicz homomorphism. jci, jieif correspond respectively

to (S9), (S79) in each vertical side and f,(S?) = (S;9) since g.(f) = fi.
that, we have ji(fycl) = Fu(xel) = jici for i =1,2,---,r

If p> qg>1, similar results are obtained by exchange of p for ¢ in
@), G).
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(iil) We have the following commutative diagram:

H,,,X) fs > H,,(X)

B =

H,.((% (52 89) L5 1., (%, 1 5 v 500)

i=1

h|= h|=

Taed X, V. (S2V SD) Lo 5, (X1, U (S Y S19)

al ]
v

Since f is of degree 1, fy0 = ¢’ and therefore f«(00) = dd’.

LemMA 23. Let 2p>q + 1, g>1, and p +q. Then, there exists a
representation dW = A 4 - .- $ A, by p-sphere bundles over q-spheres which
admit cross-sections such that

&,y a,
@ - |=L
a, a,/ ,
where a;, &; are the characteristic elements of A,, A, respectively, i = 1,2,
..., r,and L is a unimodular (r X r)-matrix with integer components, and

(i) the fibre and sectional bases {&, ---,é&,} of H,(dW) and {For -
of H(0W) associated with the representation satisfy g.(&,) = €, g.(f) =f
for all i,j =1,2,---,r.

So that, for the CW-complex X = {Via (Sr \/.§;1)} Uy €"*? associated
with the representation oW = A, % --- % A,, f satisfies (i), (i), aend (iii) of
Lemma 2.2.

Proof. Let &, = g;'(e}), f; = gz'(f) for i,j =1,2,---,r. Since e-f; =
8, 1,j=1,2,---,r, and g preserves the orientation of oW, é,- f, = §;; for
i,j =1,2,---,r. Then, by Lemma 2.1, there is a representation oW =
A ¢ .- #A, by p-sphere bundles over g-spheres which admit cross-sections
about which the bases {&, ---,&,} and {f,, ---,7,} are fibre and sectional.
Let g, = i,(f), i=1,2,---,r, and let @, be the characteristic element of
A, Then &, = a(g;), where a: H(W)—r,_,(S0,,,) is the map assigning
to each x € H(W) = = (W) the characteristic element of the normal bundle
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of the imbedded g-sphere which represents x. « is a homomorphism by
Theorem 1 of Wall [18] since ¢ is trivial. Hence, the relation

81 8
=1
& &
induces the relation
a (44}
=1 :
a, a,/

where L is a unimodular (r X r)-matrix of integer components. This
completes the proof.

3. Proof of Theorem 1

Let A, A, i=1,2,...,r, be p-sphere bundles over g-spheres with
cross-sections, where we assume that 2p >q + 1, ¢ > 1, and p #q. Put
W=AY4---hA, W =2A/Y...-5A,, where A, A! are the (p + 1)-disk
bundles associated with A,, A, respectively for i = 1,2, --.,r. Then, W
=4 A, and W' = #:_, A,. Let {e,---,e}, {f;, - -,f,} be the fibre and
sectional bases of H,(0W), H,(0W) respectively, and similarly define {e;,
eeey, {fly -, £} for oW

AsSERTION 1. Suppose that there exists a homotopy equivalence
g:0W —aW’ of degree 1 which satisfies g.(e;) = e}, g.(f;) = f; for i,j =
1,2,---,r. Then, (A, = 2(A)) for i =1,2,---,r.

Proof. oW, dW’ have the homotopy type of CW-complexes X =
(Vi (S V SHYU, er*?, X' = {1 (S? V 89} U, €7* respectively, and
g induces a homotopy equivalence f: X — X’ which may be assumed to
be cellular. Let p <q. Then, by Lemma 2.2, fi = ¢}, ji(fycl) = jicd,
i=12---,r, and f,(00c) = d¢’, where the notations are similar to those
of the lemma, and note that 9o = {p} and 00’ = {¢'}.

So that, by Lemma 1.1,

£u00) = 3 () on' + 35 Ufuchs Fud]

(1) L . " L . .
= ;l;}orf’ + ;1 [fach, 1 .
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Since ji(fyct) = jicii, by the split exact sequence

0——>7rq<\/ SP) —mq(\/ ARV, S'«))

i, x (\/ (S \/ 89, v/ S;") — 0,
j=1 J=1

we have fyii = ¢! + 6; for some 6, e w,(\/ 5.1 S}?) C 7w, (/51 (S}? V S/9), i =
1,2,---,r. And 7,(\V/5.,S/?) = 3151 7,(S7?) by the assumption 2p >q + 1,
g>1 (Hilton [4]). Therefore, 6; = >7.,0;, for suitable &;,er(S;?) C
(V518 6,j =1,2,---,r. Let 6;, = ¢ 00y, 0;;€n,(S?),i,j=1,2,---,r
0 1,j = 1,2, -+ -, r, are the suspension elements since #,(S?) = Ex,_,(S?™?)
(@p>q + 1). So that,

[fucts 1 = [ + 05,41 = [, 51 + [0, ¢

(2) i oy

= [‘qt, 4 @] + Z [0115 ‘p ’
and by Barcus-Barratt [2, (7.4)] or G. W. Whitehead [19, (3.59)],
(3) [01,,1,‘1] = [‘;joaih p] - [/j ,l] ( 1)p+qu 10“

Thus, combining (1), (2), and (3), we have
() fu00) = S or + Wl dD + S 1841+ T ofu,

where B;; = (—1)?*‘E?"'§,, + (—1)°E?~'4,,. Since f,(ds) = 3¢’ and by Lemma
1.1

(5) oo’ = g Gloy't + g AR
comparing (4) with (5), we have
Gon + W] = dioy,  i=12--r,
by Hilton [4]. Hence,
Giogt + eiol0u, ] = ciont, i=12.--,r1,
that is,
7+ [0, 0] =7, i=12-.,r.
Thus A(A;)) = A(A), i=1,2,---,r
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Let p > g¢> 1. Then, by Lemma 2.2, f i = ¢}, j5(fycl) = jitr, i = 1,2,
..+, r, and f,(d0) = d¢’. Similarly as above, fi = ¢f + 6; for some 6;¢
7, (V58S Cr, (V5 (SPV S/9), i=1,2,---,r. Therefore, by Lemma

1.1,
£00) = 3 (Fu) o + 3 [futh Futd]
= 3+ et + S Lk o + 0.
And, since p'en,,,_(S?) = Er,, ,_,(S?™"),
(6) Ful@0) = S o' + 3 Gion' + 14,00 + Z 1441,

where those elements of (6) belong to independent direct summands of
Tpra-1 (V521 (S7? V Sj9) (Hilton [4]). Since f,(ds) = d¢’, comparing (6) with
(5), we have

l;fo’?i=l;i°7/i’ i=1’2,"',r,
that is,
77i=77/i, i=1,2:"'9r-
Thus, A(A,) = A(A) for i =1,2,---,r.
This completes the proof of Assertion 1.
AssERTION 2. If dW has the homotopy type of dW’, then
A(A) A(A,)
=1
A(A7) A(A,)
for some unimodular (r X r)-matrix L with integer components.

Proof. Letg:0W — oW’ be a homotopy equivalence. Choosing suitable
orientations, we may assume that g preserves orientation. Note that
exchange of orientations of fibres does not affect the characteristic ele-
ments of A, A}, i=1,2,.--,r, (cf. [10], p.198). Then, by Lemma 2.3,
there exists a representation dW = A,# --- # A, by p-sphere bundles over
g-spheres which admit cross-sections such that g.(&) = e, g.(f) =1,
i,j=1,2,..-,r, where {&,---,é&,}, {fl, .. -,f,} are the fibre and sectional
bases associated with the representation of dW. So that, by Assertion 1,
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AA)=24), i=12--r,
and by (i) of Lemma 2.3,
AA) A(A)

=4
A4, A(A,)
for some unimodular (r X r)-matrix L. Thus, we have
A(AD (A,
=4
(A7) A(A)] .

AsseErTiON 3. The converse of Assertion 1 is true.

Proof. The proof is a straight extension of that of James-Whitehead
[10 (1.5), p.210]. Let 7, ex,,,.,(S?) be a representative of A(4,) = i(4)),
i=12 ...,r. Then, by (38.9) of [10], we may assume that A, = (S? U S?)
U, €% Al = (8 U 89U, e and {p)} = cyon + [, il, {oi} = ¢fon +
[, 6], i=1,2,---,r. Then, a map h:\/].,(S?V S)— Vi (S*V S/?)
defined so that Ay = ¢f, hyei = ¢}, i = 1,2, -, r, satisfies h,(00) = do’ by
Lemma 1.1. Therefore, A extends to a whole map g: X — X’ of degree 1.
Here, X = {\V/ii(S7V SO} U, e, X = (Vi (S V S} U, €7, 7, A,
~X, #7,Ai =~ X', and 90 = {¢p}, 0’ = {¢'}. Hence, g induces the isomor-
phisms between the homology groups in all dimensions. So, g is a homotopy
equivalence since X, X’ are simply connected, and gy(e,) = e, g.«(f)) =f;
for i,j=1,2,---,r.

ASSERTION 4. The converse of Assertion 2 is also true.

Proof. Let L be a unimodular (r X r)-matrix of integer components
and assume that

A(4) A(A)
=g
A(A7) WA/ .

Let {g, ---,8,} be the basis of H, (W) such that
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where {g, ---,g,} is the basis determined by zero cross-sections of A,
i=1,2,...,r. Then, representing W by the basis {g,, ---,4,}, we have
oW=A4-.--#A, and

where @, a, are the characteristic elements of A,, A, respectively, i = 1,2,
--,r. So that,

A(4) A(A) A(A)
=1 z
A4, A4, A4

and therefore by Assertion 3, W has the homotopy type of dW’. This
completes the proof of Assertion 4.

Thus, in case 2p > q + 1, we have proved Theorem 1 by Assertion 2
and Assertion 4.

4. Continued proof of Theorem 1

In the previous section, the condition 2p > g + 1 (¢ > 1) is needed
only to prove Assertion 1. The other assertions hold under the condition
that 20 >q + 1, ¢ > 1, p#q. So, to complete the proof, it is sufficient
to show Assertion 1 when 2p = q + 1, ¢ > 1. Note that then 1 <p<gq.

In the proof of Assertion 1, fydi = ¢ + 6; for some 6;ex,(\/5.,S;?)
Cr, (\V5:(S?V 8S}9),i=1,2---,r. By Hilton [4],

b; = Zl’“ﬁi + 20 [e, gf1 0%
J<k

for some #)exn,(S?), ¢i,en(S* )= 2Z, i,j,k=1,2,---,r. Here, 6}, i,j =
1,2, ---,r, are also suspension elements if p is odd. For, the sequence

oy o(S77) —> 7,y (ST 2> Z

is exact and =,,_,(S?) is finite if p is odd. Now,
[ftts ‘h] = [‘:11’ ‘,l] + [4, ‘;l]
= [¢, 51 + Z [ o 6, 651 + Z [l &1 0 0%y 651
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and

[ 205, 481 = (44, T (— 1P B85 + [, [/, 61 o (— 1P B> H(0%)
[[‘;j, z;k] 0_71:, !p] = [[/j ‘;)k]: ;;i] Ep 10,711: ’ l’],k = 1, 27 e, T,

by Barcus-Barratt [2, (7.4)]. Here, H, is the Hopf-Hilton homomorphism
and Hy(6’) vanishes if p is odd. Hence,

Uact 61 = 41 + 4205 + 3 1, 61 (— P Bog

+ 2 [, I, 6T o (—D)PE*- lHo(ﬁb) +2 [, [, 5N o (=1)PE>~16% .
Here, [/, ] = (—1)?[¢}, /], and by Jacobi identity (Hilton [4]),

[, &, N = (=177, [, 1 = (85 [, 6T G<j<h).
So, we have

2ty 41 =221, 51 + 45720541 + Z ANZIRY:Y

(7) N
+ 2. 44 o Nerin,
i2j<k

for certain gien,,,.(S*"), riv€mp, (8?7, i,j,k=1,2,---,r. Then, by
(7) and (1) of the section 3,

f@0) = 22 (G on' + gfe 104 65D + 201 &

8
(8) T R S R R

where fiem,, . (S, 15 €mp (S, i,j,k=1,2,-.-,r. Since f,(d0)
= ga’, thus comparing (8) with d¢’ given by (5) of the section 3, we have

‘;ioni—l—!;io[ﬂg,‘p]———l;iovli" i=1v29"',r
that is,
771+[0§,‘p]=77,i: 026”41(81)), i=12--,r.

Hence A(A,) = 2(4), i =1,2,--.,r. Thus, Assertion 1 holds when 2p =
g+ 1and ¢g>1.

This completes the proof of Theorem 1.
5. Proof of Theorem 2

Let M be a (p — 1)-connected 2p-dimensional closed differentiable
manifold (p>2). Let H= H,(M), ¢:HX H—Z be the intersection
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number pairing, and v: H — x,_(SO,) be the map assigning to each xe H
= z,(M) the characteristic element v(x) of the normal bundle of the im-
bedded p-sphere which represents x. v satisfies the following relation

v(x + y) = v(x) + v(y) + 94(x,y) ,

where 0: 7,(S?) = Z — #,_,(SO,) belongs to the homotopy exact sequence
of the fibering SO, — SO, ., — S? (Wall [18]). Put x4 = Joy, where JJ denotes
the J-homomorphism.

Let M’ be another (p — 1)-connected 2p-dimensional closed differ-
entiable manifold (p > 2). Then, H’, ¢/,v/, and x4/ are similarly defined.
The following proposition is essentially due to Lemma 8 of Wall [17], and
the proof is analogous.”

ProrosITION 5.1. M has the oriented homotopy type of M’ if and only
if there exists an isomorphism h: H — H’ such that the following diagrams

commute:
Hx HZE g« m H—" s m
N A W
YA 772p—1(S )

Let A;,i=1,2,---,r, be p-sphere bundles over p-spheres (p > 2) and
consider the connected sum of those.

LEMMA 5.2. Let M= 4§;_, A, p>2, and p+ 4,8. Then, there exists
a basis {e, ---,e,;fi, -+, f.} of H(M) symplectic in the sense that e;-e, =
fi-fi=0, e-fy=20, i,j=1,2,---,r, such that ple) = 0 and ((f,) is a re-
presentative of 2(A,) for i,j =1,2,---,r

Proof. Let{e, ---,e,;f,---,f.} be a fibre and sectional basis of H,(M).
We may assume that e;-e, =0, f,-f, = 0 (i #j), and e,-f; = §,, for i,j = 1,2,

,7. Note that v(e,)) = 0, i,u(f;) = a(A,), where i : 7, ,(SO,) —>=x,_(SO,.,)
is induced from the inclusion. So that, if p is odd, we have the lemma
since f;-f,=0,j=1,2,---,r

Let p be even and p -+ 4,8. Then, the homomorphism H: r,,_,(S?) - Z
which assigns the Hopf invariant to each element of T,,_1(S?) takes always
even numbers. So that f;-f, = 7, ((f)) = HJ((f,)) = Hu(f,) is even for
i=12,---,r, where n,:7,_(SO,) - r,_(S?*) = Z is the homomorphism

2) But, we need not use Eckmann-Hilton [3].

https://doi.org/10.1017/5S0027763000019401 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019401

SPHERE BUNDLES OVER SPHERES 31

induced by the projection =: SO, — SO,/SO,_, = S*~'. Put 2k, =f;-f; and
f, =f,— ke, j=1,2,..-,r. Then, {e,-- e fi e -,f,} is a symplectic
basis of H,(M). u(F,) = u(f; — kie) = uf) + —kse) + 3g(F,, —kje)) = w(f,)
— kd(1). So that, u(f) = p(f) — kJ3(1) = if) + k,P(1). Thus, {u(f))}
= {u(f)} = 2(A,), j=1,2,-.-,r, and this completes the proof.

By Proposition 5.1 and Lemma 5.2, we have at once

ProposiTION 5.3. Let A;, A, be p-sphere bundles over p-spheres, p > 2,
p+4,8 and let M= 4#:_ A, M' = 4:_A;.. Then, M and M’ are of the
same oriented homotopy type if and only if there exist symplectic bases
{en, - - esfis - fis {el - sers fly - o f} of Hy(M), H,(M") respectively such
that pe,) = p/(e), (fy)) = ¢(f}) for i,j =1,2,---,r1.

Let p=8s+ 1 (s=1). In the following exact sequence
7,(87) —> 7, (80,) %>z, (SO,.) = Z, —> 0,

Keri, = Imd is a direct summand of r,_,(SO,) (Kervaire [13, p.168]). So,
75:(S0;,.) = Imd @D G (s = 1) for some subgroup G. Ima = Keri, = Z, is
generated by d¢, and G = 7,(SO,,.,) = Z, by i,.

LEMMA 54. Let M = §i_ A, and p = 8s + 1 (s = 1). Then, there exists
a symplectic basis {e,, ---,e,;f,, -+ ,f,} of H(M) such that we;) = 0, w(f;)
e J(G) and u(f,) is a representative of A(A)), i,j =1,2,---,r.

Proof. Let {e,---,e.;f,---,f,} be a fibre and sectional basis of
H,(M), which is symplectic since p is odd. Ifu(f)) = a + b, acIma, be G,
and a0, then ¢ = a(1), and put f, = e, + f,. Then, u(f,) = o(f,) + (1)
=2+ b=>beG, and iw(f;) = i(f) = a(A,). So that u(f,)e J(G) and
u(f,) represents i(A,). Repeating this for j = 1,2, .-, r if necessary, we
have a required symplectic basis {e, - - -, e,;f,, - - -, f,} of H,(M).

Now, we prove Theorem 2. Let A, A}, i=1,2,.---,r, be p-sphere
bundles over p-spheres, p > 2, p #4,8, and let M = #I_ A,y M’ = #7_, A].
Let {e, - -,e.;f, . f}, {€,---,e;fl,---,f/} be the symplectic bases of
H = H,(M), H = H,(M’) respectively, given by Lemma 5.2 and Lemma
54,

Firstly, assume that M has the homotopy type of M’. We may assume
that M has the oriented homotopy type of M’. For, the exchange of
orientations of the fibres turns the orientation of M but does not affect
the characteristic elements of A,, i = 1,2, ---,r. So, by Proposition 5.1,
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there exists an isomorphism h:H — H’ such that ¢ = ¢’o(h X h) and p

— ioh. Let
h(el) e
he) | ol e (A C
(1) wiy | " E g 1 K“(Bl)’
h(f,) f

where A, B, C, and D are (r X r)-matrices of integer components. Then,
since h preserves intersection numbers, KUK*® = U, where

(0 L)
U—Q—WLO
and I, is the unit (r X r)-matrix. Applying v’ to (1), we have

V' (h(ey)) V(f)) (ACY),
: =Cl : |+ : PO,

V' (h(e,)) v(f7) (ACY),,

v'(h(f.) v(f7) (BD"),4

V'(h(f.)) V(f7) (BDY),,

where (ACY),, (BD"),, mean the diagonal entries of AC*, BD’ respectively.

Since ¢/ = JV and Jod = —P,

#(hey)) KD\ [(AC),

(2) L= - P,
#(he,) vl \@cy,
# () KD\ ((BDY,

(3) o l=p| |- ¢ |ew.
H(A(F) w(n]  \ @D,

Since ple;)) = 0, and u(f,), ¢/(f;) represent A(A,), A(A}) respectively, by the
relation 4 = g/ o h, we have
A(A) (A7) A(A,)
(4) (o] =0, D - .
(A7) (A7)

24, .
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In the above, considering A~' in place of A, similarly we have

A(A,) A(A,) A(A)
2o, | : .

(5) c =1 :

xay)  \xap

’

XA,)

where C’, I’ belong to the symplectic (2r X 2r)-matrix

K_l _ AI Cl>
B D/.
A(A), 2(A),i=1,2,...,r, belong to Jz,_,(SO,)/Pr,(S?) = Jx,_(SO) = Z/mZ,
where

1 if p=3, 5, 6, 7 (mod8),
m =42 if p =1, 2 (mod 8),
m(2s) if p = 4s (s > 0),

and m(2s) is the denominator of B,/4s (Adams [1]). Take representatives
A, A of A(A,), 2(A)) respectively for i =1,2,.--,r such that 02, 4} <
m—1,i=1,2,-..,r. Then, it is not hard to see that there exist unimo-
dular (r X r)-matrices @, @  (r > 1) such that

2 , ¥
1o 2o
(6) Q:|=| . [(modm), Q| :|=| . [(modm),
A, 0 Al 0
where 0 <4, Y <m,and A= G.C.D.(4, ---,4,,m), ¥ = G.C.D.(A, - -+, A, m)
if 2,7 >0. And, we know that A=2. For,if A=0then 4, = ... =24,
= 0, and therefore =0 by (56). If 20, then 2 #0 and by (4), (5),
and (6),
A V4 yd A
0 0 0
= QDQ""| . |(modm), - |= QD@ - |(mod m) .
0 0 0 0

So that, 7|4, 2|2 and therefore 2 = 2.
Let L = @'Q’. Then, by (6), we have
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A(A) A(AD
(7) o= -
A(A,) (A7)
for an unimodular (r X r)-matrix L.

Let r=1. If pis even, then C= +1, D=0 or D = *1 by the re-
lation KUK‘= U. Hence, 2(A;) = £1(A) by (4). Let p be odd. If p=
3, 5, 7 (mod 8), (7) holds trivially. If p = 1 (mod 8), then A(4,), A(A]) are
of order 2, and by (4), (6), Di(A) = A(A,), D'AA) = A(A7). Therefore,
A(4,) = 0 induces (A7) = 0. If 2(A,) #0, then A(4,) = DA(A])) = DD'A(A,)
# 0 and D, IY must be odd. Hence A(A) = D’'A(A) # 0, and so A(4,) =
A(A,). Thus, in any case, (7) holds for r = 1.

Conversely, assume (7). We show that M has the homotopy type of
M’. Define the matrix K of integer components by

Lt -1
. (( o
0o L.
Then, K is symplectic, that is, KUK® = U. Let h: H— H’ be the isomor-
phism defined by the formula of (1). Then, & preserves intersection numbers
and satisfies (2), (3). Put h(e,) = e, h(f) =f; for i,j=1,2,---,r. {ef,

e el fl .-+ fl} is a symplectic basis of H'. Since B= C =0 and D
= L, by (2), (3), we have
¢ (er) Y ¢ ()
(8) . |=0, =14
¢ (er) YY) L,
and by (7),
«f) K (fD) k,
(9) D=z |+ P
) L) k.
for some integers k, i =1,2,.--,r. Hence, by (8), (9), we have
«f1) ¢ k,
(10) R . =1 |l el .

) () k.
If p is even, apply the following commutative diagram to (10):
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7,-(S0,) > m, (S

lJ glEp

Tapi(87) —> (S

where z: SO, — S?~! is the projection and H is the Hopf homomorphism.
Then, Hu(f,) = HINf,) = Em,(f)) = f,-f; = 0, similarly Hy/(f}) =0, j =
1,2,...,r, and Hl¢,,¢,] = +2. So, we know that k2, =k, = --- =k, =0.
Hence, u(f,) = ¢/ (f}) for j =1,2,---,r.

Let p be odd. If p =3, 5, 7 (mod 8), the matter is trivial since A,,
A,i=12---,r, are all product bundles. Letp = 8s 4+ 1 (s > 0). In the
following commutative diagram

7,-(80,) —=%—> x,_(S0,.) = Z,

? Il
7, (S?) Im? TJG lJ

W

J:im,_(SO,,,) = 7,,(S?*') is injective by Adams [1]. Therefore, by the fact
that [¢,, ¢,] # 0 if p #= 1, 3, 7, the diagram induces that J: z,_,(SO,) — x,,_,(S?)
is also injective. Hence, J(r,_,(SO,)) = {[¢,, ¢,]} ® J(G). On the other hand,
by Lemma 5.4, we may assume that x(f,), #/(f;) belong to J(G) for j = 1,2,
-+,r. So that, in (9), b, =k, = --- =k, = 0 (mod 2) since P(1) = [¢,, ¢,]
is of order 2. Hence, u(f;) = ¢/(f}) for j =1,2,---,r, by (10).
Thus, joining with (8), we have shown that

sz—l(sp) '_-'E—> sz(SpH) ’

(11) /‘l(ei) = #’(eél) =0 ’ ﬂ(fj) = ;u/(f.;/) ’ for i’] = 1’ 2; e, T,

where p > 2 and p #4,8. Hence, M and M’ are of the same homotopy
type by Proposition 5.3. This completes the proof of Theorem 2.

Let p = 4,8, and let {e, ---,e,;f;, ---,f,} be a fibre and sectional basis
of H,(M), where M =4, A, Then, i,u(f) + HIG(f)) = a(A)) + f,-f, is
even (cf. Wall [17, p.171]), where =,_,(SO,.) = Z (p = 4,8). Therefore
f;-f; is even (odd) if and only if @(A,) is even (odd). Hence, M is of type
II (cf. Milnor [14]) if and only if a(4,)), j =1,2,---,r, are all even. If M
is of type II, then Lemma 5.2 holds for M. So , in a quite similar way,
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we know, as mentioned in Remark 2, that Theorem 2 holds for p =4, 8
if the connected sums are of type IL
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