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Abstract Let µ be a positive Radon measure on R
d which satisfies µ(B(x, r)) � Crn for any x ∈ R

d

and r > 0 and some fixed constants C > 0 and n ∈ (0, d]. In this paper, a new characterization of
the space RBMO(µ), which was introduced by Tolsa, is given. As an application, it is proved that the
Lp(µ)-boundedness with p ∈ (1, ∞) of Calderón–Zygmund operators is equivalent to various endpoint
estimates.
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1. Introduction

Let µ be a positive Radon measure on R
d which satisfies the following growth condition:

there exist constants C > 0 and n ∈ (0, d] such that, for all x ∈ R
d and r > 0,

µ(B(x, r)) � Crn, (1.1)

where B(x, r) is the ball centred at some point x ∈ R
d and having radius r. The measure

µ in (1.1) may not satisfy the doubling condition which is a key assumption in the
analysis on spaces of homogeneous type. We recall that µ is said to satisfy the doubling
condition if there exists some constant C > 0 such that µ(B(x, 2r)) � Cµ(B(x, r)) for all
x ∈ R

d and r > 0. Some important examples of non-doubling measures as in (1.1) and
the motivation for developing the analysis related to such measures can be found in [13].
Note that the analysis with non-doubling measures plays an essential role in solving the
long-standing open Painlevé problem posed by Tolsa in [12].

In recent years, there has been significant progress in the study of function spaces and
boundedness of singular integral operators associated with non-doubling measures (see
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[1,2,4–7,9–13]). A prototypical work in this area is [9]. In this remarkable work, Tolsa
found a suitable substitute for the classical BMO space in this setting, RBMO(µ), which is
small enough to satisfy the properties of the classical BMO space and large enough that an
L2(µ) bounded Calderón–Zygmund operator is also bounded from L∞(µ) to RBMO(µ).
It has been proved that RBMO(µ) plays a very important role in the study of function
spaces and the boundedness of operators related to non-doubling measures [1,2,9]. We
should point out that BMO-type spaces with non-doubling measures were also considered
by Mateu et al . in [4], and by Nazarov et al . in [6]. However, the BMO-type space in [4]
cannot guarantee that an L2(µ) bounded Calderón–Zygmund operator is bounded from
L∞(µ) to this space (see [13]), and the BMO-type space in [6] does not satisfy the
John–Nirenberg inequality.

The purpose of this paper is to establish a new characterization of RBMO(µ). As an
application of this, we prove that the Lp(µ)-boundedness with p ∈ (1,∞) for a Calderón–
Zygmund operator is equivalent to its several endpoint estimates, respectively. To state
the main result, we first recall some definitions and notation.

By a cube Q ⊂ R
d we mean a closed cube whose sides are parallel to the axes and

which is centred at some point of suppµ, and we denote its side length by l(Q). Let α

and βd be positive constants such that βd > αn. For a cube Q, we say that Q is (α, β)-
doubling if µ(αQ) � βµ(Q), where αQ denotes the cube concentric with Q and having
side length αl(Q). In what follows, if α and β are not specified, by a doubling cube we
mean a (2, 2d+1)-doubling cube. For two cubes Q1 ⊂ Q2, set

δQ1,Q2 = 1 +
NQ1,Q2∑

k=1

µ(2kQ1)
[l(2kQ1)]n

, (1.2)

where NQ1,Q2 is the least integer k such that l(2kQ1) � l(Q2).
As usual, in what follows, we denote by L1

loc(µ) the set of all locally integrable functions
with respect to the measure µ. We now recall the following definition of RBMO(µ) in [9].

Definition 1.1. Let ρ ∈ (1,∞) be fixed. A function f ∈ L1
loc(µ) is said to belong to

the space RBMO(µ) if there exists a constant C1 � 0 such that

sup
Q

1
µ(ρQ)

∫
Q

|f(x) − mQ̃(f)| dµ(x) � C1, (1.3)

and, for any two doubling cubes Q1 ⊂ Q2,

|mQ1(f) − mQ2(f)| � C1δQ1,Q2 , (1.4)

where the supremum is taken over all cubes centred at some point of suppµ, Q̃ is the
smallest doubling cube of the form 2kQ with non-negative integer k, and mQ̃(f) is the
mean value of f on Q̃, namely,

mQ̃(f) =
1

µ(Q̃)

∫
Q̃

f(y) dµ(y).

The minimal constant C1 in (1.3) and (1.4) is defined to be the RBMO(µ) norm of f

and is denoted by ‖f‖RBMO(µ).
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Remark 1.2. Tolsa [9] proved that the definition of RBMO(µ) is independent of
choices of ρ, α and βd provided that ρ > 1 and βd > αn. Also, we can obtain an equivalent
definition for the space RBMO(µ) by replacing cubes centred at points of suppµ by all
cubes in R

d.

Definition 1.3. Let ρ ∈ (1,∞) and p ∈ (0,∞). A function f ∈ L1
loc(µ) is said to

belong to the space RBMOp
ρ(µ) if there exist a constant C2 � 0 and a collection of

numbers {fQ} (i.e. for each cube Q, there exists a number fQ) such that

sup
Q

1
µ(ρQ)

∫
Q

|f(x) − fQ|p dµ(x) � Cp
2 (1.5)

and
|fQ − fR| � C2δQ,R. (1.6)

The minimal constant C2 in (1.5) and (1.6) is defined to be the RBMOp
ρ(µ) norm of f

and is denoted by ‖f‖RBMOp
ρ(µ).

The main result in this paper is the following new characterization of RBMO(µ).

Theorem 1.4. Let ρ ∈ (1,∞) and p ∈ (0,∞). The spaces RBMOp
ρ(µ) and RBMO(µ)

coincide and their norms are equivalent.

Note that if µ is the d-dimensional Lebesgue measure, then Theorem 1.4 is [8, Corollary,
p. 517]. Moreover, a version of Theorem 1.4 with respect to doubling measures was
established by Long and Yang in [3].

Remark 1.5. The essential new part of Theorem 1.4 is the case p ∈ (0, 1). The case
p ∈ [1,∞) of Theorem 1.4 is trivial by the Hölder inequality and the John–Nirenberg
inequality for the space RBMO(µ), which was established in [9].

To give an application of Theorem 1.4, we first recall the definition of the Hardy space
with the measure satisfying (1.1), which was introduced by Tolsa in [9] (see also [11]).

Definition 1.6. Let ρ ∈ (1,∞). A function b ∈ L1
loc(µ) is said to be an H1(µ)-atomic

block if

(i) there exists some cube R such that supp b ⊂ R,

(ii)
∫

Rd b(x) dµ(x) = 0,

(iii) there are functions aj supported on cubes Qj ⊂ R and numbers λj ∈ R such that
b =

∑∞
j=1 λjaj and

‖aj‖L∞(µ) � (µ(ρQj)δQj ,R)−1.

Set

|b|H1,∞
atb (µ) =

∞∑
j=1

|λj |.
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For a function f ∈ L1(µ), we say that f ∈ H1,∞
atb (µ) if there are H1(µ)-atomic blocks

{bj}∞
j=1 such that

f =
∞∑

j=1

bj

with
∑∞

j=1 |bj |H1,∞
atb (µ) < ∞. The H1,∞

atb (µ) norm of f is defined by

‖f‖H1,∞
atb (µ) = inf

{ ∞∑
j=1

|bj |H1,∞
atb (µ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

Remark 1.7. Tolsa [9, Proposition 4.1] states that the definition of H1,∞
atb (µ) is inde-

pendent of the choice of ρ > 1.

Let K be a locally integrable function on R
d × R

d \ {x = y} which has the property
that, for all x, y ∈ R

d with x �= y,

|K(x, y)| � C|x − y|−n, (1.7)

and, for all x, y, y′ ∈ R
d with |x − y| � 2|y − y′| and x �= y,

|K(x, y) − K(x, y′)| + |K(y, x) − K(y′, x)| � C
|y − y′|γ

|x − y|n+γ
, (1.8)

where γ ∈ (0, 1] and C > 0 are two constants independent of x, y and y′. Define the
Calderón–Zygmund operator, T , formally by

Tf(x) =
∫

Rd

K(x, y)f(y) dµ(y). (1.9)

This integral may not be convergent for many functions. Thus, we consider the truncated
operators Tε for ε > 0 defined by

Tεf(x) =
∫

|x−y|�ε

K(x, y)f(y) dµ(y). (1.10)

For p ∈ (1,∞), we say that the operator T is bounded on Lp(µ) if Tε is bounded on
Lp(µ) with its bound independent of ε. The boundedness of T from H1,∞

atb (µ) to L1(µ),
and from L∞(µ) to RBMO(µ), is defined similarly. Also, we say that an operator T is
of restricted weak type (H1,∞

atb (µ), L1(µ)) if there is a constant C > 0 such that, for any
ε > 0, λ > 0 and any H1(µ)-atomic block b,

µ({x ∈ R
d : |Tεb(x)| > λ}) � Cλ−1|b|H1,∞

atb (µ).

Tolsa [10] established the Calderón–Zygmund decomposition and proved that if K sat-
isfies (1.7) and (1.8), and T is bounded on L2(µ), then T is also bounded from L1(µ) to
weak L1(µ), and from Lp(µ) to itself for any p ∈ (1,∞). Using some results on RBMO(µ)
and H1,∞

atb (µ), Tolsa proved the following result (see [9, Theorem 8.1]).

https://doi.org/10.1017/S0013091505001860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001860


A new characterization for regular BMO 159

Theorem 1.8. For ρ ∈ (1,∞), let K satisfy (1.7) and (1.8), and let T be the corre-
sponding Calderón–Zygmund operator. The following properties are equivalent:

(1) there is a constant C > 0 such that, for any ε > 0, cube Q and bounded function
f with supp f ⊂ Q,

1
µ(ρQ)

∫
Q

|Tεf(x)| dµ(x) � C‖f‖L∞(µ);

(2) T is bounded from L∞(µ) to RBMO(µ);

(3) T is bounded from H1,∞
atb (µ) to L1(µ);

(4) T is bounded on Lp(µ) for any p ∈ (1,∞).

Invoking Theorem 1.4, we improve Theorem 1.8, giving the following result.

Theorem 1.9. Let ρ ∈ (1,∞), let K satisfy (1.7) and (1.8), and let T be the corre-
sponding Calderón–Zygmund operator. The following properties are equivalent:

(i) T is of restricted weak type (H1,∞
atb (µ), L1(µ));

(ii) for certain ν > 0, there is a constant C > 0 such that, for any ε > 0, λ > 0, cube
Q and bounded function f with supp f ⊂ Q,

µ({x ∈ Q : |Tεf(x)| > λ}) � Cλ−νµ(ρQ)‖f‖ν
L∞(µ);

(iii) for certain σ ∈ (0, 1), there is a constant C > 0 such that, for any ε > 0 and any
bounded function f with supp f ⊂ Q,

1
µ(ρQ)

∫
Q

|Tεf(x)|σ dµ(x) � C‖f‖σ
L∞(µ);

(iv) T is bounded from L∞(µ) to RBMO(µ);

(v) T is bounded on Lp(µ) for any p ∈ (1,∞).

We remark that (ii) and (iii) of Theorem 1.9 are essentially equivalent. Obviously, (i)
and (iii) of Theorem 1.9 are much weaker than (3) and (1) of Theorem 1.8, respectively.
Moreover, the equivalence between (i) and (v) of Theorem 1.9 is not explicitly implied
by Theorem 1.8. In the proof of Theorem 1.9, the essential part is that (iii) implies (iv),
in which Theorem 1.4 plays a key role.

From Theorem 1.9, we can, furthermore, deduce the following result.

Corollary 1.10. Let K satisfy (1.7) and (1.8), let T be the corresponding Calderón–
Zygmund operator and let Φ be a Young function such that, for any t1, t2 � 0,

Φ(t1t2) � CΦ(t1)Φ(t2),
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and, for certain σ ∈ (0, 1), ∫ ∞

1
Φ

(
1
t

)
tσ−1 dt < ∞.

If there is a constant C > 0 such that, for any ε > 0, λ > 0 and bounded function f with
compact support,

µ({x ∈ R
d : |Tεf(x)| > λ}) � C

∫
Rd

Φ

(
|f(x)|

λ

)
dµ(x),

then T is also bounded on Lp(µ) for any p ∈ (1,∞).

If we take Φ(t) = t logγ(2 + t) for t � 0 and certain γ � 1, Corollary 1.10 with this Φ

then indicates that if T is of weak type (L logγ L(µ), L1(µ)), then T is also bounded on
Lp(µ) for p ∈ (1,∞). This cannot be deduced immediately from Theorem 1.8.

Throughout this paper, C denotes a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. Constants with sub-
scripts, such as C1, retain their value at different occurrences. f ∼ g means that the
ratio f/g is upper bounded and lower bounded away from zero by constants that do not
depend on the relevant variables in f and g. f � g is similar. For a µ-measurable set E,
χE denotes the characteristic function of E.

2. Proof of Theorem 1.4

We begin with some preliminary results.

Lemma 2.1. Let p ∈ (0, 1) and 1 < ρ1 < ρ2 < ∞. Then RBMOp
ρ1

(µ) and RBMOp
ρ2

(µ)
coincide and their norms are equivalent.

Proof. It suffices to verify that

‖f‖RBMOp
ρ2

(µ) � ‖f‖RBMOp
ρ1

(µ) � ‖f‖RBMOp
ρ2

(µ).

The first inequality is obvious, so we prove only the second one, which will be deduced
from the argument used in the proof of [9, Lemma 2.6]. Let f ∈ RBMOp

ρ2
(µ). For each

fixed cube Q and x ∈ Q ∩ suppµ, let Qx be a cube centred at x with side length
l(Q)(ρ1 − 1)/(10ρ2). Then l(ρ2Qx) = l(Q)(ρ1 − 1)/10 and so ρ2Qx ⊂ ρ1Q. Applying
the Besicovich covering lemma, we see that there exists a family of points {xj}N

j=1,
xj ∈ (Q ∩ suppµ), such that

(a) the {Qxj }N
j=1 are almost disjoint;

(b) (Q ∩ suppµ) ⊂
⋃

j Qxj .

Observe that Qxj and Q have comparable side length and

|fQxj
− fQ| � |fQxj

− fρ1Q| + |fρ1Q − fQ|

� ‖f‖RBMOp
ρ2

(µ)(δQxj
,ρ1Q + δQ,ρ1Q)

� ‖f‖RBMOp
ρ2

(µ).
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It then follows that∫
Qxj

|f(x) − fQ|p dµ(x) �
∫

Qxj

|f(x) − fQxj
|p dµ(x) + µ(Qxj

)|fQxj
− fQ|p

� µ(ρ2Qxj
)‖f‖p

RBMOp
ρ2

(µ).

Summing the last inequality over all j then yields

∫
Q

|f(x) − fQ|p dµ(x) �
N∑

j=1

∫
Qxj

|f(x) − fQ|p dµ(x)

�
N∑

j=1

µ(ρ2Qxj
)‖f‖p

RBMOp
ρ2

(µ)

� Nµ(ρ1Q)‖f‖p
RBMOp

ρ2
(µ),

where, in the last inequality, we have invoked the fact that ρ2Qxj ⊂ ρ1Q. Since N is a
fixed positive integer depending only on ρ1, ρ2 and d (see [9, p. 99]), the desired result
then follows from the last estimate directly. �

Lemma 2.2. Let ρ ∈ (1,∞) and p ∈ (0,∞). Suppose that f ∈ RBMOp
ρ(µ) and let

{fQ} be a collection of numbers satisfying (1.5) and (1.6). For each positive integer m,
set

fm(x) =

⎧⎪⎨
⎪⎩

f(x) if |f(x)| � m,

m
f(x)
|f(x)| if |f(x)| > m,

and

fm,Q =

⎧⎪⎨
⎪⎩

fQ if |fQ| � m,

m
fQ

|fQ| if |fQ| > m.

Then
sup
Q

1
µ(ρQ)

∫
Q

|fm(x) − fm,Q|p dµ(x) � 3‖f‖p
RBMOp

ρ(µ),

and, for any two cubes Q ⊂ R,

|fm,Q − fm,R| � 3δQ,R‖f‖RBMOp
ρ(µ).

This lemma can be proved by a straightforward computation. We omit the details for
brevity.

The following result is [9, Lemma 2.7].

Lemma 2.3. Let ρ ∈ (1,∞). Then RBMO(µ) and RBMO1
ρ(µ) coincide and their

norms are equivalent.
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Proof of Theorem 1.4. Note that by the John–Nirenberg inequality established by
Tolsa [9], for any p ∈ (0,∞) and ρ ∈ (1,∞), RBMO(µ) ⊂ RBMOp

ρ(µ) and, by the Hölder
inequality, for p ∈ [1,∞), RBMOp

ρ(µ) ⊂ RBMO(µ). Thus, we need to prove only that,
for each fixed ρ ∈ (1,∞), p ∈ (0, 1) and any f ∈ RBMOp

ρ(µ),

‖f‖RBMO(µ) � ‖f‖RBMOp
ρ(µ).

By Lemmas 2.1 and 2.3, it suffices to prove that if f and a collection of numbers {fQ}
satisfy the estimate (1.5) with ρ = 4

3 and the estimate (1.6), then

sup
Q

1
µ(2Q)

∫
Q

|f(x) − fQ| dµ(x) � ‖f‖RBMOp
4/3(µ). (2.1)

For a fixed f ∈ RBMOp
4/3(µ) and a cube Q, let B be a positive constant to be deter-

mined later. As in [9, p. 108], applying the Besicovich covering lemma, we have

{x ∈ Q : |f(x) − fQ| > B‖f‖RBMOp
4/3(µ)} ⊂

⋃
j

Qj , (2.2)

where {Qj} is a sequence of cubes with almost disjoint interiors, Qj ⊂ 3
2Q, l(Qj) �

1
10 l(Q), and Qj is a maximal doubling cube which satisfies

1
µ(Qj)

∫
Qj

|f(x) − fQ|p dµ(x) > Bp‖f‖p
RBMOp

4/3(µ).

Therefore,∑
j

µ(Qj) � 1
Bp‖f‖p

RBMOp
4/3(µ)

∑
j

∫
Qj

|f(x) − fQ|p dµ(x)

� 1
Bp‖f‖p

RBMOp
4/3(µ)

∫
3Q/2

|f(x) − fQ|p dµ(x)

� 1
Bp‖f‖p

RBMOp
4/3(µ)

∫
3Q/2

|f(x) − f3Q/2|p dµ(x)

+
µ(3Q/2)

Bp‖f‖p
RBMOp

4/3(µ)
|fQ − f3Q/2|p

� C3

Bp
µ(2Q).

We now choose B large enough such that C32d+1/Bp � 1
2 . It follows that∑

j

µ(2Qj) � 1
2µ(2Q). (2.3)

Now we claim that, for each fixed j,

|fQ − fQj | � ‖f‖RBMOp
4/3(µ). (2.4)

To prove this, we consider the following three cases.
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Case 1 (l(2̃Qj) � 10−1l(Q)). From the choice of Qj , it follows that

1

µ(2̃Qj)

∫
2̃Qj

|f(x) − fQ|p dµ(x) � Bp‖f‖p
RBMOp

4/3(µ).

Observing that

|fQj
− f2̃Qj

| � |fQj − f2Qj | + |f2Qj − f2̃Qj
|

� δQj ,2Qj ‖f‖RBMOp
4/3(µ) + δ2Qj ,2̃Qj

‖f‖RBMOp
4/3(µ),

we then have
|fQj − f2̃Qj

| � ‖f‖RBMOp
4/3(µ). (2.5)

Thus,

|fQ − fQj
|p � 1

µ(2̃Qj)

∫
2̃Qj

|f(x) − fQ|p dµ(x) +
1

µ(2̃Qj)

∫
2̃Qj

|f(x) − fQj
|p dµ(x)

� Bp‖f‖p
RBMOp

4/3(µ) + |fQj − f2̃Qj
|p +

1

µ(2̃Qj)

∫
2̃Qj

|f(x) − f2̃Qj
|p dµ(x)

� Bp‖f‖p
RBMOp

4/3(µ).

Case 2 (10−1l(Q) < l(2̃Qj) � 10l(Q)). By (2.5) and the fact that 2̃Qj and Q

have comparable side length, we know that

|fQ − fQj | � |fQj − f2̃Qj
| + |f2̃Qj

− fQ| � ‖f‖RBMOp
4/3(µ).

Case 3 (l(2̃Qj) > 10l(Q)). Let m be a positive integer such that Q ⊂ 2mQj and
l(Q) ∼ l(2mQj) � l(2̃Qj). Write

|fQ − fQj | � |fQj − f2Qj | + |f2Qj − f2mQj | + |fQ − f2mQj |.

Note that 2mQj ⊂ 2̃Qj . It follows that

|f2Qj
− f2mQj

| � δ2Qj ,2mQj
‖f‖RBMOp

4/3(µ) � δ2Qj ,2̃Qj
‖f‖RBMOp

4/3(µ) � ‖f‖RBMOp
4/3(µ).

On the other hand, the fact that Q ⊂ 2mQj and l(Q) ∼ l(2mQj) tells us that δQ,2mQj
� 1

and that
|fQ − f2mQj | � ‖f‖RBMOp

4/3(µ)δQ,2mQj � ‖f‖RBMOp
4/3(µ),

which gives the desired estimate (2.4) in this case.

We can now conclude the proof of Theorem 1.4. Set

D = sup
I

1
µ(2I)

∫
I

|f(x) − fI | dµ(x),
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where the supremum is taken over all cubes I ⊂ R
d. The estimates (2.3) and (2.4) state

that

1
µ(2Q)

∫
Q

|f(x) − fQ| dµ(x)

� 1
µ(2Q)

∫
Q\

⋃
j Qj

|f(x) − fQ| dµ(x) +
1

µ(2Q)

∑
j

∫
Qj

|f(x) − fQ| dµ(x)

� B‖f‖RBMOp
4/3(µ) +

1
µ(2Q)

∑
j

µ(Qj)|fQ − fQj | +
1

µ(2Q)

∑
j

∫
Qj

|f(x) − fQj
| dµ(x)

� C‖f‖RBMOp
4/3(µ) +

D

µ(2Q)

∑
j

µ(2Qj),

where C > 0 is independent of Q and f . This in turn implies that, for all f ∈ L∞(µ),

D � ‖f‖RBMOp
4/3(µ).

For a general f ∈ RBMOp
4/3(µ), letting fm and fm,Q be as in Lemma 2.2, we then have

fm ∈ L∞(µ) and so, for any cube Q,

1
µ(2Q)

∫
Q

|fm(x) − fm,Q| dµ(x) � ‖fm‖RBMOp
4/3(µ) � ‖f‖RBMOp

4/3(µ).

Since
lim

m→∞

1
µ(2Q)

∫
Q

|fm(x) − fm,Q| dµ(x) =
1

µ(2Q)

∫
Q

|f(x) − fQ| dµ(x),

we see that the inequality (2.1) holds for any f ∈ RBMOp
4/3(µ), which completes the

proof of Theorem 1.4. �

3. Proof of Theorem 1.9

To prove Theorem 1.9, we need the following lemma.

Lemma 3.1. Let K satisfy (1.7) and (1.8), let Tε be defined by (1.10) and let σ ∈ (0, 1).
If Theorem 1.9 (iii) with ρ = 3

2 is true, then, for any ε > 0 and any bounded function f

with compact support, |Tεf |σ ∈ RBMO(µ) and

‖|Tεf |σ‖RBMO(µ) � C‖f‖σ
L∞(µ) (3.1)

with C > 0 independent of f and ε.

Proof. By homogeneity, we may assume that ‖f‖L∞(µ) = 1. Set

hQ,σ = mQ(|Tε(fχRd\Q/3)|σ).

By Lemma 2.3, we see that the proof of (3.1) can be reduced to proving that

1
µ(2Q)

∫
Q

||Tεf(x)|σ − hQ,σ| dµ(x) � 1 (3.2)
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and, for any two cubes Q and R with Q ⊂ R,

|hQ,σ − hR,σ| � δQ,R. (3.3)

We first prove (3.2). For a fixed cube Q and bounded function f with compact support
and ‖f‖L∞(µ) = 1, decompose f as

f(x) = f(x)χ4Q/3(x) + f(x)χRd\4Q/3(x) = f1(x) + f2(x).

Write

1
µ(2Q)

∫
Q

||Tεf(x)|σ − hQ,σ| dµ(x)

� 1
µ(2Q)

∫
Q

||Tεf(x)|σ − |Tεf2(x)|σ| dµ(x) +
1

µ(2Q)

∫
Q

||Tεf2(x)|σ − hQ,σ| dµ(x)

� 1
µ(2Q)

∫
Q

|Tεf1(x)|σ dµ(x) +
1

µ(2Q)

∫
Q

||Tεf2(x)|σ − hQ,σ| dµ(x).

Our hypothesis now states that

1
µ(2Q)

∫
Q

|Tεf1(x)|σ dµ(x) � 1
µ(2Q)

∫
4Q/3

|Tεf1(x)|σ dµ(x) � 1.

On the other hand, for any x, y ∈ Q, a trivial computation gives

||Tεf2(x)|σ − |Tεf2(y)|σ| � |Tεf2(x) − Tεf2(y)|σ

�
{ ∫

Rd\4Q/3
|K(x, z) − K(y, z)| dµ(z)

}σ

� 1.

Thus, for any x ∈ Q,

||Tεf2(x)|σ − hQ,σ| =
1

µ(Q)

∣∣∣∣
∫

Q

(|Tεf2(y)|σ − |Tεf2(x)|σ) dµ(y)
∣∣∣∣ � 1,

which in turn leads to

1
µ(2Q)

∫
Q

||Tεf2(x)|σ − hQ,σ| dµ(x) � 1.

Inequality (3.2) then holds.
Now we turn our attention to the estimate (3.3). For two cubes Q and R with Q ⊂ R,

we denote NQ,R + 1 simply by N . Write

|hQ,σ − hR,σ|
� |mQ(|Tε(fχRd\4Q/3)|σ) − mQ(|Tε(fχRd\2N Q)|σ)|

+ |mQ(|Tε(fχRd\2N Q)|σ) − mR(|Tε(fχRd\2N Q)|σ)|
+ |mR(|Tε(fχRd\4R/3)|σ) − mR(|Tε(fχRd\2N Q)|σ)|
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� mQ(|Tε(fχ2N Q\4Q/3)|σ) + |mQ(|Tε(fχRd\2N Q)|σ) − mR(|Tε(fχRd\2N Q)|σ)|
+ mR(|Tε(fχ2N Q\4R/3)|σ)

= I + J + H.

The estimate for H is easy. In fact, by (1.1), we see that, for each fixed y ∈ R,

|Tε(fχ2N Q\4R/3)(y)| � µ(2NQ)
[l(R)]n

� 1,

which implies that H � 1.

Recall that NQ,R is the least integer k such that 2kQ ⊃ R. A trivial computation
involving the regularity condition (1.8) proves that, for any x ∈ Q and y ∈ R,

||Tε(fχRd\2N Q)(x)|σ − |Tε(fχRd\2N Q)(y)|σ| � |Tε(fχRd\2N Q)(x) − Tε(fχRd\2N Q)(y)|σ

�
{ ∫

Rd\2N Q

|K(x, z) − K(y, z)| dµ(z)
}σ

� 1.

Using this result, and the fact that

|mQ(|Tε(fχRd\2N Q)|σ) − mR(|Tε(fχRd\2N Q)|σ)|

� 1
µ(Q)µ(R)

∫
Q

∫
R

||Tε(fχRd\2N Q)(x)|σ − |Tε(fχRd\2N Q)(y)|σ| dµ(x) dµ(y),

gives the desired estimate for J , namely, J � 1.
Finally, we can verify that, for any x ∈ Q,

|Tε(fχ2N Q\4Q/3)(x)| �
∫

2N Q\2N−1Q

1
|x − z|n dµ(z)

+
∫

2N−1Q\2Q

1
|x − z|n dµ(z) +

∫
2Q\4Q/3

1
|x − z|n dµ(z)

� µ(2NQ)
[l(2N−1Q)]n

+
N−1∑
k=1

µ(2kQ)
[l(2k−1Q)]n

+
µ(2Q)

[l(4Q/3)]n

� δQ,R,

and so
I � δσ

Q,R � δQ,R,

since σ ∈ (0, 1) and δQ,R � 1. This finishes the proof of Lemma 3.1. �

Proof of Theorem 1.9. By [9, Theorem 8.1 and Theorem 7.2], we know that (iv) =⇒
(v) and (v) =⇒ (i). Thus, we need only prove that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).
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(i) =⇒ (ii). We will prove that if (i) is true, then (ii) holds for r = 1. Without loss
of generality, we may assume that ρ = 2 in (ii). Let Q ⊂ R

d be a cube and let a be a
bounded function supported on Q. We employ the idea used in [9, p. 137] and consider
the following two cases.

Case 1 (l(Q) � diam(supp µ)/20). Let x0 ∈ suppµ be a point in R
d \ (5Q)◦

which is closest to Q, where (5Q)◦ is the interior of 5Q. Set d0 = dist(x0, Q). We assume
that x0 is a point such that some cube with side length 2−kd0, k � 2, and centred at
x0 is doubling. Otherwise, we take y0 ∈ suppµ ∩ B(x0, l(Q)/100), which satisfies this
condition, and then interchange x0 and y0. Denote by R the cube concentric with Q with
side length max{10d0, l(Q̃)}. It is easy to verify that δQ,R � 1. Let Q0 be the biggest
doubling cube centred at x0 with side length 2−kd0, k � 2. Then Q0 ⊂ R, δQ0,R � 1 and
dist(Q0, Q) � l(Q). Set

b(y) = a(y) + CQ0χQ0(y)

with CQ0 = −[µ(Q0)]−1
∫

Rd a(y) dµ(y). It is easy to verify that, for x ∈ Q,

|Tε(CQ0χQ0)(x)| � |CQ0 |
µ(Q0)

[dist(x, Q0)]n
� C4‖a‖L∞(µ).

If λ � 2C4‖a‖L∞(µ), it is obvious that

µ({x ∈ Q : |Tεa(x)| > λ}) � µ(Q)λ−1‖a‖L∞(µ).

Thus, we may assume that λ > 2C4‖a‖L∞(µ). Observe that b is an H1(µ)-atomic block
and

|b|H1,∞
atb (µ) � δQ,R‖a‖L∞(µ)µ(2Q) + δQ0,R|CQ0 |µ(2Q0) � ‖a‖L∞(µ)µ(2Q) + ‖a‖L1(µ),

since Q0 is doubling and |CQ0 |µ(Q0) = ‖a‖L1(µ). It follows that

µ({x ∈ Q : |Tεa(x)| > λ}) � µ({x ∈ Q : |Tεb(x)| > λ/2
}
)

� λ−1‖b‖H1,∞
atb (µ)

� λ−1‖a‖L∞(µ)µ(2Q).

Case 2 (l(Q) > diam(supp µ)/20). Since Q is centred at some point of suppµ,
we may assume that l(Q) � 4 diam(suppµ). Then Q ∩ suppµ can be covered by a finite
number of cubes {Qj}j , centred at some points in suppµ with side length l(Q)/200
and satisfies 4Qj ⊂ 2Q. The number of such cubes {Qj}j is less than a fixed positive
integer N depending only on d. Set

aj(x) =
χQj

(x)∑
k χQk

(x)
a(x)

https://doi.org/10.1017/S0013091505001860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001860


168 G. Hu, X. Wang and D. Yang

and write

µ({x ∈ Q : |Tεa(x)| > λ}) �
N∑

j=1

µ({x ∈ Q : |Tεaj(x)| > λ/N})

�
N∑

j=1

µ({x ∈ Q \ 2Qj : |Tεaj(x)| > λ/N
}
)

+
N∑

j=1

µ({x ∈ 2Qj : |Tεaj(x)| > λ/N}).

Note that, for any x �∈ 2Qj ,

|Tεaj(x)| � ‖a‖L∞(µ)µ(Qj)[l(Qj)]−n � ‖a‖L∞(µ).

This, together with (1.1), leads to

µ({x ∈ Q \ 2Qj : |Tεaj(x)| > λ/N}) � Nλ−1
∫

Q\2Qj

|Tεaj(x)| dµ(x)

� Nλ−1µ(Q)‖a‖L∞(µ).

On the other hand, by the conclusion in Case 1, we have

µ({x ∈ 2Qj : |Tεaj(x)| > λ/N}) � λ−1‖a‖L∞(µ)µ(4Qj).

Finally, in this case we obtain

µ({x ∈ Q : |Tεa(x)| > λ}) � λ−1µ(2Q)‖a‖L∞(µ).

(ii) =⇒ (iii). Assume that (ii) is true. Choose σ ∈ (0, min{1, ν}). If f is a bounded
function with support contained in a cube Q, a trivial computation gives that

∫
Q

|Tεf(x)|σ dµ(x) = σ

∫ ‖f‖L∞(µ)

0
µ({x ∈ Q : |Tεf(x)| > λ})λσ−1 dλ

+ σ

∫ ∞

‖f‖L∞(µ)

µ({x ∈ Q : |Tεf(x)| > λ})λσ−1 dλ

� µ(Q)‖f‖σ
L∞(µ) + µ(ρQ)‖f‖ν

L∞(µ)

∫ ∞

‖f‖L∞(µ)

λσ−ν−1 dλ

� µ(ρQ)‖f‖σ
L∞(µ).

(iii) =⇒ (iv). For simplicity, assume that (iii) is true with ρ = 3
2 . Now our goal is to

prove that, for any ε > 0 and bounded function f with compact support,

‖Tεf‖RBMO(µ) � ‖f‖L∞(µ).
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For each fixed ε > 0 and bounded function f with compact support, Lemma 3.1 tells us
that |Tεf |σ ∈ RBMO(µ), where σ ∈ (0, 1). By the John–Nirenberg inequality, we know
that Tεf is locally µ-integrable. For each fixed cube Q ⊂ R

d, set

hQ = mQ(Tε(fχRd\4Q/3)).

Repeating the argument used in the proof of Lemma 3.1, we can prove that, for any two
cubes Q and R with Q ⊂ R,

|hQ − hR| � δQ,R‖f‖L∞(µ).

On the other hand, as in the proof of Lemma 3.1, a straightforward computation proves
that, for any cube Q,

1
µ(2Q)

∫
Q

|Tεf(x) − hQ|σ dµ(x) � ‖f‖σ
L∞(µ).

This leads, via Theorem 1.4, to

‖Tεf‖RBMO(µ) � ‖f‖L∞(µ),

which completes the proof of Theorem 1.9. �

Proof of Corollary 1.10. By Theorem 1.9, it suffices to prove that condition (iii)
in Theorem 1.9 is true. Let Q be a fixed cube and f be a bounded function with
‖f‖L∞(µ) = 1 and support contained in some cube Q. A trivial computation proves that,
for any σ ∈ (0, 1),∫

Q

|Tεf(x)|σ dµ(x) = σ

∫ 1

0
λσ−1µ({x ∈ Q : |Tεf(x)| > λ}) dλ

+ σ

∫ ∞

1
λσ−1µ({x ∈ Q : |Tεf(x)| > λ}) dλ

� µ(Q) +
{ ∫ ∞

1
λσ−1Φ(1/λ) dλ

} ∫
Q

Φ(|f(x)|) dµ(x)

� µ(Q),

and the desired estimate holds. �

We end this section with the following remark.

Remark 3.2. By the same argument as above, it is easy to check that the conclusion
of Theorem 1.9 is still true if we replace (1.8) by the following Hörmander condition: for
all y, y′ ∈ R

d,∫
|x−y|�2|y−y′|

[|K(x, y) − K(x, y′)| + |K(y, x) − K(y′, x)|] dµ(x) � 1.

We omit the details for brevity.

Acknowledgements. D.Y. was supported by the National Science Foundation for
Distinguished Young Scholars (no. 10425106) and NCET of the Ministry of Education
(no. NCET-04-0142) of China. The authors thank the referee and the editor for many
valuable remarks which made this article more readable.

https://doi.org/10.1017/S0013091505001860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001860


170 G. Hu, X. Wang and D. Yang

References

1. G. Hu and S. Liang, Another characterization of the Hardy spaces with non-doubling
measures, Math. Nachr. 279 (2006), 1797–1807.

2. G. Hu, Y. Meng and D. Yang, New atomic characterization of H1 space with non-
doubling measures and its applications, Math. Proc. Camb. Phil. Soc. 138 (2005), 151–
171.

3. R. Long and L. Yang, BMO functions in spaces of homogeneous type, Sci. China A 27
(1984), 695–708.

4. J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures,
Duke Math. J. 102 (2000), 533–565.

5. F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for
Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. 9 (1998),
463–487.

6. F. Nazarov, S. Treil and A. Volberg, The Tb-theorem on non-homogeneous spaces,
Acta Math. 190 (2003), 151–239.
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