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Abstract
We extend the Kechris–Pestov–Todorčević correspondence to weak Fraïssé categories and automorphism groups of
generic objects. The new ingredient is the weak Ramsey property. We demonstrate the theory on several examples
including monoid categories, the category of almost linear orders and categories of strong embeddings of trees.
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1. Introduction

The main motivation for this note is the seminal work of Kechris, Pestov, Todorčević [8] exhibiting the
connection between extreme amenability of automorphism groups of countable homogeneous structures
and Ramsey-type properties of their finite substructures. This work has been very recently extended by
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Mašulović [18] in the language of category theory. Our goal is to push it even further, namely, by making
minimal assumptions both on the category of ‘small’ structures and weakening the homogeneity of the
‘generic’ object.

The phenomenon discovered by Kechris, Pestov, Todorčević [8] can be described in its simplest
form as follows. We have a class F of finite structures of a fixed language. We assume the class has
the subsequent nice properties: Every two structures in F can be embedded into a single one (the joint
embedding property); every two extensions of a structure in F can be combined into a single one (the
amalgamation property); every substructure of a structure in F is again in F (the class is hereditary);
there are countably many isomorphic types in F . When these conditions are met, there exists a unique
countable structure U whose finite substructures are all in F such that every structure from F embeds
into U, and U is ultrahomogeneous with respect to F , that is, every isomorphism between finite
substructures of U extends to an automorphism of U. These are the foundational objects of study in
Fraïssé theory. Consider the group 𝐺 = Aut(𝑈) with the pointwise convergence topology. The KPT
correspondence states that the group G is extremely amenable (i.e., every continuous action of G on
a compact Hausdorff space has a fixed point) if and only if the class F has the Ramsey property and
the ordering property. The ordering property ensures that all structures in F are rigid (i.e., have trivial
automorphism groups). The Ramsey property is the structural variant of the classical Ramsey theorem,
where we color structures of a fixed isomorphism type from F instead of coloring subsets.

For example, if F is the class of finite linearly ordered sets then the Ramsey property asserts in
particular that, for every finite linearly ordered set X and any positive integers m and k, there exists a
bigger finite linearly ordered set Y such that when we color all copies of the m-element linear ordering
inside Y with at most k many colors, we can always find an embedding e of X into Y (namely, a subset
with the same number of elements as X) such that all m-element subsets of 𝑒[𝑋] have the same color.
This is equivalent to the classical finite Ramsey theorem. Its formulation in the language of linear
orderings has two advantages: First, it allows us to talk about embeddings instead of subsets, as the
domain of an embedding can be identified with its image. Second, what is perhaps more important, it is
purely category-theoretic.

The last observation leads to a natural idea: Replace the class of finite structures F by an abstract
category ℭ, whose arrows are meant to be some sort of ‘embeddings’. A natural assumption, made by
Mašulović [18] in this categorical framework, is that every object has only finitely many arrows going
into it. Note that this is immediately true in the case that the category in question is a category of finite
models with embeddings for arrows. As it so happens, this assumption, and the weaker assumption
asserting that there are only finitely many arrows between two prescribed objects, is not necessary
to capture the KPT correspondence in a categorical framework. We can do so by instead making the
Ramsey property a bit more technical, involving only finite subsets of arrows rather than all arrows
between two structures.

Nevertheless, it turns out that the KPT correspondence holds in a fairly large class of categories in
which the notion of ‘being finite’ is replaced by a factorization property with respect to a fixed sequence.
Despite this subtle change, we still arrive to the same connection between extreme amenability and the
Ramsey property. In order to make the theory as general as possible, we shall work with so-called
weak Fraïssé categories [12], where the amalgamation property holds in a weaker form. We obtain the
equivalence of extreme amenability of the automorphism group of the generic object with the weak
version of the Ramsey property, which involves particular arrows (called amalgamable arrows). We
also show that a weak Fraïssé category ℭ gives rise to a natural Fraïssé category Am(ℭ↑). Moreover,
we show that ℭ has the weak Ramsey property if and only if Am(ℭ↑) has the Ramsey property.

Our main result can be roughly summarized as follows.

Theorem 1. Assume𝔖 is a weak Fraïssé category, and let U be generic over𝔖. The following properties
are equivalent.

(a) Aut(𝑈) is extremely amenable.
(b) 𝔖 has the weak Ramsey property.
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Of course, some minimal technical assumptions are needed here so that there is a good interplay
between the topology of Aut(𝑈) and the category 𝔖. In particular, U is an object of a larger category.
Besides that, there are practically no further assumptions on 𝔖; however, the weak Ramsey property
involves finite sets of arrows. The precise statement is Theorem 3.14 below.

�����

The paper is organized as follows: After the Preliminaries section (where we introduce the setup) we
prove the main results in a series of lemmas showing that the weak Ramsey property (see Definition 3.1)
is equivalent to extreme amenability of the automorphism group of the generic object. The last section
contains a discussion of the main results and concrete applications. This includes an analysis of monoid
categories and almost linear orders, as well as finite trees under strong embeddings. The latter exhibits
an interesting interplay between Milliken’s theorem for trees [19] and the universal Ważewski dendrites
[5], [15].

2. Preliminaries

We shall use very basic concepts from category theory. For undefined notions, we refer to MacLane
[16]. Categories will be denoted by ℭ, 𝔖, 𝔏 and so on. A category ℭ will be identified with its class of
arrows (morphisms) and Obj(ℭ) will denote its class of objects. Given two ℭ-objects a, b we denote
by ℭ(𝑎, 𝑏) the set of all arrows f with domain a (i.e., dom( 𝑓 ) = 𝑎) and codomain b (i.e., cod( 𝑓 ) = 𝑏).
We sometimes write 𝑓 : 𝑎 → 𝑏 instead of 𝑓 ∈ ℭ(𝑎, 𝑏), as long as the category ℭ is understood
from the context. Composition of arrows is performed in the usual order and denoted by ◦, that is,
dom( 𝑓 ◦ 𝑔) = dom(𝑔) and cod( 𝑓 ◦ 𝑔) = cod( 𝑓 ). The identity arrow of an object x will be denoted by
id𝑥 . All our categories are supposed to be locally small, that is, the class of all arrows from a fixed object
a to a fixed object b is a set, not a proper class.

A subcategory ℭ ⊆ 𝔖 is called full if ℭ(𝑎, 𝑏) = 𝔖(𝑎, 𝑏) for every 𝑎, 𝑏 ∈ Obj(ℭ), that is, if we are
restricting only objects, while ℭ ⊆ 𝔖 is called wide if Obj(ℭ) = Obj(𝔖), that is, if we are restricting
only arrows.

A sequence in a category ℭ is a covariant functor 𝐹 : 𝜔 → ℭ, where the set of natural numbers 𝜔
is treated as a poset category. Namely, F consists of a sequence of objects {𝐹 (𝑛)}𝑛∈𝜔 and a sequence
of ℭ-arrows {𝐹 (𝑛, 𝑚)}𝑛�𝑚<𝜔 such that 𝐹 (𝑛, 𝑚) ∈ ℭ(𝐹 (𝑛), 𝐹 (𝑚)), 𝐹 (𝑘, 𝑘) = id𝐹 (𝑘) and 𝐹 (𝑘, 𝑚) =
𝐹 (ℓ, 𝑚) ◦ 𝐹 (𝑘, ℓ) for every 𝑘 � ℓ � 𝑚. We shall use the following convention: A sequence will be
denoted by �𝑢 (possibly with u replaced by another letter) and in that case we denote 𝑢𝑛 = �𝑢(𝑛) and
𝑢𝑚𝑛 = �𝑢(𝑛, 𝑚).

A cone for a sequence �𝑢 in ℭ is a pair ( �𝑢∞,𝑈), where U is a fixed object and �𝑢∞ is a family of
ℭ-arrows {𝑢∞𝑛 : 𝑢𝑛 → 𝑈}𝑛∈𝜔 such that 𝑢∞𝑛 = 𝑢∞𝑚 ◦ 𝑢

𝑚
𝑛 for every 𝑛 � 𝑚, as in Figure 1. A cone ( �𝑢∞,𝑈)

for �𝑢 is a colimit of �𝑢 if, for every cone (�𝑣∞, 𝑉) for �𝑢, there is a unique ℭ-arrow 𝑓 : 𝑈 → 𝑉 such that
𝑣∞𝑛 = 𝑓 ◦ 𝑢∞𝑛 for every 𝑛 ∈ 𝜔.

We adopt the standard convention and denote the automorphism group of an object x by Aut(𝑥).
Our main interest will be Aut(𝑈), where U is a distinguished ‘generic’ object (the precise meaning is
described below). So, with one exception, the objects of categories will be denoted by small letters.

2.1. The setup

Throughout the paper, we find ourselves in the following situation: We have a category of ‘small’
objects 𝔖 and a fixed ‘large’ object U, both living in an ambient category 𝔏. The main theorems relate
properties of 𝔖, like the (weak) Ramsey property, with properties of U, like extreme amenability of its
automorphism group. Note that (weak) Fraïssé theory follows the same pattern: Properties of 𝔖, like
the (weak) amalgamation property or existence of a (weak) Fraïssé sequence, are related to properties
of the ‘generic’ object U, like (weak) homogeneity and (weak) injectivity.

https://doi.org/10.1017/fms.2024.64 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.64


4 A. Bartoš et al.

𝑈

𝑢0 𝑢1 𝑢2 𝑢3 ...
𝑢1

0

𝑢∞0

𝑢2
1

𝑢∞1

𝑢3
2

𝑢∞2 𝑢∞3

Figure 1. A cone for a sequence in a category. The diagram is commutative.

A connection between 𝔖 and U in 𝔏 is established by fixing a coned sequence in (𝔖,𝔏): a triple
( �𝑢, �𝑢∞,𝑈), where �𝑢 is a sequence in 𝔖 and ( �𝑢∞,𝑈) is a cone for �𝑢 in 𝔏. The object U can be thought
of as a ‘quasi-limit’ of �𝑢 in 𝔏. Sometimes, it even is an actual colimit, but it is not necessary.

In this subsection, we impose a minimalistic set of conditions on the coned sequence ( �𝑢, �𝑢∞,𝑈) for
our theory to work. A concise list is given in the following definition. A rather long remark (that can be
safely skipped) giving some insight follows.

Definition 2.1. Let𝔖 ⊆ 𝔏 be categories. We say that a coned sequence ( �𝑢, �𝑢∞,𝑈) in (𝔖,𝔏) is matching
if it satisfies the following conditions.

(F1) For every 𝔏-arrow 𝑓 : 𝑥 → 𝑈 with 𝑥 ∈ Obj(𝔖), there exist n and an 𝔖-arrow 𝑓 : 𝑥 → 𝑢𝑛 such
that 𝑓 = 𝑢∞𝑛 ◦ 𝑓 .

(F2) For every n and every 𝔖-arrows 𝑓 , 𝑓 ′ : 𝑥 → 𝑢𝑛 such that 𝑢∞𝑛 ◦ 𝑓 = 𝑢∞𝑛 ◦ 𝑓 ′ there is 𝑛′ � 𝑛 such
that 𝑢𝑛′𝑛 ◦ 𝑓 = 𝑢𝑛

′

𝑛 ◦ 𝑓
′.

(BF) If { 𝑓𝑛}𝑛∈𝜔 , {𝑔𝑛}𝑛∈𝜔 are sequences of 𝔖-arrows such that

𝑓𝑛 : 𝑢𝑘𝑛 → 𝑢ℓ𝑛 , 𝑔𝑛 : 𝑢ℓ𝑛 → 𝑢𝑘𝑛+1 , 𝑔𝑛 ◦ 𝑓𝑛 = 𝑢𝑘𝑛+1𝑘𝑛
, 𝑓𝑛+1 ◦ 𝑔𝑛 = 𝑢ℓ𝑛+1ℓ𝑛

,

for some increasing cofinal sequences {𝑘𝑛}𝑛∈𝜔 , {ℓ𝑛}𝑛∈𝜔 ⊆ 𝜔, then there exists an 𝔏-arrow
𝑓∞ ∈ Aut(𝑈) such that

𝑓∞ ◦ 𝑢
∞
𝑘𝑛

= 𝑢∞ℓ𝑛 ◦ 𝑓𝑛 and 𝑓 −1
∞ ◦ 𝑢

∞
ℓ𝑛

= 𝑢∞𝑘𝑛+1 ◦ 𝑔𝑛

for every 𝑛 ∈ 𝜔.
(H) For every ℎ ∈ Aut(𝑈) \ {id𝑈 }, there is n such that ℎ ◦ 𝑢∞𝑛 ≠ 𝑢∞𝑛 .

The letter F stands for ‘factorization’, and (F1) and (F2) are called the ‘factorization (existence) condition’
and the ‘factorization uniqueness condition’, respectively. The letters BF stand for ‘back-and-forth’ and
H stands for ‘Hausdorff’ (see Construction 2.6).

Remark 2.2. Let us give some insight to the conditions defining a matching sequence. Given a category
𝔖, let us define the induced category of sequences 𝜎0𝔖. The objects are all sequences �𝑢 in 𝔖. The
morphisms are transformations between sequences modulo a certain equivalence. A transformation
�𝜑 : �𝑢 → �𝑣 is a sequence of 𝔖-arrows {𝜑𝑛 : 𝑢𝑛 → 𝑣𝜑 (𝑛) }𝑛∈𝜔 , where {𝜑(𝑛)}𝑛∈𝜔 ⊆ 𝜔 is an increasing
cofinal sequence such that 𝑣𝜑 (𝑚)

𝜑 (𝑛)
◦ 𝜑𝑛 = 𝜑𝑚 ◦ 𝑢

𝑚
𝑛 for every 𝑛 � 𝑚 ∈ 𝜔, as in Figure 2, that is, it is a

natural transformation from �𝑢 to a subsequence of �𝑣. The composition is obvious: ( �𝜓 ◦ �𝜑)𝑛 = 𝜓𝜑 (𝑛) ◦ 𝜑𝑛
for every 𝑛 ∈ 𝜔. We say that two transformations �𝜑, �𝜓 : �𝑢 → �𝑣 are equivalent (and we write �𝜑 ≈ �𝜓) if
for every 𝑛 ∈ 𝜔 there is 𝑚 � 𝜑(𝑛), 𝜓(𝑛) such that 𝑣𝑚

𝜑 (𝑛)
◦ 𝜑𝑛 = 𝑣𝑚

𝜓 (𝑛)
◦ 𝜓𝑛. It is easy to see that this is a

well-defined congruence of a category, and so defining morphisms of 𝜎0𝔖 as transformations modulo
this equivalence is correct.

Note that we may identify every 𝔖-object x with the constant sequence �id𝑥 and every 𝔖-arrow
𝑓 : 𝑥 → 𝑦 with the constant transformation �id 𝑓 : �id𝑥 → �id𝑦 . This way we identify 𝔖 with a subcategory
of 𝜎0𝔖. Moreover, this subcategory is full since every 𝜎0𝔖-arrow �𝜑 : 𝑥 → �𝑢 from a constant identity
sequence is uniquely determined (as a transformation up to the equivalence) by the 𝔖-arrow 𝜑0 : 𝑥 →
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𝑢0 𝑢1 𝑢2 𝑢3 · · · 𝑈

𝑣0 𝑣1 𝑣2 𝑣3 · · · 𝑉

�𝑢

�𝑣

𝑢1
0 𝑢2

1 𝑢3
2

𝑣1
0 𝑣2

1 𝑣3
2

𝜑0 𝜑1 𝜑2 𝜑3�𝜑 𝜑∞

𝑢∞0
𝑢∞1

𝑢∞2
𝑢∞3

𝑣∞0 𝑣∞1 𝑣∞2 𝑣∞3

Figure 2. A morphism between sequences and a matching morphism between associated cones.

𝑢𝜑 (0) . Also note that every constant sequence �id𝑥 admits the canonical limit cone ( �id
∞

𝑥 , 𝑥) in 𝔏 and that
( �id𝑥 , �id

∞

𝑥 , 𝑥) is a matching sequence in (𝔖,𝔏).
For two coned sequences ( �𝑢, �𝑢∞,𝑈) and (�𝑣, �𝑣∞, 𝑉) in (𝔖,𝔏) we consider the matching relation �

between 𝜎0𝔖-arrows �𝑢 → �𝑣 and 𝔏-arrows𝑈 → 𝑉 : We put

�𝜑 � 𝜑∞ if 𝑣∞𝜑 (𝑛) ◦ 𝜑𝑛 = 𝜑∞ ◦ 𝑢
∞
𝑛 for every 𝑛 ∈ 𝜔;

see Figure 2. The matching relation is functorial: We have id�𝑢 � id𝑈 , and if �𝜑 � 𝜑∞ and �𝜓 � 𝜓∞, then
�𝜓 ◦ �𝜑 � 𝜓∞ ◦ 𝜑∞.

Now, let ( �𝑢, �𝑢∞,𝑈) be a coned sequence in (𝔖,𝔏). For every 𝑥 ∈ Obj(𝔖), the matching relation
for ( �id𝑥 , �id

∞

𝑥 , 𝑥) and ( �𝑢, �𝑢∞,𝑈) is a function 𝜎0𝔖(𝑥, �𝑢) → 𝔏(𝑥,𝑈): Every 𝜎0𝔖-arrow 𝜑 : 𝑥 → �𝑢 is
determined by an𝔖-arrow 𝑓 : 𝑥 → 𝑢𝑛 for some n, and the unique𝔏-map 𝜑∞ such that �𝜑 � 𝜑∞ is 𝑢∞𝑛 ◦ 𝑓 .
The condition (F1) says that this matching function is surjective, and the condition (F2) says that the
matching function is one-to-one. Together, (F1) and (F2) hold if and only if for every 𝑥 ∈ Obj(𝔖) the
matching relation is a bijection between 𝜎0𝔖(𝑥, �𝑢) and 𝔏(𝑥,𝑈).

Moreover, under (F1), for every 𝔏-arrow 𝜑∞ : 𝑈 → 𝑈 there is a transformation �𝜑 : �𝑢 → �𝑢 such that
�𝜑 � 𝜑∞: For every 𝑛 ∈ 𝜔, there is an 𝔖-arrow 𝜑𝑛 : 𝑢𝑛 → 𝑢𝜑 (𝑛) with 𝑢∞

𝜑 (𝑛)
◦ 𝜑𝑛 = 𝜑∞ ◦ 𝑢

∞
𝑛 and we

can make sure that the sequence {𝜑(𝑛)}𝑛∈𝜔 is increasing and cofinal. Under (F2), for every 𝔏-arrow
𝜑∞ : 𝑈 → 𝑈 there is at most one transformation �𝜑 : �𝑢 → �𝑢 up to the equivalence such that �𝜑 � 𝜑∞:
For a different such transformation �𝜓 and 𝑛 ∈ 𝜔, we have 𝑢∞

𝜑 (𝑛)
◦ 𝜑𝑛 = 𝜑∞ ◦ 𝑢∞𝑛 = 𝑢∞

𝜓 (𝑛)
◦ 𝜓𝑛, and so

by (F2) there is m such that 𝑢𝑚
𝜑 (𝑛)
◦ 𝜑𝑛 = 𝑢𝑚

𝜓 (𝑛)
◦ 𝜓𝑛. Together, the matching relation for ( �𝑢, �𝑢∞,𝑈) is

a function 𝔏(𝑈,𝑈) → 𝜎0𝔖( �𝑢, �𝑢). By the functoriality, the function is a monoid homomorphism, and
it restricts to a group homomorphism 𝐹 : Aut𝔏 (𝑈) → Aut𝜎0𝔖 ( �𝑢). Observe that 𝜎0𝔖-automorphisms
�𝑢 → �𝑢 correspond to the zig-zag sequences used in condition (BF), and so (BF) states that the mapping
F is surjective (or even without (F1) and (F2) that for every automorphism �𝜑 : �𝑢 → �𝑢 there is a matching
automorphism 𝜑∞ : 𝑈 → 𝑈). Similarly, (H) states that the mapping F is one-to-one (here we cannot
omit (F2)). Together, under (F1) and (F2), the conditions (BF) and (H) hold if and only if the matching
relation is a group isomorphism between Aut𝜎0𝔖 ( �𝑢) and Aut𝔏 (𝑈).

In the following lemma, we observe that the notion of a matching sequence is robust under isomor-
phism and that the large object U determines the sequence of small objects �𝑢 uniquely.
Lemma 2.3. Let ( �𝑢, �𝑢∞,𝑈) be a matching sequence in (𝔖,𝔏).

(i) If 𝑓 : 𝑈 → 𝑉 is an 𝔏-isomorphism, then ( �𝑢, 𝑓 ◦ �𝑢∞, 𝑉) is a matching sequence.
(ii) If �𝜑 : �𝑣 → �𝑢 is an 𝜎0𝔖-isomorphism, then (�𝑣, �𝑢∞ ◦ �𝜑,𝑈) is a matching sequence.

(iii) For every other matching sequence (�𝑣, �𝑣∞, 𝑉) and every 𝔏-isomorphism 𝜑∞ : 𝑈 → 𝑉 , there is a
matching 𝜎0𝔖-isomorphism �𝜑 : �𝑢 → �𝑣.
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Proof. The proof is straightforward, though technical. For example, to obtain (BF) in (ii), for an 𝜎0𝔖-
automorphism 𝜓 : �𝑣 → �𝑣, we consider the automorphism ( �𝜑 ◦ �𝜓 ◦ �𝜑 −1) : �𝑢 → �𝑢 and its matching
automorphism ℎ : 𝑈 → 𝑈. For every 𝑛 ∈ 𝜔, we have

𝑢∞
𝜑 (𝜓 (𝜑−1 (𝑛)))

◦ ( �𝜑 ◦ �𝜓 ◦ �𝜑 −1)𝑛 = ℎ ◦ 𝑢∞𝑛 .

Also, �𝜑 −1 ◦ �𝜑 is equivalent to id�𝑢 , and so we have

( �𝑢∞ ◦ �𝜑)𝜓 (𝑛) ◦ 𝜓𝑛 = ( �𝑢∞ ◦ �𝜑 ◦ �𝜓 ◦ �𝜑 −1 ◦ �𝜑)𝑛

= 𝑢∞
𝜑 (𝜓 (𝜑−1 (𝜑 (𝑛))))

◦ ( �𝜑 ◦ �𝜓 ◦ �𝜑 −1)𝜑 (𝑛) ◦ 𝜑𝑛 = ℎ ◦ 𝑢∞𝜑 (𝑛) ◦ 𝜑𝑛 = ℎ ◦ ( �𝑢∞ ◦ �𝜑)𝑛,

which we wanted.
Claim (iii) in the case of automorphisms was already discussed in Remark 2.2, and the proof for

isomorphisms is analogous. �

It is not always the case that a sequence �𝑢 can be completed to a matching sequence at most one
way (up to an isomorphism). However, it may have at most one colimit ( �𝑢∞,𝑈) in 𝔏. Moreover, if
( �𝑢∞,𝑈) is a colimit of �𝑢 in 𝔏, then ( �𝑢, �𝑢∞,𝑈) satisfies (BF) and (H). In fact, for every transformation
�𝜑 : �𝑢 → �𝑣 and every coned sequence (�𝑣, �𝑣∞, 𝑉) there is a unique matching 𝔏-arrow 𝜑∞ : 𝑈 → 𝑉 since
such matching arrow is the same thing as the colimit factorizing arrow for the cone (�𝑣∞ ◦ �𝜑,𝑉) for �𝑢.

Let us continue discussing how to obtain the conditions defining a matching sequence. Observe that
if 𝔏 consists of monomorphisms, we obtain (F2) for free: If 𝑢∞𝑛 ◦ 𝑓 = 𝑢∞𝑛 ◦ 𝑓

′, then 𝑓 = 𝑓 ′ since 𝑢∞𝑛
is a monomorphism. Let us also recall the notion of finitely presentable object [1, Definition 1.1] in a
category 𝔏: It is an object x such that for every directed colimit �𝑢 = (𝑢 𝑗𝑖 , 𝑢

∞
𝑖 ,𝑈)𝑖� 𝑗∈𝐼 every 𝔏-arrow

𝑓 : 𝑥 → 𝑈 essentially uniquely factorizes through �𝑢, that is, there is an arrow 𝑓 : 𝑥 → 𝑢𝑖 for some i such
that 𝑢∞𝑖 ◦ 𝑓 = 𝑓 , and for every other such arrow 𝑔 : 𝑥 → 𝑢 𝑗 , there is 𝑘 � 𝑖, 𝑗 such that 𝑢𝑘𝑖 ◦ 𝑓 = 𝑢

𝑘
𝑗 ◦ 𝑔.

In other words, a finitely presented object satisfies analogues of (F1) and (F2) for every directed system
with a colimit. Hence, if 𝔖 ⊆ 𝔏 is a full subcategory whose objects are finitely presented in 𝔏, and
( �𝑢, �𝑢∞,𝑈) is a sequence in 𝔖 with a colimit in 𝔏, then it satisfies (F1) and (F2).

We summarize this discussion in the following lemma.

Lemma 2.4. Let ( �𝑢, �𝑢∞,𝑈) be a coned sequence in (𝔖,𝔏).

(i) If every map 𝑢∞𝑛 is a monomorphism, then ( �𝑢, �𝑢∞,𝑈) satisfies (F2).
(ii) If ( �𝑢∞,𝑈) is a colimit of �𝑢 in 𝔏, then ( �𝑢, �𝑢∞,𝑈) satisfies (BF) and (H).

(iii) If𝔖 is a full subcategory of 𝔏, every𝔖-object is finitely presentable in 𝔏 and ( �𝑢∞,𝑈) is a colimit,
then ( �𝑢, �𝑢∞,𝑈) satisfies also (F1) and (F2) and so is matching.

A classical example of the described situation are categories of finitely generated L-structures in a
first-order language L, with embeddings or one-to-one homomorphisms as arrows between objects. Let
𝔏 be the category of all L-structures and homomorphisms. Recall that a sequence �𝑢 in 𝔏 consisting
of embeddings can be without loss of generality viewed as an increasing ⊆-chain of substructures.
Then its colimit in 𝔏 is the union of the chain. In particular, the colimit maps 𝑢∞𝑛 can be taken to be
inclusion maps. So if we consider the wide subcategory𝔏′ ⊆ 𝔏 of all embeddings between L-structures,
then 𝔏-colimits of 𝔏′-sequences (or of any directed systems in 𝔏′) are also 𝔏′-colimits. Moreover,
finitely generated L-structures are finitely presentable in 𝔏′: If an L-structure A is a directed union of
its substructures (𝐴𝑖 ⊆ 𝐴)𝑖∈𝐼 and 𝐵 ⊆ 𝐴 is a substructure generated by a finite set 𝐹 ⊆ 𝐴, then every
generator 𝑥 ∈ 𝐹 is contained in some 𝐴𝑖𝑥 , and so all of them are contained in some 𝐴𝑖 . Hence, 𝐵 ⊆ 𝐴𝑖 .
Together, we obtain the following.

Construction 2.5 (𝜎-closure). Let L be a first-order language, let 𝔏 be the category of all L-structures
and homomorphisms and let 𝔖 ⊆ 𝔏 be a subcategory of some finitely generated L-structures and all
embeddings between them. We define 𝜎𝔖 to be the category of all 𝔏-structures that are 𝔏-colimits of
𝔖-sequences with all embeddings between them as morphisms.
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We have that every 𝔖-sequence �𝑢 has a common colimit in 𝜎𝔖 and 𝔏, that every 𝜎𝔖-object U is
a colimit of a 𝔖-sequence and that every such colimit sequence ( �𝑢, �𝑢∞,𝑈) in (𝔖, 𝜎𝔖) or equivalently
in (𝔖,𝔏) is matching. In fact, mapping every 𝔖-sequence to its colimit and every transformation of
𝔖-sequences to the unique matching 𝔏-arrow induces a functor 𝜎0𝔖 → 𝜎𝔖, which is an equivalence
of categories in this case. Hence, 𝜎𝔖 can be viewed as a concrete realization of 𝜎0𝔖 in 𝔏.

Note 𝜎𝔖-objects are exactly countably generated L-structures such that every finite subset is con-
tained in a substructure from𝔖. If L is a relational language and Obj(𝔖) is hereditary, then 𝜎𝔖-objects
are all countable L-structures whose finite substructures are in Obj(𝔖). If 𝔖 is the category of all finite
groups, then 𝜎𝔖 is the category of all countable locally finite groups (meaning that every finite subset
generates a finite subgroup).

The construction of 𝜎𝔖 can be done also with one-to-one homomorphisms instead of embeddings.
In that case, the inclusion maps in the increasing chain may also refine the structure (make the relations
finer).

�����

Construction 2.6 (The topology of Aut(𝑈). Let ( �𝑢, �𝑢∞,𝑈) be a matching sequence in (𝔖,𝔏). The
automorphism group 𝐺 := Aut(𝑈) has a natural topology defined by the following neighborhood base
of the identity:

𝑉𝑛 =
{
𝑔 ∈ 𝐺 : 𝑔 ◦ 𝑢∞𝑛 = 𝑢∞𝑛

}
.

The topology is Hausdorff, thanks to condition (H). Note that each 𝑉𝑛 is a subgroup of G, therefore we
obtain a non-Archimedean topological group. Note also that G is completely metrizable and that it may
not be separable unless all the hom-sets 𝔖(𝑢𝑛, 𝑢𝑚) are countable (see the next lemma).

To show that the open subgroups 𝑉𝑛 indeed form a base of the identity of the group topology, we
need to show that for every 𝑛 ∈ 𝜔 and 𝑔 ∈ 𝐺 there is 𝑚 ∈ 𝜔 such that 𝑔−1 ◦ 𝑉𝑚 ◦ 𝑔 ⊆ 𝑉𝑛, that is, for
every ℎ ∈ 𝐺, if ℎ ◦ 𝑢∞𝑚 = 𝑢∞𝑚, then ℎ ◦ 𝑔 ◦ 𝑢∞𝑛 = 𝑔 ◦ 𝑢∞𝑛 . By (F1), 𝑔 ◦ 𝑢∞𝑛 = 𝑢∞𝑚 ◦ 𝑓 for some 𝑚 ∈ 𝜔 and
an 𝔖-arrow 𝑓 : 𝑢𝑛 → 𝑢𝑚. Hence,

ℎ ◦ (𝑔 ◦ 𝑢∞𝑛 ) = (ℎ ◦ 𝑢
∞
𝑚) ◦ 𝑓 = 𝑢

∞
𝑚 ◦ 𝑓 = 𝑔 ◦ 𝑢

∞
𝑛 .

Analogously, we can show that the topology on G does not depend on the choice of a matching sequence
for U: If (�𝑣, �𝑣∞,𝑈) is another matching sequence, then the subgroups 𝑉 ′𝑛 = {𝑔 ∈ 𝐺 : 𝑔 ◦ 𝑣∞𝑛 = 𝑣∞𝑛 }
induce the same topology. For every 𝑛 ∈ 𝜔, we have 𝑣∞𝑛 = 𝑢∞𝑚 ◦ 𝑓 for some 𝑚 ∈ 𝜔 and an 𝔖-arrow
𝑓 : 𝑣𝑛 → 𝑢𝑚. Hence, 𝑉𝑚 ⊆ 𝑉 ′𝑛.

Note that in the case when 𝔖 is a category of finite first-order structures and all embeddings, and
( �𝑢∞,𝑈) is a colimit, then U is essentially the union of the chain of finite structures 𝑢𝑛, and the condition
𝑔 ◦ 𝑢∞𝑛 = 𝑢∞𝑛 says that the automorphism g fixes the elements of 𝑢𝑛. Therefore, the induced topology is
the topology of pointwise convergence inherited from𝑈𝑈 where U has the discrete topology.

Lemma 2.7. Let ( �𝑢, �𝑢∞,𝑈) be a matching sequence in (𝔖,𝔏).

(i) The topology on Aut(𝑈) is completely metrizable.
(ii) If all the hom-sets 𝔖(𝑢𝑛, 𝑢𝑚) are countable, then Aut(𝑈) is also separable and so a Polish group.

Proof. The group 𝐺 := Aut(𝑈) is metrizable by Birkhoff—Kakutani theorem [2, Theorem 3.3.12]
since we have a countable neighborhood base of the identity. We show that the two-sided uniformity of
G is induced by a complete metric. Let {ℎ𝑛}𝑛∈𝜔 be a Cauchy sequence with respect to the two-sided
uniformity, that is, for every 𝑚 ∈ 𝜔 there is 𝜑(𝑚) ∈ 𝜔 such that ℎ𝑛′ ∈ (ℎ𝑛 ◦ 𝑉𝑚) ∩ (𝑉𝑚 ◦ ℎ𝑛) for every
𝑛, 𝑛′ � 𝜑(𝑚), and so ℎ𝑛 ◦ 𝑢∞𝑚 = ℎ𝑛′ ◦ 𝑢∞𝑚 and ℎ−1

𝑛 ◦ 𝑢
∞
𝑚 = ℎ−1

𝑛′ ◦ 𝑢
∞
𝑚.
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Put 𝑘0 := 0. By (F1), there is an 𝔖-arrow 𝑓0 : 𝑢𝑘0 → 𝑢ℓ0 for some ℓ0 > 𝑘0 such that 𝑢∞ℓ0
◦ 𝑓0 =

ℎ𝜑 (𝑘0) ◦ 𝑢
∞
𝑘0

. Then there is an𝔖-arrow 𝑔′0 : 𝑢ℓ0 → 𝑢𝑘′1 for some 𝑘 ′1 > ℓ0 such that 𝑢∞
𝑘′1
◦ 𝑔′0 = ℎ−1

𝜑 (ℓ0)
◦ 𝑢∞ℓ0

.
Together, we have

𝑢∞𝑘′1
◦ 𝑔′0 ◦ 𝑓0 = ℎ−1

𝜑 (ℓ0)
◦ 𝑢∞ℓ0

◦ 𝑓0 = ℎ−1
𝜑 (ℓ0)
◦ ℎ𝜑 (𝑘0) ◦ 𝑢

∞
𝑘0

= 𝑢∞𝑘0

since ℎ𝜑 (𝑘0) ◦𝑢
∞
𝑘0

= ℎ𝜑 (ℓ0) ◦𝑢
∞
𝑘0

since 𝜑(ℓ0) � 𝜑(𝑘0). By (F2), there is 𝑘1 � 𝑘 ′1 such that 𝑢𝑘1
𝑘′1
◦𝑔′0◦ 𝑓0 = 𝑢𝑘1

𝑘0
.

We put 𝑔0 := 𝑢𝑘1
𝑘′1
◦ 𝑔′0 so that 𝑔0 ◦ 𝑓0 = 𝑢𝑘1

𝑘0
. We continue this way and build 𝔖-sequences { 𝑓𝑛}𝑛∈𝜔 ,

{𝑔𝑛}𝑛∈𝜔 as in (BF). Hence, there is an automorphism ℎ∞ ∈ 𝐺 such that for every 𝑚 ∈ 𝜔 we have

ℎ∞ ◦ 𝑢
∞
𝑘𝑚

= 𝑢∞ℓ𝑚 ◦ 𝑓𝑚 = ℎ𝜑 (𝑘𝑚) ◦ 𝑢
∞
𝑘𝑚

= ℎ𝑛 ◦ 𝑢
∞
𝑘𝑚

for every 𝑛 � 𝜑(𝑘𝑚),

ℎ−1
∞ ◦ 𝑢

∞
ℓ𝑚

= 𝑢∞𝑘𝑚+1 ◦ 𝑔𝑚 = ℎ−1
𝜑 (ℓ𝑚)

◦ 𝑢∞ℓ𝑚 = ℎ−1
𝑛 ◦ 𝑢

∞
ℓ𝑚

for every 𝑛 � 𝜑(ℓ𝑚).

Since the sequences {𝑘𝑚}𝑚∈𝜔 , {ℓ𝑚}𝑚∈𝜔 are strictly increasing, it follows that lim𝑛→∞ ℎ𝑛 = ℎ∞.
If the hom-sets 𝔖(𝑢𝑛, 𝑢𝑚) for 𝑛 � 𝑚 are countable, then G is separable since for every n, {𝑔 ◦ 𝑉𝑛 :

𝑔 ∈ 𝐺} is a countable cover by basic open sets. This is because we have the one-to-one map 𝑔 ◦ 𝑉𝑛 ↦→
𝑔 ◦ 𝑢∞𝑛 , and every arrow 𝑔 ◦ 𝑢∞𝑛 is of the form 𝑢∞𝑚 ◦ 𝑓 for some 𝑓 ∈ 𝔖(𝑢𝑛, 𝑢𝑚). �

Construction 2.8 (The topological group 𝐺 ( �𝑢,𝔖)). We observe that given matching sequences
( �𝑢, �𝑢∞,𝑈) in (𝔖,𝔏) and (�𝑣, �𝑣∞, 𝑉) in (𝔖,𝔏′), every isomorphism of sequences �𝜑 : �𝑢 → �𝑣 canonically
induces an isomorphism of the topological groups Aut𝔏 (𝑈) and Aut𝔏′ (𝑉). Moreover, any sequence �𝑢 in
any category 𝔖 admits a canonical matching sequence ( �𝑢, {�𝚤𝑛}𝑛∈𝜔 , �𝑢) in (𝔖, 𝜎0𝔖) (see Remark 2.2).
Therefore, up to a canonical isomorphism, every𝔖-sequence �𝑢 determines a topological group𝐺 ( �𝑢,𝔖)
that is the automorphism group of every associated matching sequence ( �𝑢, �𝑢∞,𝑈) in every (𝔖,𝔏).
Moreover, isomorphic sequences determine isomorphic topological groups.

Proof. Recall that �𝑢 is both a sequence in𝔖 ⊆ 𝜎0𝔖 and an object in𝜎0𝔖. For every n, we let�𝚤𝑛 : 𝑢𝑛 → �𝑢
be the 𝜎0𝔖-arrow corresponding to id𝑢𝑛 : 𝑢𝑛 → 𝑢𝑛, that is, (�𝚤𝑛)𝑘 = 𝑢max(𝑘,𝑛)

𝑛 for 𝑘 ∈ 𝜔. It is easy to
see that �𝑢 (viewed as a 𝜎0𝔖-object) is the colimit of itself (viewed as an 𝔖-sequence). Also, for every
sequences �𝑢, �𝑣 the corresponding matching relation is the identity on 𝜎0𝔖( �𝑢, �𝑣). Hence, by Remark 2.2,
( �𝑢, {�𝚤𝑛}𝑛∈𝜔 , �𝑢) is a colimiting matching sequence in (𝔖, 𝜎0𝔖).

For every matching sequence ( �𝑢, �𝑢∞,𝑈) in (𝔖,𝔏) the matching relation between Aut( �𝑢) and Aut(𝑈)
is an isomorphism of groups by Remark 2.2. Recall that we write �𝜑 ≈ �𝜓 for every two transformations
between sequences that are equivalent, that is, representing the same 𝜎0𝔖-arrow. Since for every
matching pair of automorphisms �𝜑 : �𝑢 → �𝑢 and 𝜑∞ : 𝑈 → 𝑈 we have

𝜑∞ ◦ 𝑢
∞
𝑛 = 𝑢∞𝑛 ⇐⇒ 𝑢∞𝜑 (𝑛) ◦ 𝜑𝑛 = 𝑢∞𝑛 ⇐⇒ ∃𝑚 𝑢𝑚𝜑 (𝑛) ◦ 𝜑𝑛 = 𝑢𝑚𝑛 ⇐⇒ �𝜑 ◦ �𝚤𝑛 ≈ �𝚤𝑛

for every 𝑛 ∈ 𝜔, it follows that matching relation is also a homeomorphism between the automorphism
groups. To see �𝜑 ◦ �𝚤𝑛 ≈ �𝚤𝑛, let 𝑘 ∈ 𝜔 and 𝑘 ′ := max(𝑘, 𝑛), and note that for every 𝑚 � 𝜑(𝑘 ′) we have
𝑢𝑚
𝜑 (𝑘′)

◦ ( �𝜑 ◦ �𝚤𝑛)𝑘 = 𝑢𝑚
𝜑 (𝑘′)

◦ (𝜑𝑘′ ◦ 𝑢
𝑘′
𝑛 ) = 𝑢

𝑚
𝜑 (𝑛)
◦ 𝜑𝑛, while 𝑢𝑚𝑘′ ◦ (�𝚤𝑛)𝑘′ = 𝑢

𝑚
𝑘′ ◦ 𝑢

𝑘′
𝑛 = 𝑢𝑚𝑛 .

Finally, the isomorphism �𝜑 : �𝑢 → �𝑣 of 𝔖-sequences induces an isomorphism �𝜓 ↦→ �𝜑 ◦ �𝜓 ◦ �𝜑 −1

between Aut( �𝑢) and Aut(�𝑣). This isomorphism is also a homeomorphism. Let {�𝚤𝑛}𝑛∈𝜔 and { �𝚥𝑛}𝑛∈𝜔 be
the cones of the canonical matching sequences for �𝑢 and �𝑣. For every 𝑛 ∈ 𝜔, we put 𝑚 := ( �𝜑 −1) (𝑛), and
we have �𝚥𝜑 (𝑚) ◦ 𝜑𝑚 ◦ ( �𝜑 −1)𝑛 ≈ �𝚥𝑛. Hence, if �𝜓 fixes �𝚤𝑚, then �𝜑 ◦ �𝜓 ◦ �𝜑 −1 fixes �𝜑 ◦ �𝚤𝑚 ≈ �𝚥𝜑 (𝑚) ◦ 𝜑𝑚,
and so it fixes also �𝚥𝜑 (𝑚) ◦ 𝜑𝑚 ◦ ( �𝜑 −1)𝑛 ≈ �𝚥𝑛. �

Remark 2.9. As a final remark, we observe that given a matching sequence ( �𝑢, �𝑢∞,𝑈) in (𝔖,𝔏), it is
sufficient for our considerations to use only the part 𝔏′ ⊆ 𝔏 where Obj(𝔏′) = Obj(𝔖) ∪ {𝑈}, 𝔖 is a
full subcategory of 𝔏′, for every 𝑥 ∈ Obj(𝔖) we have 𝔏′(𝑥,𝑈) = 𝔏(𝑥,𝑈) =

⋃
𝑛∈𝜔 (𝑢

∞
𝑛 ◦𝔖(𝑥, 𝑢𝑛)), and

𝔏′(𝑈,𝑈) = Aut𝔏 (𝑈). In the cases we are not interested in the generic object U, only in its automorphism
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group, we may ignore𝔏 completely — it is enough to consider𝔖, �𝑢, and the topological group𝐺 ( �𝑢,𝔖).
On the other hand, when it comes to applications, one usually has in mind a larger subcategory 𝔏
consisting of all colimits of sequences in 𝔖.

2.2. Weak Fraïssé theory

In this section, we summarize the definitions and theorems of the weak Fraïssé theory [12] that will be
used later in the paper. We recall the notion of a weak Fraïssé category which is a generalization of a
Fraïssé category [13] (which is itself an abstraction of the classical notion of a Fraïssé class [6, §7] of
first-order structures). A weak Fraïssé category 𝔖 can be characterized by existence of a weak Fraïssé
sequence �𝑢. First, we need to recall the concepts of (weak) amalgamation and (weak) domination.

The weak amalgamation property was introduced by Ivanov [7] and later independently by Kechris
and Rosendal [14] in connection with existence of generic automorphisms of homogeneous first-order
structures. Since then, ideas of weak Fraïssé theory have been developed and used in many works; see,
for example, [11], [4], [9], [12], [10], [23], [17].

Definition 2.10 (Amalgamable arrows). An arrow 𝑒 : 𝑧 → 𝑧′ is called amalgamable if for every arrows
𝑓 : 𝑧′ → 𝑥, 𝑔 : 𝑧′ → 𝑦 there exist arrows 𝑓 ′ : 𝑥 → 𝑤, 𝑔′ : 𝑦 → 𝑤 satisfying

𝑓 ′ ◦ 𝑓 ◦ 𝑒 = 𝑔′ ◦ 𝑔 ◦ 𝑒.

An object z is amalgamable if id𝑧 is an amalgamable arrow. A category 𝔖 has the amalgamation
property if all identity arrows are amalgamable. A category with a weak Fraïssé sequence has the weak
amalgamation property; namely, for every object a there exists an amalgamable arrow with domain a.

Definition 2.11 (Weak Fraïssé sequence). A sequence �𝑢 in a category 𝔖 is called a weak Fraïssé
sequence if is satisfies the following conditions.

(W0) (Cofinality) For every 𝑥 ∈ Obj(𝔖), there is 𝑛 ∈ 𝜔 such that 𝔖(𝑥, 𝑢𝑛) ≠ ∅.
(W1) (Weak absorption) For every n, there is 𝑚 � 𝑛 such that for every 𝔖-arrow 𝑓 : 𝑢𝑚 → 𝑦 there are

ℓ > 𝑚 and an 𝔖-arrow 𝑔 : 𝑦 → 𝑢ℓ such that 𝑔 ◦ 𝑓 ◦ 𝑢𝑚𝑛 = 𝑢ℓ𝑛.

A weak Fraïssé sequence �𝑢 is called normalized if𝑚 = 𝑛+1 works in condition (W1). It is called a Fraïssé
sequence [13] if one can always take 𝑚 = 𝑛 in condition (W1). Note that every cofinal subsequence of a
weak Fraïssé sequence is weak Fraïssé; therefore, we may restrict attention to normalized weak Fraïssé
sequences.

Remark 2.12. Note that a number 𝑚 � 𝑛 works in (W1) if and only if the arrow 𝑢𝑚𝑛 is amalgamable. To
prove that 𝑢𝑚𝑛 is amalgamable one can consider 𝑓0 : 𝑢𝑚 → 𝑦0, 𝑓1 : 𝑢𝑚 → 𝑦1, obtaining 𝑔0 : 𝑦0 → 𝑢ℓ ,
𝑔1 : 𝑦1 → 𝑢ℓ satisfying

𝑔0 ◦ 𝑓0 ◦ 𝑢
𝑚
𝑛 = 𝑢ℓ𝑛 = 𝑔1 ◦ 𝑓1 ◦ 𝑢

𝑚
𝑛 .

The other implication is essentially [12, Lemma 3.10].

Remark 2.13. By [12, Proposition 3.6 and Corollary 3.12], a sequence isomorphic to a weak Fraïssé
sequence is itself a weak Fraïssé sequence, and every two weak Fraïssé sequences are isomorphic.

The next definition is analogous to the definition of weak Fraïssé sequence but applies to subcate-
gories. In fact, both concepts could be unified by a notion of a weakly dominating functor.

Definition 2.14 (Weakly dominating subcategory). A subcategory ℭ ⊆ 𝔖 is called weakly dominating
if it satisfies the following conditions.

(D0) (Cofinality) For every 𝑥 ∈ Obj(𝔖), there is 𝑦 ∈ Obj(ℭ) such that 𝔖(𝑥, 𝑦) ≠ ∅.
(D1) (Weak absorption) For every 𝑥 ∈ Obj(ℭ), there is a ℭ-arrow 𝑒 : 𝑥 → 𝑦 such that for every𝔖-arrow

𝑓 : 𝑦 → 𝑧 there is an 𝔖-arrow 𝑔 : 𝑧→ 𝑤 such that 𝑔 ◦ 𝑓 ◦ 𝑒 ∈ ℭ.

https://doi.org/10.1017/fms.2024.64 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.64


10 A. Bartoš et al.

ℭ is called dominating if additionally 𝑒 = id𝑥 works in (D1). Note that every full cofinal subcategory is
dominating.

Lemma 2.15 [12, Lemma 3.4]. Let ℭ ⊆ 𝔖 be a weakly dominating subcategory. Then every weak
Fraïssé sequence in ℭ is also a weak Fraïssé sequence in 𝔖.

The following lemma, which we shall use later, was essentially proved in the proof of [12, Proposi-
tion 2.7].

Lemma 2.16. Let ℭ ⊆ 𝔖 be a dominating subcategory, and let 𝑒 : 𝑧 → 𝑧′ be a ℭ-arrow. If e is
amalgamable in ℭ, then e is amalgamable in 𝔖.

Proof. Let 𝑓 : 𝑧′ → 𝑥 and 𝑔 : 𝑧′ → 𝑦 be 𝔖-maps. By domination, there are 𝔖-arrows 𝑓 ′ : 𝑥 → 𝑥 ′ and
𝑔′ : 𝑦 → 𝑦′ such that 𝑓 ′ ◦ 𝑓 , 𝑔′ ◦ 𝑔 ∈ ℭ. Hence, there are ℭ-arrows 𝑓 ′′ : 𝑥 ′ → 𝑤 and 𝑔′′ : 𝑦′ → 𝑤 such
that ( 𝑓 ′′ ◦ 𝑓 ′) ◦ 𝑓 ◦ 𝑒 = (𝑔′′ ◦ 𝑔′) ◦ 𝑔 ◦ 𝑒. �

Definition 2.17 (Weak Fraïssé category). We say that𝔖 is a weak Fraïssé category if it is directed (i.e.,
for every 𝑥, 𝑦 ∈ Obj(𝔖) there is 𝑧 ∈ Obj(𝔖) such that 𝔖(𝑥, 𝑧) ≠ ∅ and 𝔖(𝑦, 𝑧) ≠ ∅), has the weak
amalgamation property and is weakly dominated by a countable subcategory.

The category 𝔖 is a Fraïssé category if it additionally has the amalgamation property. In this case,
it is even dominated by a countable subcategory.

In the classical case of categories of structures and embeddings, being directed is often called the joint
embedding property. Note that a category is identified with its collection of morphisms, so a category
is countable if it has countably many morphisms (as opposed to just having countably many objects).
However, for a category of finite structures, having countably many isomorphism types is sufficient for
being dominated by a countable subcategory.

Theorem 2.18. The following conditions are equivalent for a category 𝔖.

(i) 𝔖 is a weak Fraïssé category.
(ii) 𝔖 is weakly dominated by a countable weak Fraïssé category.

(iii) 𝔖 has a weak Fraïssé sequence.

This is [12, Theorem 3.7] together with the fact (implicitly used in the proof) that every countable
weakly dominating subcategory of a weak Fraïssé category can be extended by countably many arrows
to become directed and to have the weak amalgamation property.

Construction 2.19 (the topological group 𝐺 (𝔖)). Let 𝔖 be a weak Fraïssé category. By Construction
2.8 and Remark 2.13, we have that every two weak Fraïssé sequences �𝑢, �𝑣 are isomorphic, and so
𝐺 ( �𝑢,𝔖) are 𝐺 (�𝑣,𝔖) are isomorphic topological groups. Hence, we may denote this topological group
determined uniquely up to isomorphism by 𝐺 (𝔖). Recall that it is isomorphic to Aut(𝑈) for every
matching weak Fraïssé sequence ( �𝑢, �𝑢∞,𝑈) in every (𝔖,𝔏).

Next, we recall the key properties of a weak Fraïssé limit, generalizing the extension property /
injectivity and homogeneity from Fraïssé theory. Again, see [12] for details.

Definition 2.20. Let 𝔖 ⊆ 𝔏 be categories. An 𝔏-object U is

◦ cofinal in (𝔖,𝔏) if 𝔏(𝑥,𝑈) ≠ ∅ for every 𝔖-object x,
◦ weakly injective in (𝔖,𝔏) if for every 𝔏-arrow 𝑓 : 𝑥 → 𝑈 from an 𝔖-object there is an 𝔖-arrow
𝑒 : 𝑥 → 𝑥 ′ such that for every𝔖-arrow 𝑔 : 𝑥 ′ → 𝑦 there is an𝔏-arrow ℎ : 𝑦 → 𝑈 such that 𝑓 = ℎ◦𝑔◦𝑒,

◦ weakly homogeneous if (𝔖,𝔏) if for every𝔏-arrow 𝑓 : 𝑥 → 𝑈 from and𝔖-object there is an𝔖-arrow
𝑒 : 𝑥 → 𝑥 ′ and an 𝔏-arrow 𝑓 ′ : 𝑥 ′ → 𝑈 with 𝑓 = 𝑓 ′ ◦ 𝑒 such that for every 𝔏-arrow 𝑔 : 𝑥 ′ → 𝑈 there
is ℎ ∈ Aut(𝑈) such that 𝑓 = ℎ ◦ 𝑔 ◦ 𝑒.

Note that every cofinal weakly homogeneous object is weakly injective and that the arrow e witnessing
the weak homogeneity for f has the property that for every 𝔏-arrows 𝑔, 𝑔′ : 𝑥 ′ → 𝑈 there is ℎ ∈ Aut(𝑈)
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such that ℎ ◦ 𝑔 = 𝑔′. We say that U is homogeneous at e in that case. So U is weakly homogeneous if
every 𝔏-arrow from an 𝔖-object to U factorizes through an 𝔖-arrow U is homogeneous at.

Theorem 2.21 (Characterization of the weak Fraïssé limit). For a matching sequence ( �𝑢, �𝑢∞,𝑈) in a
pair of categories (𝔖,𝔏), the following conditions are equivalent:

(i) �𝑢 is a weak Fraïssé sequence in 𝔖.
(ii) U is a cofinal and weakly injective object in (𝔖,𝔏).

(iii) U is a cofinal and weakly homogeneous object in (𝔖,𝔏).

Moreover, given the conditions above hold, we have the following.

(a) There exists an 𝔏-arrow 𝑋 → 𝑈 for every 𝔏-object X that is an 𝔖-object or is an 𝔏-colimit of a
sequence of amalgamable arrows in 𝔖.

(b) U is homogeneous at an 𝔖-arrow e if and only if e is amalgamable. Hence, e works for 𝑓 : 𝑥 → 𝑈
in the weak homogeneity of U if and only if e is amalgamable and f factorizes through e.

(c) An 𝔖-arrow 𝑒 : 𝑥 → 𝑥 ′ works for 𝑓 : 𝑥 → 𝑈 in the weak injectivity of U if and only if e is
amalgamable and f factorizes through e. In particular, id𝑥 for an amalgamable object x works for
every arrow f.

The theorem is essentially proved in [12]: see Theorem 4.2, Corollary 4.5, Theorem 4.6 and Theorem
5.1. However, we use weaker assumptions here — we neither assume that ( �𝑢∞,𝑈) is a colimit of �𝑢 nor
that𝔖-sequences have colimits in 𝔏 nor that 𝔏-arrows are monic. The only assumptions that are used in
the original proof are covered by the notion of a matching sequence. Given all the necessary definitions
and conditions, the proof is quite direct.

Remark 2.22. In the case that 𝔖 is a category of some finitely generated first-order structures and all
embeddings (or all one-to-one homomorphism) and 𝔏 = 𝜎𝔖 (as defined in Construction 2.5), then 𝔏-
objects are exactly colimits of 𝔖-sequences, and every such colimit sequence ( �𝑢, �𝑢∞,𝑈) in (𝔖,𝔏) is
matching, so Theorem 2.21 applies. Moreover, the weak Fraïssé limit U is unique up to isomorphism
in 𝔏 in this case, and every 𝔖-sequence with colimit U is weak Fraïssé. If additionally 𝔖 has the
amalgamation property (and so is a Fraïssé category), there is an 𝔏-map 𝑋 → 𝑈 for every 𝔏-object X,
that is, the Fraïssé limit U is cofinal in 𝔏.

3. Main results

The purpose of this section is to prove the announced characterization of extreme amenability. We
first define the weak Ramsey property of 𝔖 (see Definition 3.1 below) and prove that it is equivalent
to a Ramsey-like property for 𝔏-arrows into U. We also note that the weak Ramsey property implies
the weak amalgamation property. Next, we show that these properties are equivalent to the extreme
amenability of Aut(𝑈). Together, the weak Ramsey property of a weak Fraïssé category𝔖 is equivalent
to the extreme amenability of 𝐺 (𝔖).

3.1. The weak Ramsey property

For an arrow 𝛼 : 𝑎 → 𝑎′ and an object b in a category ℭ, we shall write ℭ(𝛼, 𝑏) as a shortcut for
ℭ(𝑎′, 𝑏) ◦ 𝛼. Below, we introduce the main definition.

Definition 3.1. We say that a category 𝔖 has the weak Ramsey property if for every 𝑎 ∈ Obj(𝔖) there
exists an 𝔖-arrow 𝛼 : 𝑎 → 𝑎′ satisfying:

(wR) For every 𝑏 ∈ Obj(𝔖), for every 𝑘 ∈ 𝜔, for every finite 𝐹 ⊆ 𝔖(𝛼, 𝑏) there is 𝑣 ∈ Obj(𝔖) such
that for every 𝜑 : 𝔖(𝛼, 𝑣) → 𝑘 there exists 𝑒 : 𝑏 → 𝑣 such that 𝜑 is constant on 𝑒 ◦ 𝐹.

We call such 𝛼 a Ramsey arrow. We say that 𝔖 has the Ramsey property if for every 𝑎 ∈ Obj(𝔖) the
identity id𝑎 is a Ramsey arrow.
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Recall that a category 𝔖 is locally finite if 𝔖(𝑎, 𝑏) is finite for every 𝑎, 𝑏 ∈ Obj(𝔖). Note that for a
locally finite category𝔖, the condition (wR) simplifies since we may consider just 𝐹 = 𝔖(𝛼, 𝑏). Hence,
our notion of Ramsey property simplifies to the standard one (e.g., [18, §3]).

The following lemma generalizes [21, Theorem 4.2 (i)].
Lemma 3.2. Let 𝔖 be a directed category, and let 𝛼 : 𝑎 → 𝑎′ be an 𝔖-arrow. If 𝛼 is a Ramsey
arrow, then 𝛼 is amalgamable. Hence, a directed category with the weak Ramsey property has the weak
amalgamation property.

Proof. Suppose 𝛼 : 𝑎 → 𝑎′ is a Ramsey arrow, and let 𝑘 = 2. Fix 𝑓0, 𝑓1 ∈ 𝔖 with dom( 𝑓0) = 𝑎′ =
dom( 𝑓1). Using directedness, choose 𝑏 ∈ Obj(𝔖) and 𝑔0, 𝑔1 ∈ 𝔖 such that 𝑔𝑖 ◦ 𝑓𝑖 ∈ 𝔖(𝑎′, 𝑏) for 𝑖 = 0, 1.
Of course, 𝑔0, 𝑔1 are independent of 𝑓0, 𝑓1 and there is no reason for the equality 𝑔0 ◦ 𝑓0 = 𝑔1 ◦ 𝑓1. Let
𝐹 = {𝑔0 ◦ 𝑓0 ◦ 𝛼, 𝑔1 ◦ 𝑓1 ◦ 𝛼}.

Now, find 𝑣 ∈ Obj(𝔖) from the weak Ramsey property applied to F. Define 𝜑 : 𝔖(𝛼, 𝑣) → 2 by
setting 𝜑(𝑔) = 1 if and only if 𝑔 = 𝑔′ ◦ 𝑓1 ◦𝛼 for some 𝑔′ ∈ 𝔖. By (wR), there exists 𝑒 : 𝑏 → 𝑣 such that
𝜑 is constant on 𝑒◦𝐹. Note that 𝜑(𝑒◦(𝑔1◦ 𝑓1)◦𝛼) = 1 by associativity. Thus, also 𝜑(𝑒◦(𝑔0◦ 𝑓0)◦𝛼) = 1,
which means that there exists h such that

𝑒 ◦ 𝑔0 ◦ 𝑓0 ◦ 𝛼 = ℎ ◦ 𝑓1 ◦ 𝛼.

We are done, because 𝑒 ◦ 𝑔0 and h witness the weak amalgamation. �

Recall that if one of arrows 𝛼, 𝛽 is amalgamable, then so is 𝛽 ◦ 𝛼; see [12, Lemma 2.5]. The same
composition behavior is true also for Ramsey arrows.
Lemma 3.3. Let 𝛼 : 𝑎 → 𝑎′ and 𝛽 : 𝑎′ → 𝑎′′ be arrows in a category𝔖. If 𝛼 or 𝛽 is Ramsey, then 𝛽 ◦𝛼
is Ramsey.

Proof. Suppose 𝛼 is Ramsey, and let 𝑏 ∈ Obj(𝔖), 𝑘 ∈ 𝜔, and 𝐹 ⊆ 𝔖(𝛽◦𝛼, 𝑏) finite. Since𝔖(𝛽◦𝛼, 𝑏) ⊆
𝔖(𝛼, 𝑏), we may take 𝑣 ∈ Obj(𝔖) for 𝛼, 𝑏, 𝑘, 𝐹. Let 𝜑 : 𝔖(𝛽 ◦ 𝛼, 𝑣) → 𝑘 be a coloring. We extend
it to 𝜑′ : 𝔖(𝛼, 𝑣) → 𝑘 . By the choice of v, there is 𝑒 : 𝑏 → 𝑣 such that 𝜑′ is constant on 𝑒 ◦ 𝐹. But
𝑒 ◦ 𝐹 ⊆ 𝔖(𝛽 ◦ 𝛼, 𝑣), so we are done.

Next, suppose that 𝛽 is Ramsey. Again, let 𝑏 ∈ Obj(𝔖), 𝑘 ∈ 𝜔, and 𝐹 ⊆ 𝔖(𝛽 ◦ 𝛼, 𝑏) finite. There is
finite 𝐹 ′ ⊆ 𝔖(𝛽, 𝑏) such that 𝐹 ′ ◦ 𝛼 = 𝐹. Take 𝑣 ∈ Obj(𝔖) for 𝛽, 𝑏, 𝑘, 𝐹 ′. Let 𝜑 : 𝔖(𝛽 ◦ 𝛼, 𝑣) → 𝑘 be a
coloring, and define 𝜑′ : 𝔖(𝛽, 𝑣) → 𝑘 by 𝜑′(𝜉) := 𝜑(𝜉 ◦ 𝛼). By the choice of v, there is 𝑒 : 𝑏 → 𝑣 such
that 𝜑′ is constant on 𝑒 ◦ 𝐹 ′. Hence, 𝜑 is constant on 𝑒 ◦ 𝐹 ′ ◦ 𝛼 = 𝑒 ◦ 𝐹. �

Lemma 3.4. Let 𝛼 : 𝑎 → 𝑎′ and 𝛽 : 𝑎′ → 𝑎′′ be arrows in a category𝔖. If 𝛼 is amalgamable and 𝛽 ◦𝛼
is Ramsey, then 𝛼 is Ramsey.

Proof. Let 𝑏 ∈ Obj(𝔖), 𝑘 ∈ 𝜔 and 𝐹 ⊆ 𝔖(𝛼, 𝑏) finite. First, we prove that there is 𝑏′ ∈ Obj(𝔖) and
𝑔 : 𝑏 → 𝑏′ such that 𝐹 ′ := 𝑔 ◦ 𝐹 ⊆ 𝔖(𝛽 ◦ 𝛼, 𝑏′). Enumerate F as { 𝑓𝑖 : 𝑖 < 𝑛}. Since 𝛼 is amalgamable,
there are 𝔖-arrows 𝑔0 and ℎ0 such that 𝑔0 ◦ 𝑓0 = ℎ0 ◦ 𝛽 ◦ 𝛼. Then there are 𝑔1 and ℎ1 such that
𝑔1 ◦ (𝑔0 ◦ 𝑓1) = ℎ1 ◦ (ℎ0 ◦ 𝛽 ◦ 𝛼). Note that there is no reason why 𝑔1 ◦ 𝑔0 ◦ 𝑓0 and 𝑔1 ◦ 𝑔0 ◦ 𝑓1 should
be equal, but they are certainly both factorizing through 𝛽 ◦ 𝛼. We continue the same way and finally
put 𝑔 := 𝑔𝑛−1 ◦ · · · ◦ 𝑔0 and 𝑏′ := cod(𝑔).

Since 𝛽 ◦ 𝛼 is Ramsey, there is 𝑣 ∈ Obj(𝔖) for 𝑏′, 𝑘, 𝐹 ′. Let 𝜑 : 𝔖(𝛼, 𝑣) → 𝑘 be a coloring. Since
𝔖(𝛽 ◦ 𝛼, 𝑣) ⊆ 𝔖(𝛼, 𝑣), there is 𝑒′ : 𝑏′ → 𝑣 such that 𝜑 is constant on 𝑒′ ◦ 𝐹 ′ = 𝑒′ ◦ 𝑔 ◦ 𝐹 =: 𝑒 ◦ 𝐹. �

Corollary 3.5. Let 𝔖 be a directed category with the weak Ramsey property. An 𝔖-arrow 𝛼 : 𝑎 → 𝑎′

is Ramsey if and only if it is amalgamable. Hence, 𝔖 has the weak amalgamation property, and it has
the Ramsey property if and only if it has the amalgamation property.

Proof. Every Ramsey arrow is amalgamable by Lemma 3.2. Let 𝛼 : 𝑎 → 𝑎′ be amalgamable. By the
weak Ramsey property, there is a Ramsey arrows 𝛽 : 𝑎′ → 𝑎′′. By Lemmma 3.3, 𝛽 ◦ 𝛼 is Ramsey, and
by Lemma 3.4, 𝛼 is Ramsey. �
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Proposition 3.6.
(i) Let 𝐹 : 𝔖→𝔖′ be a full cofinal functor (where cofinal means that for every 𝔖′-object x there is a

𝔖-object y and an 𝔖′-arrow 𝑓 : 𝑥 → 𝐹 (𝑦)). If 𝛼 : 𝑎 → 𝑎′ is a Ramsey arrow in 𝔖, then 𝐹 (𝛼) is a
Ramsey arrow in 𝔖′.

(ii) Let 𝔖 ⊆ 𝔖′ be a full cofinal subcategory. An 𝔖-arrow 𝛼 : 𝑎 → 𝑎′ is Ramsey in 𝔖 if and only if it
is Ramsey in 𝔖′.

Proof. (i) Let 𝑏′ ∈ Obj(𝔖′),𝐻 ′ ⊆ 𝔖′(𝐹 (𝛼), 𝑏′) finite, and 𝑘 ∈ 𝜔. By the cofinality, there is 𝑏 ∈ Obj(𝔖)
and 𝑓 ∈ 𝔖′(𝑏′, 𝐹 (𝑏)), and by the fullness there is finite 𝐻 ⊆ 𝔖(𝛼, 𝑏) such that 𝐹 [𝐻] = 𝑓 ◦𝐻 ′. There is
also 𝑣 ∈ Obj(𝔖) witnessing that 𝛼 is Ramsey for 𝑏, 𝐻, 𝑘 . For every coloring 𝜑′ : 𝔖′(𝐹 (𝛼), 𝐹 (𝑣)) → 𝑘 ,
there is the coloring 𝜑 := (𝜑′ ◦ 𝐹) : 𝔖(𝛼, 𝑣) → 𝑘 , and 𝑔 ∈ 𝔖(𝑏, 𝑣) such that 𝜑 is constant on 𝑔 ◦𝐻, and
so 𝜑′ is constant on 𝐹 [𝑔 ◦ 𝐻] = (𝐹 (𝑔) ◦ 𝑓 ) ◦ 𝐻 ′.

The forward implication of (ii) follows from (i). For the backward implication, let 𝑏 ∈ Obj(𝔖), 𝐻 ⊆
𝔖(𝛼, 𝑏) finite and 𝑘 ∈ 𝜔. Let 𝑣′ ∈ Obj(𝔖′) be the corresponding witnessing object, and let 𝑓 ∈ 𝔖′(𝑣′, 𝑣)
for some 𝑣 ∈ Obj(𝔖). Every coloring 𝜑 : 𝔖(𝛼, 𝑣) → 𝑘 induces the coloring 𝜑′ : 𝔖′(𝛼, 𝑣′) → 𝑘 defined
by 𝜑′(𝑔) := 𝜑( 𝑓 ◦ 𝑔). There is 𝑔 ∈ 𝔖(𝑏, 𝑣′) such that 𝜑′ is constant on 𝑔 ◦ 𝐻, and so 𝜑 is constant on
( 𝑓 ◦ 𝑔) ◦ 𝐻. �

Corollary 3.7. Let 𝔖 ⊆ 𝔖′ be a full cofinal subcategory. 𝔖 has the weak Ramsey property if and only
if 𝔖′ has the weak Ramsey property.
Definition 3.8. Let 𝔖 ⊆ 𝔏 be categories, and let U be a fixed 𝔏-object. We say that an 𝔖-arrow
𝛼 : 𝑎 → 𝑎′ satisfies
(wA) if for every 𝑘 ∈ 𝜔, for every finite 𝐹 ⊆ 𝔏(𝛼,𝑈), for every 𝜑 : 𝔏(𝛼,𝑈) → 𝑘 there is 𝑒 ∈ Aut(𝑈)

such that 𝜑 is constant on 𝑒 ◦ 𝐹,
(wB) if the map e in (wA) is required to be only an endomorphism instead of an automorphism of

U, that is, if for every 𝑘 ∈ 𝜔, for every finite 𝐹 ⊆ 𝔏(𝛼,𝑈), for every 𝜑 : 𝔏(𝛼,𝑈) → 𝑘 there is
𝑒 ∈ 𝔏(𝑈,𝑈) such that 𝜑 is constant on 𝑒 ◦ 𝐹.

We say that U has the weak finitary big Ramsey property in (𝔖,𝔏) if for every 𝑎 ∈ Obj(𝔖) there exists
an 𝔖-arrow 𝛼 : 𝑎 → 𝑎′ satisfying (wB). Similarly, we say that U has the finitary big Ramsey property
if every id𝑎, 𝑎 ∈ Obj(𝔖), satisfies (wB).

Note that for (wA) and (wB), given 𝛼, 𝑘, 𝜑 there is a constant value 𝑖 ∈ 𝑘 that works for every finite
𝐹 ⊆ 𝔏(𝛼,𝑈). Otherwise, there would be a counterexample set 𝐹𝑖 for every 𝑖 ∈ 𝑘 , and so 𝐹 :=

⋃
𝑖∈𝑘 𝐹𝑖

would be a counterexample for (wA) or (wB).
Remark 3.9. The name ‘(weak) finitary big Ramsey property’ was chosen to stress the formal similarity
to the standard big Ramsey property, that is, big Ramsey degree [8, p. 176] equal to one. In that (rare)
case, e does not depend on F, and 𝜑 is constant on the whole set 𝑒 ◦ 𝔏(𝛼,𝑈).
Theorem 3.10. Let ( �𝑢, �𝑢∞,𝑈) be a matching sequence in (𝔖,𝔏) for some categories 𝔖 ⊆ 𝔏, and let
𝛼 : 𝑎 → 𝑎′ be an𝔖-arrow. If �𝑢 is a weak Fraïssé sequence, then the following conditions are equivalent:

(i) 𝛼 is a Ramsey arrow, that is, it satisfies (wR),
(ii) 𝛼 satisfies (wA),

(iii) 𝛼 satisfies (wB).
It follows that 𝔖 has the (weak) Ramsey property if and only if U has the (weak) finitary big Ramsey
property in (𝔖,𝔏).

Proof. By (F1), for every 𝑓 ∈ 𝔏(𝛼,𝑈) there exists 𝑛 𝑓 ∈ 𝜔 and 𝑓 ′ ∈ 𝔖(𝛼, 𝑢𝑛) such that 𝑢∞𝑛 ◦ 𝑓 ′ = 𝑓 .
For every 𝑛 � 𝑛 𝑓 , let us put Δ𝑛 ( 𝑓 ) := 𝑢𝑛𝑛 𝑓

◦ 𝑓 ′, so we have 𝑓 = 𝑢∞𝑛 ◦ Δ𝑛 ( 𝑓 ) and Δ𝑛′ ( 𝑓 ) = 𝑢𝑛
′

𝑛 ◦ Δ
𝑛 ( 𝑓 )

for every 𝑛′ � 𝑛 � 𝑛 𝑓 . Note that by (F2) we have also Δ𝑛 (𝑢∞𝑚 ◦ 𝑓 ) = 𝑢𝑛𝑚 ◦ 𝑓 for every compatible
𝔖-arrow f and every sufficiently large n.

The implication (wA) =⇒ (wB) is trivial.
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Next, we prove (wB) =⇒ (wR) by contradiction. Suppose 𝛼 fails (wR) and it is witnessed by 𝑘 ∈ 𝜔,
𝑏 ∈ Obj(𝔖) and a finite 𝐹 ⊆ 𝔖(𝛼, 𝑏). Specifically, for every 𝑛 ∈ 𝜔 there is 𝜑𝑛 : 𝔖(𝛼, 𝑢𝑛) → 𝑘 such
that 𝜑𝑛 [𝑒 ◦𝐹] is not a singleton whenever 𝑒 ∈ 𝔖(𝑏, 𝑢𝑛). Fix a nonprincipal ultrafilter p on 𝜔, and define
𝜑 : 𝔏(𝛼,𝑈) → 𝑘 by setting

𝜑( 𝑓 ) = 𝑖 ⇐⇒ {𝑛 ∈ 𝜔 : 𝜑𝑛 (Δ𝑛 ( 𝑓 )) = 𝑖} ∈ 𝑝.

Note that Δ𝑛 ( 𝑓 ) is defined for all but finitely many numbers n. Since �𝑢 is a weak Fraïssé sequence,
there is an 𝔖-map 𝑒0 : 𝑏 → 𝑢𝑛0 for some 𝑛0 ∈ 𝜔. We consider 𝐹 ′ := 𝑢∞𝑛0 ◦ 𝑒0 ◦ 𝐹 ⊆ 𝔏(𝛼,𝑈). Since 𝛼
satisfies (wB), there is 𝑗 ∈ 𝑘 and 𝑒′ ∈ 𝔏(𝑈,𝑈) such that 𝜑[𝑒′ ◦ 𝐹 ′] = { 𝑗}. By (F1), we find 𝑚 ∈ 𝜔 and
𝑒 ∈ 𝔖(𝑏, 𝑢𝑚) such that 𝑒′ ◦ 𝑢∞𝑛0 ◦ 𝑒0 = 𝑢∞𝑚 ◦ 𝑒, as in the diagram below.

𝑢0 · · · 𝑢𝑛0 · · · 𝑢𝑚 · · · 𝑈

𝑏

𝑢0 · · · 𝑢𝑛0 · · · 𝑢𝑚 · · · 𝑈.

𝑒′

𝑒0

𝑒

Given 𝑓 ∈ 𝐹, we have Δ𝑛 (𝑢∞𝑚 ◦ 𝑒 ◦ 𝑓 ) = 𝑢
𝑛
𝑚 ◦ 𝑒 ◦ 𝑓 for every sufficiently large n, and hence

𝑗 = 𝜑(𝑒′ ◦ 𝑢∞𝑛0 ◦ 𝑒0 ◦ 𝑓 ) = 𝜑(𝑢
∞
𝑚 ◦ 𝑒 ◦ 𝑓 ) = lim

𝑛→𝑝
𝜑𝑛 (Δ

𝑛 (𝑢∞𝑚 ◦ 𝑒 ◦ 𝑓 )) = lim
𝑛→𝑝

𝜑𝑛 (𝑢
𝑛
𝑚 ◦ 𝑒 ◦ 𝑓 ).

The last limit along p means that the set 𝐴 𝑓 := {𝑛 � 𝑚 : 𝜑𝑛 (𝑢𝑛𝑚 ◦ 𝑒 ◦ 𝑓 ) = 𝑗} ∈ 𝑝. Since F is finite, we
may find ℓ > 𝑚 such that 𝜑ℓ (𝑢ℓ𝑚 ◦ 𝑒 ◦ 𝑓 ) = 𝑗 for every 𝑓 ∈ 𝐹. It is enough to choose ℓ ∈

⋂
𝑓 ∈𝐹 𝐴 𝑓 .

Together, 𝜑ℓ restricted to (𝑢ℓ𝑚 ◦ 𝑒) ◦ 𝐹 is constant, which is a contradiction.
To prove (wR) =⇒ (wA), let 𝛼 : 𝑎 → 𝑎′ be a Ramsey 𝔖-arrow. Fix 𝑘 ∈ 𝜔, fix finite 𝐹 ⊆ 𝔏(𝛼,𝑈)

and fix 𝜑 : 𝔏(𝛼,𝑈) → 𝑘 . Our goal is to find 𝑒 ∈ Aut(𝑈) such that 𝜑 is constant on 𝑒 ◦ 𝐹.
Since F is finite, there is 𝑚 ∈ 𝜔 such that 𝑓 = 𝑢∞𝑚 ◦Δ𝑚 ( 𝑓 ) for every 𝑓 ∈ 𝐹. Since �𝑢 is a weak Fraïssé

sequence, there is 𝑚′ � 𝑚 such that 𝛽 := 𝑢𝑚
′

𝑚 works in (W1), or equivalently is amalgamable. Let
𝑏 := 𝑢𝑚′ and 𝐹 ′ := {𝛽 ◦ Δ𝑚 ( 𝑓 ) : 𝑓 ∈ 𝐹} ⊆ 𝔖(𝛼, 𝑏). Using (wR) with 𝐹 ′ and b, we obtain 𝑣 ∈ Obj(𝔖)
such that for every 𝜓 : 𝔖(𝛼, 𝑣) → 𝑘 there is 𝑒′ : 𝑏 → 𝑣 with 𝜓 constant on the set 𝑒′ ◦𝐹 ′. Note that there
exists at least one 𝜓 as above (unless 𝑘 = 0, in which case (wA) is trivially true). Consequently, there
exists an 𝔖-arrow 𝛾 : 𝑏 → 𝑣. Recalling that 𝛽 = 𝑢𝑚

′

𝑚 is amalgamable, we find an 𝔏-arrow 𝛿 : 𝑣 → 𝑈
such that

𝑢∞𝑚 = 𝛿 ◦ 𝛾 ◦ 𝛽.

The following diagram should clarify the situation.

𝑎 𝑈

𝑢𝑚 𝑢𝑚′ = 𝑏 𝑣

𝑣 𝑈.

𝑓

Δ𝑚 ( 𝑓 )

𝑒
𝛽

𝑢∞𝑚

𝑒′

𝛾

𝛿

𝛿

Define 𝜑̃ : 𝔖(𝛼, 𝑣) → 𝑘 by

𝜑̃(𝜉) = 𝜑(𝛿 ◦ 𝜉) for every 𝜉 ∈ 𝔖(𝛼, 𝑣).
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The weak Ramsey property gives 𝑒′ : 𝑏 → 𝑣 such that

𝜑̃(𝑒′ ◦ 𝛽 ◦ Δ𝑚 ( 𝑓 )) = 𝑗

for every 𝑓 ∈ 𝐹, where 𝑗 ∈ 𝑘 is fixed. Now, we use the weak homogeneity of U (Theorem 2.21),
knowing that 𝛽 is amalgamable. Namely, there exists 𝑒 ∈ Aut(𝑈) such that

𝑒 ◦ 𝛿 ◦ 𝛾 ◦ 𝛽 = 𝛿 ◦ 𝑒′ ◦ 𝛽.

Finally, given 𝑓 ∈ 𝐹, we have

𝜑(𝑒 ◦ 𝑓 ) = 𝜑(𝑒 ◦ 𝑢∞𝑚 ◦ Δ
𝑚 ( 𝑓 )) = 𝜑(𝑒 ◦ 𝛿 ◦ 𝛾 ◦ 𝛽 ◦ Δ𝑚 ( 𝑓 ))

= 𝜑(𝛿 ◦ 𝑒′ ◦ 𝛽 ◦ Δ𝑚 ( 𝑓 )) = 𝜑̃(𝑒′ ◦ 𝛽 ◦ Δ𝑚( 𝑓 )) = 𝑗 .

This completes the proof. �

3.2. Extreme amenability

Recall that an action 𝐺 � 𝑋 of a group G on a set X is a group homomorphism 𝜂 : 𝐺 → Aut(𝑋),
where Aut(𝑋) is the the group of all bijections of X. We shall write 𝑔𝑥 or 𝑔 · 𝑥 instead of 𝜂(𝑔) (𝑥). This
way an action can be equivalently viewed as a map 𝐺 × 𝑋 → 𝑋 such that 1𝑥 = 𝑥 and 𝑔(ℎ𝑥) = (𝑔ℎ)𝑥
for 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 . Given 𝐺 � 𝑋 , the orbit of 𝑥0 ∈ 𝑋 is 𝐺𝑥0 := {𝑔𝑥0 : 𝑔 ∈ 𝐺}. The action is
transitive if 𝐺𝑥0 = 𝑋 for some 𝑥0 (equivalently: for every 𝑥0).

A morphism 𝜋 : 𝜂 → 𝜂′ of actions 𝜂 : 𝐺 � 𝑋 and 𝜂′ : 𝐺 � 𝑌 is a mapping 𝜋 : 𝑋 → 𝑌 such that
𝜋(𝑔𝑥) = 𝑔𝜋(𝑥) for every 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 , or equivalently 𝜋 ◦ 𝜂(𝑔) = 𝜂′(𝑔) ◦ 𝜋 for every 𝑔 ∈ 𝐺.

An action 𝐺 � 𝑋 of a topological group G on a topological space X is continuous if it is continuous
when viewed as a mapping 𝐺 × 𝑋 → 𝑋 with respect to the product topology on 𝐺 × 𝑋 . Recall that
a topological group G is called extremely amenable if every continuous action 𝐺 � 𝑋 on a compact
space X has a fixed point, that is, there is a point 𝑥0 ∈ 𝑋 such that 𝑔𝑥0 = 𝑥0 for every 𝑔 ∈ 𝐺.

Definition 3.11. An action 𝐺 � 𝑋 of a group G on a set X is finitely oscillation stable if

(FS) for every 𝑘 ∈ 𝜔, for every 𝜑 : 𝑋 → 𝑘 , and for every finite set 𝐹 ⊆ 𝑋 there exists 𝑔 ∈ 𝐺 such that
𝜑 is constant on 𝑔𝐹.

This is an equivalent formulation of the standard finite oscillation stability [24, 1.1] of a discrete space
X; see [24, Theorem 1.1.18 (7)]. Note that in the situation of Definition 3.1 an𝔖-arrow 𝛼 satisfies (wA)
if and only if the action Aut(𝑈) � 𝔏(𝛼,𝑈) satisfies (FS).

Proposition 3.12. Let G be a topological group with a neighborhood base V of its unit, consisting of
open subgroups. The following properties are equivalent.

(a) G is extremely amenable.
(b) For every 𝑉 ∈ V , the action 𝐺 � 𝐺/𝑉 on left cosets (𝑔 · ℎ𝑉 = 𝑔ℎ𝑉) satisfies (FS).

The proof can be found essentially in [8, Prop. 4.2], where it is assumed that G is a closed subgroup
of 𝑆∞; however, the proof uses exclusively the existence of a neighborhood base V as above (see also
the remarks after [8, Prop. 4.2]). Recall that a topological group G embeds into 𝑆∞ as a closed subgroup
if and only if it is a non-Archimedean Polish group, that is, if it has a countable neighborhood base V
of the unit consisting of open subgroups and is separable.

Remark 3.13. Let ( �𝑢, �𝑢∞,𝑈) be a matching sequence in (𝔖,𝔏). Recall that a basic neighborhood of
the identity id𝑈 ∈ 𝐺 := Aut(𝑈) is of the form

𝑉𝑚 = {𝑔 ∈ 𝐺 : 𝑔 ◦ 𝑢∞𝑚 = 𝑢∞𝑚},
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where 𝑚 ∈ 𝜔. This is obviously a subgroup of G. In fact, it is the stabilizer of 𝑢∞𝑚 of the action
𝐺 � 𝔏(𝑢𝑚,𝑈). Hence, the map 𝜋 : 𝐺/𝑉𝑚 → 𝐺 ◦ 𝑢∞𝑚 defined by ℎ ◦ 𝑉𝑚 ↦→ ℎ ◦ 𝑢∞𝑚 is an isomorphism
of the action 𝐺 � 𝐺/𝑉𝑚 on left cosets and the action 𝐺 � 𝐺 ◦ 𝑢∞𝑚 of the automorphism group on
the orbit 𝐺 ◦ 𝑢∞𝑚 ⊆ 𝔏(𝑢𝑚,𝑈). Moreover, if 𝑚′ � 𝑚 is such that 𝑢𝑚′𝑚 is amalgamable, then by the weak
homogeneity the orbit 𝐺 ◦ 𝑢∞𝑚 is the whole 𝔏(𝑢𝑚′𝑚 ,𝑈).

Theorem 3.14. Let ( �𝑢, �𝑢∞,𝑈) be a matching sequence in (𝔖,𝔏) for some categories 𝔖 ⊆ 𝔏. If �𝑢 is a
weak Fraïssé sequence, then the following conditions are equivalent.

(i) Aut(𝑈) is extremely amenable.
(ii) U has the weak finitary big Ramsey property in (𝔖,𝔏).

(iii) 𝔖 has the weak Ramsey property.

Proof. Put𝐺 := Aut(𝑈). Let𝑚 ∈ 𝜔 and𝑚′ � 𝑚 such that 𝑢𝑚′𝑚 is amalgamable. By the previous remark,
we have an isomorphism of the actions 𝐺 � 𝐺/𝑉𝑚 and 𝐺 � 𝔏(𝑢𝑚

′

𝑚 ,𝑈). Therefore, 𝐺 � 𝐺/𝑉𝑚
satisfies (FS) if and only if 𝑢𝑚′𝑚 satisfies (wA), or by Theorem 3.10 equivalently (wR).

Suppose G is extremely amenable. For every 𝑎 ∈ Obj(𝔖), there is an 𝔖-arrow 𝑓 : 𝑎 → 𝑢𝑚 for some
𝑚 ∈ 𝜔, and there is 𝑚′ � 𝑚 such that 𝑢𝑚′𝑚 is amalgamable. By Proposition 3.12 and the claim above,
𝑢𝑚

′

𝑚 is a Ramsey arrow, and so 𝛼 := 𝑢𝑚′𝑚 ◦ 𝑓 is a Ramsey arrow as well by Lemma 3.3. Hence,𝔖 has the
weak Ramsey property.

Suppose 𝔖 has the weak Ramsey property. For every 𝑚 ∈ 𝜔, there is 𝑚′ � 𝑚 such that 𝑢𝑚′𝑚
amalgamable. By Lemma 3.4, 𝑢𝑚′𝑚 is a Ramsey arrow, and so by the claim above, 𝐺 � 𝐺/𝑉𝑚 satisfies
(FS). It follows from Proposition 3.12 that G is extremely amenable.

We have (ii) ⇐⇒ (iii) already by Theorem 3.10. �

Recalling that the topological group Aut(𝑈) does not depend on the choice of 𝔏 and of weak Fraïssé
matching sequence ( �𝑢, �𝑢∞,𝑈) in (𝔖,𝔏) (see Construction 2.19), we obtain the following.

Corollary 3.15. A weak Fraïssé category𝔖 has the weak Ramsey property if and only if the topological
group 𝐺 (𝔖) is extremely amenable.

In the classical case when 𝔖 is a family of finite first-order structures with all embeddings, our
category is locally finite, which allows us to simplify the weak Ramsey property. In this case, when
expanded, we obtain the following corollary. Also, recall that the topology on Aut(𝑈) does not depend
on the choice of a weak Fraïssé sequence.

Corollary 3.16. Let L be a first-order language, let 𝔏 be the category of all L-structures and all
homomorphisms and let 𝔖 ⊆ 𝔏 be a subcategory of some finite L-structures and all embeddings
between them. If 𝔖 is a weak Fraïssé category with a generic object U, then the following properties
are equivalent.

(a) Aut(𝑈) is extremely amenable.
(b) For every 𝑎 ∈ Obj(𝔖), there is an 𝔖-arrow 𝛼 : 𝑎 → 𝑎′ such that for every 𝑏 ∈ Obj(𝔖), for every

𝑘 ∈ 𝜔 there exists 𝑣 ∈ Obj(𝔖) such that for every coloring 𝜑 : 𝔖(𝛼, 𝑣) → 𝑘 there exists 𝑒 : 𝑏 → 𝑣
with 𝜑 constant on 𝑒 ◦𝔖(𝛼, 𝑏).

3.3. Amalgamation extension and arrow extension

We briefly discuss the phenomenon of weak versions of certain notions like the amalgamation property
and the Ramsey property from theoretical perspective. In both situations, the core property is localized
at individual objects of a category and then generalized from objects to arrows. Here, we note that amal-
gamable/Ramsey arrows may be viewed as arrows factorizing through amalgamable/Ramsey objects in
a certain extension category.

First, observe that for a full cofinal subcategory ℭ ⊆ ℭ′ we have that a ℭ-arrow is amalgamable in ℭ
if and only if it is amalgamable in ℭ′. In this section, we shall work with full subcategories, and they will
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be sometimes identified with their classes of objects, for example, ℭ′ \ ℭ denotes the full subcategory
of ℭ′ consisting of objects in Obj(ℭ′) \ Obj(ℭ′).

Let ℭ be a category. By Am(ℭ), we denote the full subcategory of ℭ consisting of all amalgamable
objects. Suppose that both Am(ℭ) and ℭ \ Am(ℭ) are cofinal. Then Am(ℭ) has the amalgamation
property,ℭ has the cofinal amalgamation property [12] but not the amalgamation property andℭ\Am(ℭ)
has the weak amalgamation property but not the cofinal amalgamation property. In fact, ℭ \ Am(ℭ)
has no amalgamable objects. So sometimes we may obtain a category with the weak amalgamation
property without any amalgamable objects simply by removing the amalgamable objects. Sometimes,
it even happens that every amalgamable arrow in ℭ \ Am(ℭ) factorizes through an object in Am(ℭ).
Let us capture this situation by a definition.

Definition 3.17. By an amalgamation extension of a category ℭ, we mean a category ℭ′ ⊇ ℭ such that
ℭ is a full cofinal subcategory ofℭ′, every object ofℭ′ \ℭ is amalgamable inℭ′, and every amalgamable
ℭ-arrow factorizes through an amalgamable object in ℭ′. It follows that a ℭ-arrow is amalgamable if
and only if it factorizes through an amalgamable object in ℭ′.

Proposition 3.18. Let 𝔖 ⊆ 𝔖′ be an amalgamation extension.

(i) 𝔖 has the weak amalgamation property if and only if Am(𝔖′) is cofinal in 𝔖′.
(ii) Under the conditions in (i), 𝔖 is a weak Fraïssé category if and only if Am(𝔖′) is a Fraïssé

category. Moreover, an 𝔖-sequence �𝑢 is weak Fraïssé in 𝔖 if and only if it is weak Fraïssé in 𝔖′,
and an Am(𝔖′)-sequence �𝑣 is Fraïssé in Am(𝔖′) if and only if it is weak Fraïssé in 𝔖′. In this
case, the sequences �𝑢 and �𝑣 are isomorphic, and so the topological groups 𝐺 (𝔖) and 𝐺 (Am(𝔖′))
are isomorphic as well.

(iii) Under the conditions in (i),𝔖 has the weak Ramsey property if and only if Am(𝔖′) has the Ramsey
property.

Proof. Claim (i) is clear from the fact that amalgamable arrows in 𝔖 are exactly arrows factorizing
through an Am(𝔖′)-object. Claim (ii) follows from the fact both 𝔖 and Am(𝔖′) are full and cofinal
in 𝔖′, and so directedness, weak domination by a countable subcategory, and the property of being a
weak Fraïssé sequence is translated between 𝔖′ and the subcategories. For the rest, see Construction
2.19. Claim (iii) follows from two applications of Corollary 3.7. �

Example 3.19. Let ℭ be the category of all finite acyclic graphs and all embeddings. Then amalgamable
objects are exactly connected graphs in ℭ, that is, finite trees. Moreover, ℭ is an amalgamation extension
of ℭ \Am(ℭ). In other words, an embedding 𝑒 : 𝐺 → 𝐺 ′ in the category of disconnected finite acyclic
graphs ℭ \Am(ℭ) is amalgamable if and only if 𝑒[𝐺] lies in a single component of 𝐺 ′. This is because
the only obstruction to amalgamation in ℭ is when two components of a given graph are connected by
incompatible paths (e.g., of different lengths) in different extensions — the amalgamation would contain
a cycle, which is forbidden.

As seen in the example, amalgamation extensions may arise naturally. On the other hand, every
category admits at least the following ‘artificial’ amalgamation extension.

Definition 3.20. For every category ℭ, we define its arrow extension ℭ↑ as follows. A ℭ↑-object is a
ℭ-arrow 𝛼 : 𝑎 → 𝑎′, sometimes written as a pair (𝑎, 𝛼). A ℭ↑-arrow 𝑓 : (𝑎, 𝛼) → (𝑏, 𝛽) is a ℭ-arrow
𝑓 : 𝑎 → 𝑏 that factorizes through 𝛼 (i.e., such that there is a ℭ-arrow 𝑓 ′ with 𝑓 ′ ◦𝛼 = 𝑓 ) or id𝑎 if 𝛼 = 𝛽,
so we have identities in ℭ↑. The composition in ℭ↑ defined by the composition in ℭ is correct. In fact,
for every ℭ↑-arrow 𝑓 : (𝑎, 𝛼) → (𝑏, 𝛽), every ℭ-arrow 𝑔 : 𝑏 → 𝑐, and every ℭ↑-object (𝑐, 𝛾) we have
that 𝑔 ◦ 𝑓 is a ℭ↑-arrow (𝑎, 𝛼) → (𝑐, 𝛾).

Note that the natural functor 𝐹 : ℭ → ℭ↑ mapping 𝑎 ↦→ (𝑎, id𝑎) is fully faithful, and so ℭ may be
identified with the full subcategory of ℭ↑ consisting of identities. On the other hand, we also have the
faithful functor 𝑈 : ℭ↑ → ℭ mapping (𝑎, 𝛼) ↦→ 𝑎. Moreover, since 𝑈 ◦ 𝐹 = idℭ , ℭ is a retract of ℭ↑.
Also, note that 𝛼 : (𝑎, 𝛼) → (𝑎′, id𝑎′ ) for every ℭ↑-object 𝛼 : 𝑎 → 𝑎′, so ℭ ⊆ ℭ↑ is cofinal. Finally, note
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(𝑏, 𝛽)

(𝑎, 𝛼) 𝑑

(𝑐, 𝛾)

𝑓 ′◦𝛽𝑓

𝑔 𝑔′◦𝛾

𝑏 𝑏′

𝑎 𝑎′ 𝑑

𝑐 𝑐′

𝛽

𝑓 ′

𝛼

𝑓

𝑔

𝑓

𝑔̃

𝛾
𝑔′

Figure 3. A span in ℭ↑ and the corresponding span in ℭ.

that the notation ℭ(𝛼, 𝑏) used as a shortcut for ℭ(𝑎′, 𝑏) ◦ 𝛼 in the previous sections really corresponds
to the actual hom-set ℭ↑(𝛼, 𝛽), where dom(𝛽) = 𝑏.

Proposition 3.21. A ℭ-arrow 𝛼 : 𝑎 → 𝑎′ is amalgamable if and only if it is an amalgamable object in
ℭ↑. Hence, ℭ ∪ Am(ℭ↑) is an amalgamation extension of ℭ.

Proof. For the first part, it is enough to translate amalgamation spans (i.e., diagrams of the form
𝑏 ← 𝑎 → 𝑐) and their solutions between ℭ and ℭ↑, as shown in Figure 3 for the first implication. If 𝛼
is an amalgamable arrow in ℭ, 𝛽 : 𝑏 → 𝑏′ and 𝛾 : 𝑐→ 𝑐′ are ℭ↑ objects, and 𝑓 : 𝛼→ 𝛽 and 𝑔 : 𝛼→ 𝛾
are ℭ↑-arrows, then there are ℭ-arrows 𝑓 : 𝑎′ → 𝑏 and 𝑔̃ : 𝑎′ → 𝑐 such that 𝑓 = 𝑓 ◦ 𝛼 and 𝑔 = 𝑔̃ ◦ 𝛼
(or one of 𝑓 , 𝑔 is an identity arrow, in which case the amalgamation is trivial), and there are ℭ-arrows
𝑓 ′ and 𝑔′ to a ℭ-object d such that 𝑓 ′ ◦ 𝛽 ◦ 𝑓 ◦ 𝛼 = 𝑔′ ◦ 𝛾 ◦ 𝑔̃ ◦ 𝛼.

If 𝛼 is an amalgamable object in ℭ↑ and 𝑓 : 𝑎′ → 𝑏 and 𝑔 : 𝑎′ → 𝑐 are ℭ-arrows, then 𝑓 ◦𝛼 : 𝛼→ 𝑏
and 𝑔 ◦𝛼 : 𝛼→ 𝑐, and so there is a ℭ↑-object (𝑑, 𝛿) and ℭ↑-arrows 𝑓 ′ : 𝑏 → 𝛿 and 𝑔′ : 𝑐 → 𝛿 such that
𝑓 ′ ◦ 𝑓 ◦𝛼 = 𝑔′ ◦ 𝑔 ◦𝛼. Since 𝑓 ′ and 𝑔′ may be also viewed as ℭ-arrows 𝑏 → 𝑑 and 𝑐 → 𝑑, we are done.

It follows that ℭ∪Am(ℭ↑) is and amalgamation extension of ℭ. ℭ is full and cofinal in ℭ∪Am(ℭ↑)
since it is so in ℭ↑. Every object in Am(ℭ↑) is amalgamable in ℭ ∪ Am(ℭ↑) since ℭ ∪ Am(ℭ↑) is
full and cofinal in ℭ↑. Finally, every amalgamable arrow 𝛼 : 𝑎 → 𝑎′ in ℭ factorizes as 𝑔 ◦ 𝑓 , where
𝑓 : 𝑎 → 𝛼 corresponds to id𝑎 and 𝑔 : 𝛼→ 𝑎′ corresponds to 𝛼. �

Proposition 3.22. A ℭ-arrow 𝛼 : 𝑎 → 𝑎′ is Ramsey if and only if it is a Ramsey object in ℭ↑, that is, if
id𝛼 is a Ramsey arrow in ℭ↑.

Proof. We have already observed that ℭ(𝛼, 𝑏) = ℭ↑(𝛼, 𝛽) for every ℭ-arrow 𝛽 with domain b. Now,
the difference between the situation in ℭ and ℭ↑ is that in ℭ↑ more objects are allowed for b as well as
for the Ramsey witnessing object v. But that may be overcome by the fact that ℭ is cofinal in ℭ′.

Suppose 𝛼 is a Ramsey arrow in ℭ. Let 𝛽 : 𝑏 → 𝑏′ be a ℭ↑-object, let 𝐹 ⊆ ℭ↑(𝛼, 𝛽) be finite and let
𝑘 ∈ 𝜔. There is a ℭ↑-arrow 𝑓 : 𝛽 → 𝑏′ and a ℭ-object v such that for every coloring 𝜑 : ℭ(𝛼, 𝑣) → 𝑘
there is a ℭ-arrow 𝑔 : 𝑏′ → 𝑣 such that 𝜑 is constant on 𝑔 ◦ 𝑓 ◦ 𝐹.

On the other hand, suppose that 𝛼 is a Ramsey object in ℭ↑. For every ℭ-object b, finite 𝐹 ⊆ ℭ(𝛼, 𝑏)
and 𝑘 ∈ 𝜔 there is a witnessing ℭ↑-object 𝛾 : 𝑣 → 𝑣′ and a ℭ↑-arrow 𝑓 : 𝛾 → 𝑣′. Every coloring
𝜑 : ℭ(𝛼, 𝑣′) → 𝑘 induces the coloring𝜓 : ℭ↑(𝛼, 𝛾) → 𝑘 by𝜓(𝑔) := 𝜑( 𝑓 ◦𝑔). Hence, there is aℭ↑-arrow
𝑔 : 𝑏 → 𝛾 such that 𝜓 is constant on 𝑔 ◦𝐹, and so 𝜑 is constant on 𝑓 ◦𝑔 ◦𝐹, where ( 𝑓 ◦𝑔) : 𝑏 → 𝑣′. �

Together, we obtain the following.

Corollary 3.23. Let ℭ be a category with the weak Ramsey property and the weak amalgamation
property. Then Am(ℭ↑) has Ramsey property and the amalgamation property, and both ℭ and Am(ℭ↑)
are full cofinal subcategories of ℭ↑.

4. Applications

We demonstrate the theory developed in the previous sections on several examples. Two extreme kinds
of categories – in the sense of having degenerate hom-sets and degenerate class of objects, respectively –
are posets and monoids. Recall that every poset (𝑃, �)may be regarded as a categoryℭ with Obj(ℭ) = 𝑃
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and ℭ(𝑥, 𝑦) being a singleton if 𝑥 � 𝑦 and empty otherwise. In general, a category ℭ such that every
hom-set ℭ(𝑎, 𝑏) is empty or a singleton is called thin. Clearly, every thin category has the Ramsey
property.
Definition 4.1. We say that a category ℭ is weakly thin if for every ℭ-object a there is a ℭ-arrow
𝛼 : 𝑎 → 𝑎′ such that for every ℭ-object b we have |ℭ(𝑎′, 𝑏) ◦ 𝛼 | � 1, that is, there is at most one arrow
𝑎 → 𝑏 that factorizes through 𝛼.

Clearly, every weakly thin category has the weak Ramsey property.
Example 4.2. Let ℭ be the category of all finite graphs whose all cycles have pairwise disjoint sets of
vertices and have different lengths, with all embeddings as morphisms. Then ℭ is a weakly thin (and so
having the weak Ramsey property) hereditary class without the Ramsey property, though it is not weak
Fraïssé since it is not directed and does not have the weak amalgamation property.

Proof. For every graph G in ℭ, we describe an inclusion 𝛼 : 𝐺 → 𝐺 ′ to a bigger graph 𝐺 ′ in ℭ such
that every vertex of G is definable (by an existential formula without parameters) in 𝐺 ′ as well as in
every extension of 𝐺 ′ in ℭ (by the same formula across the extensions). Every cycle is definable (as a
set) because of unique lengths. Since cycles are disjoint, there is at most one edge connecting two fixed
cycles, and so the endpoints of that edge are definable. Finally, if at least two nonantipodal vertices on a
cycle are definable, all vertices on the cycle are definable. Hence, to form 𝐺 ′ it is enough to add cycles
and paths so that every vertex of G is covered by one of the cases above.

The category ℭ does not have the Ramsey property since its objects are not rigid — for example,
a cycle C has nontrivial automorphisms and for every G in ℭ we can color ℭ(𝐶,𝐺) so that every two
different embeddings with the same image get different colors.

The category ℭ is not directed and does not have the weak amalgamation property: Let 𝐶𝑛 denote a
cycle of length 𝑛 � 3, and let 𝐺𝑎,𝑏,𝑐 , 𝑎 ≠ 𝑏 ≠ 𝑐 � 3, be a graph consisting of 𝐶𝑎 and 𝐶𝑐 both joined by
an edge to the same vertex in 𝐶𝑏 . Then 𝐺𝑎,𝑏,𝑐 and 𝐺𝑏,𝑐,𝑎 can never be jointly embedded into a graph
in ℭ. Since every ℭ-object H can be extended to 𝐻 ∪ 𝐺𝑎,𝑏,𝑐 and 𝐻 ∪ 𝐺𝑏,𝑐,𝑎 for suitably large 𝑎, 𝑏, 𝑐,
ℭ does not have the weak amalgamation property. �

We shall look at monoids in the next section.

4.1. Monoids as categories

Recall that a monoid is a triple (𝑀, ·, 1), where · is an associative operation on a set M, and 1 ∈ 𝑀 is the
unit: We have 𝑥 · 1 = 1 · 𝑥 = 𝑥 for every 𝑥 ∈ 𝑀 . A monoid M can be viewed as a category with a single
object: The elements of M become the endomorphisms, the multiplication · becomes the composition,
and the unit 1 becomes the identity on the single unnamed object.

Then, an element 𝛼 ∈ 𝑀 corresponds to a Ramsey arrow if and only if for every 𝑘 ∈ 𝜔, for every
finite 𝐹 ⊆ 𝑀𝛼, and for every 𝜑 : 𝑀𝛼→ 𝑘 there exists 𝑒 ∈ 𝑀 such that 𝜑 � 𝑒𝐹 is constant. The monoid
M has the weak Ramsey property if and only if there exists a Ramsey arrow, and M has the Ramsey
property if and only if the unit (and so every element) is a Ramsey arrow.
Definition 4.3. We say that an element 𝛼 ∈ 𝑀 of a monoid satisfies the left equalization condition (LE)
if for every finite 𝐹 ⊆ 𝑀𝛼 there exists 𝑒 ∈ 𝑀 such that 𝑒𝐹 is a singleton. Since we may assume that
𝛼 ∈ 𝐹, this is equivalent to 𝑒𝐹 = {𝑒𝛼}. Also, by induction, (LE) is equivalent to the property that for
every 𝑥, 𝑦 ∈ 𝑀𝛼 there is 𝑒 ∈ 𝑀 such that 𝑒𝑥 = 𝑒𝑦. This is because for 𝑥, 𝑦, 𝑧 ∈ 𝑀𝛼 there is 𝑒 ∈ 𝑀 such
that 𝑒𝑥 = 𝑒𝑦 and 𝑒′ ∈ 𝑀 such that 𝑒′(𝑒𝑦) = 𝑒′(𝑒𝑧). It follows that 𝑒′𝑒{𝑥, 𝑦, 𝑧} is a singleton.

Note that if an element 𝛼 ∈ 𝑀 satisfies (LE), then it is a Ramsey arrow. At several cases, the converse
is true as well.
Proposition 4.4. Let M be a monoid and 𝛼 ∈ 𝑀 . Let F be the submonoid { 𝑓 ∈ 𝑀 : 𝑀𝛼 𝑓 ⊆ 𝑀𝛼},
and let G be the graph of the right action of F on 𝑀𝛼, that is, the set of vertices is 𝑀𝛼, and we put an
edge 𝑥 ↦→ 𝑓 𝑥 𝑓 for every 𝑥 ∈ 𝑀𝛼 and 𝑓 ∈ 𝐹. If G has finitely many undirected components, then 𝛼 is a
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Ramsey arrow if and only if it satisfies (LE). This includes the following cases: (i) M is finite, (ii) M is
commutative, (iii) 𝛼 is left-invertible, in particular if 𝛼 is the unit or M is a group.

Proof. Suppose that 𝛼 is a Ramsey arrow. First, we show that if 𝑥, 𝑦 lie in the same component of G,
then there is 𝑒 ∈ 𝑀 such that 𝑒𝑥 = 𝑒𝑦. By induction, it is enough to consider the case 𝑦 = 𝑥 𝑓 for some
𝑓 ∈ 𝐹. Let 𝐺 𝑓 be the subgraph of G of the right action of f on 𝑀𝛼, that is, we consider only the edges
𝑥 ↦→ 𝑥 𝑓 for every 𝑥 ∈ 𝑀𝛼. For every 𝑥 ∈ 𝑀𝛼, the path (𝑥 𝑓 𝑛)𝑛∈𝜔 in 𝐺 𝑓 is an infinite ray or finite
cycle with a finite initial segment attached. We may inductively define a coloring 𝜑 : 𝑀𝛼→ 3 such that
𝜑(𝑥) ≠ 𝜑(𝑥 𝑓 ) unless 𝑥 = 𝑥 𝑓 . We need the third color only because of possible cycles of odd length.
Since 𝛼 is a Ramsey arrow, there is 𝑒 ∈ 𝑀 such that 𝜑(𝑒𝑥) = 𝜑(𝑒𝑥 𝑓 ), and so 𝑒𝑥 = 𝑒𝑥 𝑓 .

Now, let 𝑥, 𝑦 ∈ 𝑀𝛼 be arbitrary. Since G has finitely many components, there is a coloring
𝜓 : 𝑀𝛼→ 𝑘 for some 𝑘 ∈ 𝜔, such that points from different components take different colors. Since 𝛼
is a Ramsey arrow, there is 𝑒 ∈ 𝑀 such that 𝜓(𝑒𝑥) = 𝜓(𝑒𝑦), and so 𝑒𝑥 and 𝑒𝑦 lie in the same component.
So by the previous claim, there is 𝑒′ ∈ 𝑀 such that 𝑒′𝑒𝑥 = 𝑒′𝑒𝑦.

It remains to show that G has finitely many components in the cases (i), (ii), (iii). This is clear if M
is finite. If M is commutative, then G has only one component: Every 𝑥 ∈ 𝑀𝛼 is of the form 𝑓 𝛼 = 𝛼 𝑓
for some 𝑓 ∈ 𝑀 = 𝐹, and hence x is in the component of 𝛼. Similarly, if 𝑀𝛼 = 𝑀 � 1, then 𝐹 = 𝑀 and
so 𝑀𝛼 = 1𝐹, and again G has only one component. �

Corollary 4.5. A monoid M has the Ramsey property if and only if for every 𝑥, 𝑦 ∈ 𝑀 there is 𝑒 ∈ 𝑀
such that 𝑒𝑥 = 𝑒𝑦.

Example 4.6. A monoid with a left zero, that is, an element 0 such that 0 · 𝑥 = 0 for every x, has the
Ramsey property. A monoid with a right zero has the weak Ramsey property since a right zero is a
Ramsey arrow. In fact, a monoid with a right zero is a weakly thin category.

But not every monoid with the Ramsey property has a left zero, and not every monoid with the
weak Ramsey property has a right zero. For example, consider the commutative monoid on 𝜔 given by
𝑎 · 𝑏 = max{𝑎, 𝑏}. It is clear this monoid satisfies the condition of the above corollary; however, there
is no left or right zero. The infinitude of 𝜔 is a necessity for this which we see in the next observation.

Observation 4.7. A finite monoid is Ramsey if and only if it has a left zero.

Proof. It suffices to show that a finite monoid with the Ramsey property has a left zero. There is are
𝑒, 𝑠 ∈ 𝑀 such that 𝑒𝑀 = {𝑠}. Since M has the unit, we have that 𝑒 = 𝑠 is a left zero. �

Example 4.8. Let M be the monoid {𝑥𝑛, 0𝑥𝑛 : 𝑛 ∈ 𝜔} where the operation is the concatenation of words
with discarding everything to the left of an occurrence of 0, that is, M is the free monoid generated by x
with a right zero 0 freely added. The monoid M has the weak Ramsey property since it has a right zero,
but M does not have the Ramsey property since there is no 𝑒 ∈ 𝑀 such that 𝑒 = 𝑒𝑥.

Example 4.9. In a left-cancellative monoid M, that is, a monoid whose elements are monomorphisms,
an element 𝛼 satisfies (LE) if and only if it is a right zero. This is because if 𝑥𝛼 ≠ 𝛼 for some 𝑥 ∈ 𝑀 , then
there is no 𝑒 ∈ 𝑀 such that 𝑒𝑥𝛼 = 𝑒𝛼. At the same time, M has no idempotents but the unit, and a right
zero is an idempotent. It follows that no nontrivial left-cancellative monoid has an element satisfying
(LE). In particular, it cannot have the Ramsey property, and if M is a group or is commutative, then it
has not even the weak Ramsey property since in those cases Ramsey arrows satisfy (LE).

Question 4.10. Is there a nontrivial left-cancellative monoid with the weak Ramsey property?

Example 4.11. A nontrivial free monoid M does not have the weak Ramsey property. We can explicitly
construct a coloring: Let 𝑥 ∈ 𝑀 be a generator, and let 𝜑 : 𝑀 → 2 be the parity of the number of
occurrences of x in a given word. Then for every 𝛼, 𝑒 ∈ 𝑀 we have 𝜑(𝑒𝑥𝛼) ≠ 𝜑(𝑒𝛼), and so 𝛼 is not a
Ramsey arrow.

Definition 4.12. For every monoid M we may define the left absorption relation 𝑥 � 𝑦 by 𝑥 = 𝑥𝑦
for 𝑥, 𝑦 ∈ 𝑀 . The relation is transitive: If 𝑥 = 𝑥𝑦 and 𝑦 = 𝑦𝑧, then 𝑥 = 𝑥𝑦 = 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 = 𝑥𝑧.
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We have 𝑥 � 𝑥 if and only if x is an idempotent, so � is a genuine preorder if and only if M consists of
idempotents. Nevertheless, we shall use the preorder terminology even in the general case.

The unit 1 is the unique minimum: Clearly, it is a minimum, and if 𝑥 � 1, then 1 = 1𝑥 = 𝑥. The
condition (LE) for an element 𝛼 ∈ 𝑀 says that (𝑀𝛼, �) is directed. Note that in a left-cancellative
monoid the relation � is trivial: All elements 𝑥 ≠ 1 are nonidempotent pairwise incomparable maxima.
If 𝑥 ∈ 𝑀 is an idempotent, then 𝑒𝑥 � 𝑥 for every 𝑒 ∈ 𝑀 since (𝑒𝑥)𝑥 = 𝑒(𝑥𝑥) = 𝑒𝑥.

Proposition 4.13. An element 𝛼 of a monoid M of idempotents is a Ramsey arrow if and only if it
satisfies (LE) if and only if it is amalgamable.

Proof. The left absorption relation is a preorder, and for every 𝑥, 𝑦 ∈ 𝑀𝛼 we have that 𝑀𝑥 and 𝑀𝑦 are
�-upper subsets of 𝑀𝛼. Suppose that 𝛼 is a Ramsey arrow. We prove that 𝑀𝑥 ∩ 𝑀𝑦 ≠ ∅. Otherwise,
there is a coloring 𝜑 : 𝑀𝛼→ 2 such that 𝑀𝑥 and 𝑀𝑦 are colored by different colors. Since 𝛼 is Ramsey,
there is 𝑒 ∈ 𝑀 such that 𝜑(𝑀𝑥) � 𝜑(𝑒𝑥) = 𝜑(𝑒𝑦) ∈ 𝜑(𝑀𝑦), which is a contradiction. Hence, 𝑥, 𝑦 ∈ 𝑀𝛼
have an upper bound, so we have (LE).

Clearly, if 𝛼 ∈ 𝑀 satisfies (LE), then it is amalgamable. On the other hand, if for 𝑥, 𝑦 ∈ 𝑀𝛼 there
are elements 𝑥 ′, 𝑦′ ∈ 𝑀 such that 𝑥 ′𝑥 = 𝑦′𝑦 =: 𝑒, then 𝑒𝑥 = 𝑒𝑦. �

Example 4.14. Let M be a monoid of idempotents. If M is also commutative, then 𝑥𝑦 = 𝑦𝑥 is the
supremum of {𝑥, 𝑦}: Clearly, 𝑥𝑦 is an upper bound since (𝑥𝑦)𝑥 = 𝑦(𝑥𝑥) = 𝑦𝑥 = 𝑥𝑦 and similarly
for y. The fact that for 𝑥, 𝑦 � 𝑧 we have also 𝑥𝑦 � 𝑧 holds in general: We have 𝑧 = 𝑧𝑥 = 𝑧𝑦, and so
𝑧 = 𝑧𝑦 = (𝑧𝑥)𝑦 = 𝑧(𝑥𝑦). Moreover, � is an order: If 𝑥 � 𝑦 � 𝑥, then 𝑥 = 𝑥𝑦 = 𝑦𝑥 = 𝑦. Together,
a commutative monoid of idemponents with the left absorption order becomes a join semilattice with
the minimum 1. Conversely, every join semilattice with a minimum is a monoid. We shall call these
semilattice monoids. Since the order is directed (we have even suprema), semilattice monoids have the
Ramsey property.

Example 4.15. Another special class of monoids of idempotents are left-zero monoids, that is, monoids
M such that for every 𝑥, 𝑦 ∈ 𝑀 \ {1} we have 𝑥𝑦 = 𝑥. This means that the left absorption preorder
trivializes: All elements 𝑥 ≠ 1 are �-equivalent maxima. Hence, left-zero monoids have the Ramsey
property. Similarly, a right-zero monoid consists of the unit and of right zeros and so has the weak
Ramsey property. In this case, if 𝑥 � 𝑦 ≠ 1, then 𝑥 = 𝑥𝑦 = 𝑦, so nonunit elements are pairwise
incomparable maxima. Hence, nontrivial right-zero monoids do not have the Ramsey property.

Question 4.16. Is being a Ramsey arrow equivalent to (LE) in a general monoid?

4.2. Almost linear orders

We revisit Pouzet’s example (mentioned in a note by Pabion [22]; see also [10]) of a weak Fraïssé
category without the cofinal amalgamation property and observe that it also has the weak Ramsey
property. The basic idea is to consider the linear order of rationals (Q, �), which is known to be a
Fraïssé limit and known to have extremely amenable automorphism group, and to interpret it using a
different language, namely the ternary relation 𝑅(𝑥, 𝑦, 𝑧) defined by (𝑥 < 𝑦) ∧ (𝑥 < 𝑧) ∧ (𝑦 ≠ 𝑧).

Let LO denote the category of all linear orders and all embeddings. Note that an order P is linear
if and only if every two-element subset {𝑥, 𝑦} ⊆ 𝑃 has a minimum. For the sake of this example, we
say that an order P is almost linear if every three-element subset {𝑥, 𝑦, 𝑧} ⊆ 𝑃 has a minimum. We
define LO3 to be the category of all almost linear orders and all one-to-one homomorphisms. Note that
every one-to-one homomorphism 𝑓 : 𝑃 → 𝑄 between orders is already an embedding if P is linear: If
𝑓 (𝑥) � 𝑓 (𝑦), then either 𝑥 � 𝑦 and we are done, or 𝑦 � 𝑥, so 𝑓 (𝑦) � 𝑓 (𝑥) and 𝑓 (𝑥) = 𝑓 (𝑦), and so
𝑥 = 𝑦. It follows that LO is a full subcategory of LO3.

Let us view ordinals as linear orders, for example, 2 = {0 < 1}, and for orders 𝑋,𝑌 let 𝑋 +𝑌 denote
the ordered sum, that is, the disjoint union of X and Y with 𝑥 < 𝑦 for every 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , so, for
example, 1 + 2 is a linear order isomorphic to 3. Let B denote an order consisting of two incomparable
elements.
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Observation 4.17. Every almost linear order X is either linear or of the form 𝐿 + 𝐵 for some linear
order L.

Proof. For every 𝑥 ∈ 𝑋 , we have that {𝑦 ∈ 𝑋 : 𝑦 � 𝑥} is linearly ordered since for every 𝑦, 𝑧 < 𝑥
with 𝑦 ≠ 𝑧 the set {𝑥, 𝑦, 𝑧} has a minimum, which cannot be x. Also, for a similar reason, for every
incomparable elements 𝑥 ≠ 𝑦 ∈ 𝑋 and 𝑧 ∈ 𝑋 \ {𝑥, 𝑦} we have 𝑧 < 𝑥, 𝑦. Together, there may be at most
one pair of incomparable elements, and in that case they are maxima and everything below them is
linear. �

Every almost linear order X with two maxima 𝑥, 𝑦 admits exactly two linear refinements: We
decide which of 𝑥, 𝑦 will be greater and extend the relation appropriately. The two corresponding
homomorphisms will be called refinements here.

Observation 4.18. Every LO3-arrow 𝑓 : 𝑋 → 𝑌 is either an embedding, or a refinement followed by an
embedding.

Proof. As observed earlier, if X is linearly ordered, then f is an embedding. Otherwise, let 𝑥, 𝑦 be the
two maxima of X. If 𝑓 (𝑥), 𝑓 (𝑦) are incomparable, then they are the two maxima of Y, and f is again an
embedding. If 𝑓 (𝑥), 𝑓 (𝑦) are comparable, then 𝑓 = 𝑓 ′ ◦ 𝑔, where 𝑔 : 𝑋 → 𝑋 ′ is the refinement of X
corresponding to the order of 𝑓 (𝑥), 𝑓 (𝑦), and the uniquely determined map 𝑓 ′ is an embedding. �

Construction 4.19. For an almost linear order (𝑋, �), we define a ternary relation R on X by

𝑅(𝑥, 𝑦, 𝑧) :⇐⇒ (𝑥 < 𝑦) ∧ (𝑥 < 𝑧) ∧ (𝑦 ≠ 𝑧),

meaning that x is the minimum of the three-point set {𝑥, 𝑦, 𝑧}. The relation R satisfies the following
properties:

(i) 𝑅(𝑥, 𝑦, 𝑧) =⇒ |{𝑥, 𝑦, 𝑧}| = 3,
(ii) 𝑅(𝑥, 𝑦, 𝑧) ⇐⇒ 𝑅(𝑥, 𝑧, 𝑦),

(iii) 𝑅(𝑥, 𝑦, 𝑤) ∧ 𝑅(𝑦, 𝑧, 𝑤′) =⇒ 𝑅(𝑥, 𝑧, 𝑤′),
(iv) |{𝑥, 𝑦, 𝑧}| = 3 =⇒ 𝑅(𝑥, 𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑧, 𝑥) ∨ 𝑅(𝑧, 𝑥, 𝑦),

which are in this context called antireflexivity, symmetry, transitivity and linearity, respectively.
Let LO3R denote the category whose objects are all structures (𝑋, 𝑅) with a ternary relation satisfying

the axioms above and whose morphisms are all first-order embeddings. In a moment, we shall make
it clear that LO3R can be identified with a full subcategory of LO3 such that LO3 = LO ∪ LO3R (see
Observation 4.21).

The construction (𝑋, �) ↦→ (𝑋, 𝑅) induces a functor 𝐹 : LO3 → LO3R: It maps an LO3-arrow
𝑓 : (𝑋, �𝑋 ) → (𝑌, �𝑌 ) to the LO3R-arrow 𝑓 : (𝑋, 𝑅𝑋 ) → (𝑌, 𝑅𝑌 ) represented by the same map between
the underlying sets (i.e., it is a concrete functor). We need to show that a one-to-one homomorphism f
between almost linear orders is indeed an embedding of the corresponding R-structures.

Clearly, if x is the minimum of a three-point set {𝑥, 𝑦, 𝑧}, then 𝑓 (𝑥) is the minimum of the three-point
set { 𝑓 (𝑥), 𝑓 (𝑦), 𝑓 (𝑧)}. On the other hand, if 𝑓 (𝑥) is the minimum of a three-point set { 𝑓 (𝑥), 𝑓 (𝑦), 𝑓 (𝑧)},
then the set {𝑥, 𝑦, 𝑧} is also three point and so has a minimum, which has to be x by the first implication.

Now, let (𝑋, 𝑅) be an LO3R-object. We put

𝑥 < 𝑦 :⇐⇒ ∃𝑤 𝑅(𝑥, 𝑦, 𝑤) and 𝑥 � 𝑦 :⇐⇒ (𝑥 = 𝑦) ∨ ∃𝑤 𝑅(𝑥, 𝑦, 𝑤).

The relation < is antireflexive and transitive by the corresponding properties of R, and so it is a strict
order. Hence, � is an order and < is its strict part. By the symmetry and linearity of R, we have that �
is an almost linear order. Moreover, if 𝑓 : (𝑋, 𝑅𝑋 ) → (𝑌, 𝑅𝑌 ) is an embedding, then it is a one-to-one
homomorphism of the induced almost linear orders. The one-to-one part is clear. Suppose 𝑥 �𝑋 𝑦.
We want to show that 𝑓 (𝑥) �𝑌 𝑓 (𝑦). This is clear if 𝑥 = 𝑦, so we may suppose that 𝑅𝑋 (𝑥, 𝑦, 𝑤)
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for some 𝑤 ∈ 𝑋 . But then 𝑅𝑌 ( 𝑓 (𝑥), 𝑓 (𝑦), 𝑓 (𝑤)), and so 𝑓 (𝑥) �𝑌 𝑓 (𝑦). Together, the construction
(𝑋, 𝑅) ↦→ (𝑋, �) induces a concrete functor 𝐺 : LO3R → LO3.

Proposition 4.20. We have 𝐹 ◦ 𝐺 = idLO3R , so G is a full embedding. Moreover, for every LO3-object X
we have that 𝐺 (𝐹 (𝑋)) is X with the modified order forgetting the order of the largest and the second
largest element (if these exist). The corresponding arrows 𝜀𝑋 : 𝐺 (𝐹 (𝑋)) → 𝑋 are universal, so we
have an adjunction counit 𝜀 : 𝐺 ◦ 𝐹 → idLO3 . Together, LO3R may be identified with a full coreflective
subcategory of LO3.

Proof. Let (𝑋, 𝑅) be an LO3R-object, (𝑋, �) := 𝐺 (𝑋, 𝑅) and (𝑋, 𝑅′) := 𝐹 (𝑋, �). We want to show
𝑅′(𝑥, 𝑦, 𝑧) ⇐⇒ 𝑅(𝑥, 𝑦, 𝑧). By the definition, 𝑅′(𝑥, 𝑦, 𝑧) is equivalent to (𝑥 < 𝑦) ∧ (𝑥 < 𝑧) ∧ (𝑦 ≠ 𝑧),
which is in turn equivalent to ∃𝑤, 𝑤′ 𝑅(𝑥, 𝑦, 𝑤) ∧ 𝑅(𝑥, 𝑧, 𝑤′) ∧ (𝑦 ≠ 𝑧). This is clearly implied by
𝑅(𝑥, 𝑦, 𝑧) since we may simply put 𝑤 := 𝑧 and 𝑤′ := 𝑦. On the other hand, by the linearity of R we have
𝑅(𝑥, 𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑧, 𝑥) ∨ 𝑅(𝑧, 𝑥, 𝑦), so it is enough to show that 𝑅(𝑦, 𝑧, 𝑥) ∨ 𝑅(𝑧, 𝑥, 𝑦) is not possible.
Also, 𝑅(𝑧, 𝑥, 𝑦) is not possible since by 𝑅(𝑥, 𝑧, 𝑤′) and the transitivity we would obtain 𝑅(𝑧, 𝑧, 𝑤′),
which contradicts the antireflexivity. Similarly, 𝑅(𝑦, 𝑧, 𝑥), which is equivalent with 𝑅(𝑦, 𝑥, 𝑧) contradicts
𝑅(𝑥, 𝑦, 𝑤).

For the second part, let (𝑋, �) be an LO3-object and let (𝑋, �′) := 𝐺 (𝐹 (𝑋, �)). Clearly, 𝑥 <′ 𝑦 if and
only if 𝑥 < 𝑦 and there is some 𝑧 ≠ 𝑦 such that 𝑥 < 𝑧, so �′ only forgets the order of the two consecutive
�-largest elements (if they exist). We want to show that id𝑋 : (𝑋, �′) → (𝑋, �) is the universal arrow,
that is, that every map 𝑓 : 𝑌 → 𝑋 for an almost linear order (𝑌, �) of the form 𝐺 (𝑌, 𝑅) is an LO3-arrow
(𝑌, �) → (𝑋, �) if and only if it is an LO3-arrow (𝑌, �) → (𝑋, �′). The backward implication is trivial.
For the forward implication, the only possible difference between � and �′ is that (𝑋, �) is a linear
order 𝑋 \ {𝑎, 𝑏} < 𝑎 < 𝑏 for some 𝑎, 𝑏 ∈ 𝑋 , while 𝑋 \ {𝑎, 𝑏} <′ 𝑎, 𝑏 with �′-incomparable 𝑎, 𝑏. So the
only possible fail is when 𝑎 = 𝑓 (𝑎′) and 𝑏 = 𝑓 (𝑏′) for some comparable elements 𝑎′, 𝑏′ ∈ 𝑌 . Since we
suppose that 𝑓 : (𝑌, �) → (𝑋, �) is a one-to-one homomorphism, necessarily 𝑌 \ {𝑎′, 𝑏′} < 𝑎′ < 𝑏′.
But that is a contradiction with the fact that (𝑌, �) = 𝐺 (𝑌, 𝑅). �

As a consequence of the previous proposition and Observation 4.17, we obtain the following summary.

Corollary 4.21. When we view LO3R ⊆ LO3, we have LO3 = LO ∪ LO3R. Moreover, LO \ LO3R consists
exactly of linear orders of the form 𝐿 + 2, while LO3R \ LO consists exactly of almost linear orders of
the form 𝐿 + 𝐵. For every linear order L, we have 𝐹 (𝐿 + 2) = 𝐿 + 𝐵.

Let FinLO, FinLO3 and FinLO3R denote the full subcategories of LO, LO3 and LO3R, consisting of all
finite structures. We will show that FinLO3R, which is a hereditary class of first-order structures, is a
weak Ramsey category with almost no amalgamable objects (only the empty and singleton structures
are amalgamable). Recall the notion of amalgamation extension from Section 3.3.

Proposition 4.22. Both FinLO and FinLO3R are full cofinal subcategories of FinLO3 = FinLO∪FinLO3R.
A FinLO3-object is amalgamable if and only if it is a linear order, that is, a FinLO-object. A FinLO3R-
arrow is amalgamable if and only if it factorizes through a linear order, which happens if and only if
it is not of the form 𝑓 + 𝐵 : 𝐿 + 𝐵 → 𝐿 ′ + 𝐵 for an FinLO-arrow 𝑓 : 𝐿 → 𝐿 ′. Together, FinLO3 is an
amalgamation extension of FinLO3R.

Proof. Both FinLO and FinLO3R are cofinal: A nonlinear almost linear order 𝐿 + 𝐵 admits a refinement
𝐿 + 𝐵 → 𝐿 + 2; a linear order L admits an embedding 𝐿 → 𝐿 + 𝐵. The rest of the first claim follows
from Corollary 4.21.

It is well known that FinLO has the amalgamation property, and so every FinLO-object is amalgamable
in FinLO3 since FinLO is a full cofinal subcategory. On the other hand, if a FinLO3-arrow 𝛼 : 𝑋 → 𝑌 does
not factorize through a linear order, then X has two maxima that are mapped to the two maxima of Y.
The two linear refinements 𝑓 , 𝑔 : 𝑌 → 𝑌 ′ are not amalgamable over 𝛼, and so 𝛼 is not an amalgamable
arrow. �
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It follows from Proposition 3.18 that FinLO3R is a weak Fraïssé category with no amalgamable
objects, but the degenerate ones (the empty and singleton orders). Moreover, it is well known that FinLO
has the Ramsey property — this corresponds to the classical finite Ramsey theorem, and so FinLO3R
has the weak Ramsey property.

Let us also describe the situation with the (weak) Fraïssé limit. Let 𝜎FinLO, 𝜎FinLO3 and 𝜎FinLO3R
be the corresponding 𝜎-closures (Construction 2.5), which in this case are the full subcategories
of LO, LO3 and LO3R of all countable structures. By the general theory (Remark 2.22), each pair
(FinLO, 𝜎FinLO), (FinLO3, 𝜎FinLO3) and (FinLO3R, 𝜎FinLO3R) has a weak Fraïssé limit. By Proposition
3.18, the corresponding weak Fraïssé sequences are isomorphic and so are their colimits, so all three
pairs have a common weak Fraïssé limit, necessarily being an object of 𝜎FinLO∩𝜎FinLO3R. Of course,
the limit is the order of rationals (Q, �) as the well-known Fraïssé limit of finite linear orders. The
classical KPT correspondence translates the Ramsey property of FinLO to the extreme amenability of
Aut(Q, �), which is then translated by the weak KPT correspondence (Theorem 3.14) to the weak
Ramsey property of FinLO3R. This is an alternative proof of the weak Ramsey property of FinLO3R.

4.3. Trees

It turns out there are many notions of trees and embeddings of trees. In this section, we consider
certain categories 𝔗𝑀 of structured finite trees and strong embeddings related to the classical Milliken’s
theorem [19]. We show that the categories 𝔗𝑀 are weak Fraïssé and describe the countable trees
𝑈𝑀 that are their weak Fraïssé limits. After we forget part of the structure, namely the levels, the
corresponding categories 𝔗′𝑀 are still weak Fraïssé, and moreover they have the weak Ramsey property.
By the KPT correspondence (Theorem 3.14), the corresponding limit trees𝑈 ′𝑀 have extremely amenable
automorphism groups.

Since we shall consider both finite and infinite trees with various extra structure, we carefully define
our categories in several steps. By a tree, we mean a triple (𝑇, �,∧), where (𝑇, �) is a partially ordered
set such that every set (←, 𝑥]𝑇 := {𝑦 ∈ 𝑇 : 𝑦 � 𝑥} is linearly ordered and such that every pair 𝑥, 𝑦 ∈ 𝑇
has the �-meet 𝑥 ∧ 𝑦. By an embedding of trees, we mean a one-to-one map 𝑓 : 𝑆 → 𝑇 between trees
such that 𝑓 (𝑥∧ 𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦) for every 𝑥, 𝑦 ∈ 𝑆 (and so 𝑥 � 𝑦 ⇐⇒ 𝑓 (𝑥) � 𝑓 (𝑦) for every 𝑥, 𝑦 ∈ 𝑆),
that is, a first-order embedding in the language {�,∧}. The category of all trees and all embeddings is
denoted by Tree.

An element of a tree is often called a node, the minimum element (if it exists) is called the root, and
a maximal element is called a terminal node. A node s is an immediate successor of a node t if 𝑠 > 𝑡
and there is no x such that 𝑠 > 𝑥 > 𝑡. We use interval notation with respect to the tree order, that is,
[𝑡,→)𝑇 := {𝑥 ∈ 𝑇 : 𝑥 � 𝑡}, (𝑠, 𝑡)𝑇 := {𝑥 ∈ 𝑇 : 𝑠 < 𝑥 < 𝑡} and so on. We omit the T subscript when
the tree is clear from the context. A tree T is well founded if every set (←, 𝑡] for 𝑡 ∈ 𝑇 is well ordered.
Trees considered in set-theory are often well founded, but here we consider also trees that are not well
founded, for example, the set (←, 𝑡) may be isomorphic to (Q, �).

Definition 4.23 (Splitting degree and splitting preserving embeddings). For every tree T and 𝑡 ∈ 𝑇 , we
may consider the splitting equivalence defined on (𝑡,→) by 𝑥 ∼ 𝑦 ⇐⇒ 𝑥 ∧ 𝑦 > 𝑡. (The transitivity
follows since 𝑥 ∧ 𝑧 ∈ {𝑥 ∧ 𝑦, 𝑦 ∧ 𝑧}.) Let Spl(𝑡) denote the set of the equivalence classes (𝑡,→)/∼,
which correspond to the connected parts strictly above t, and let spl(𝑡) denote the splitting degree at a
nonterminal node t defined as the cardinality of Spl(𝑡). Of course, if the tree T is well ordered, Spl(𝑡)
corresponds to immediate successors of t, but in general it is not the case. Also, maximal antichains in
(𝑡,→) are exactly transversals of Spl(𝑡). A tree is finitely splitting if every set Spl(𝑡), 𝑡 ∈ 𝑇 , is finite.

For every embedding 𝑓 : 𝑇 → 𝑆, we have that a class [𝑥] ∈ Spl(𝑡) gets mapped into the class
[ 𝑓 (𝑥)] ∈ Spl( 𝑓 (𝑡)) and that different classes get mapped into different classes, so f induces an injective
map Spl𝑇 (𝑡) → Spl𝑆 ( 𝑓 (𝑡)). We say that f preserves splitting if for every nonterminal node 𝑡 ∈ 𝑇
the induced map Spl𝑇 (𝑡) → Spl𝑆 ( 𝑓 (𝑡)) is a bijection. For finitely splitting trees, this is equivalent to
preserving the splitting degree of all nonterminal nodes of T. Let SplTree ⊆ Tree be the wide subcategory
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of all trees and all splitting preserving embeddings, and let FSplTree ⊆ SplTree be the full subcategory
of finitely splitting trees.

It will be useful to consider also trees whose splitting degree has been decided on terminal nodes.
Let FSplTree denote the category of all trees T endowed with unary relations {𝑅𝑛}𝑛∈N+ such that for
every 𝑡 ∈ 𝑇 at most one of 𝑅𝑛 (𝑡) holds, and if t is nonterminal, then 𝑅spl(𝑡) (𝑡) holds. The morphisms
are first-order one-to-one homomorphisms in the language {�,∧} ∪ {𝑅𝑛}𝑛∈N+ . Nodes 𝑡 ∈ 𝑇 for which
some 𝑅𝑛 (𝑡) holds are called decided. Clearly, FSplTree can be identified with the full subcategory of
FSplTree of trees with undecided terminal nodes. On the other hand, by DSplTree we denote the full
subcategory of FSplTree of trees whose all terminal nodes are decided.

Definition 4.24 (Leveled trees). By a leveled tree, we mean a tree T equipped with an equivalence�
encoding the information of which nodes are on the same level, that is, the level set Lev(𝑇) := 𝑇/�
with the induced order is linearly ordered, and for every 𝑡 ∈ 𝑇 the level function lev : 𝑇 → Lev(𝑇)
induces an order isomorphism (←, 𝑡]𝑇 → (←, lev(𝑡)]Lev(𝑇 ) . By LevTree, we denote the category of all
leveled trees and first-order embeddings (or equivalently one-to-one homomorphisms) in the language
{�,∧,�}. Note that a LevTree-embedding 𝑓 : 𝑆 → 𝑇 induces an order embedding Lev(𝑆) → Lev(𝑇).

The preorder on T induced by Lev(𝑇) is denoted by �lev, that is, 𝑥 �lev 𝑦 ⇐⇒ lev(𝑥) � lev(𝑦).
The set {𝑡 ∈ 𝑇 : lev(𝑡) = 𝛼} is denoted by 𝑇 (𝛼). For every 𝛼 � lev(𝑡), the unique node 𝑠 � 𝑡 such
that lev(𝑠) = 𝛼 is denoted by 𝑡 �𝛼. Sometimes, we implicitly identify the level set Lev(𝑇) = 𝑇/� with
another linearly ordered set, for example, an ordinal or the rational numbers.

Clearly, every well-ordered tree T admits a unique level structure with Lev(𝑇) being an ordinal, yet
a Tree-map between well-ordered trees is not necessarily level preserving. On the other hand, there
are trees admitting several nonisomorphic level structures, for example, two copies of (Q, �) above a
common root with one level structure gluing the copies of Q and another level structure making one
copy a strict initial segment of the other. There are also trees admitting no level structure, for example,
(Q, �) and a terminal node above a common root.

A leveled tree is called balanced if for every pair of nodes 𝑡 <lev 𝑠, there is a node 𝑡 ′ such that
𝑡 < 𝑡 ′ � 𝑠. A finite tree is balanced if and only if all its terminal nodes are at the same level.

Definition 4.25 (Lexicographic trees). By a lexicographic tree, we mean a tree T endowed with a linear
order �lex that is coherent with the splitting structure of T, that is, for every 𝑡 ∈ 𝑇 there is a linear order
�𝑡 on Spl(𝑡) such that 𝑥 �lex 𝑦 if and only if 𝑥 � 𝑦 or 𝑥, 𝑦 > 𝑥 ∧ 𝑦 and [𝑥] <𝑥∧𝑦 [𝑦]. Informally, the
tree is linearly ordered from bottom to top and from left to right. By LexTree, we denote the category
of all lexicographic trees and all first-order embeddings (or equivalently one-to-one homomorphisms)
in the language {�,∧, �lex}.

Definition 4.26 (Strong embeddings). By a strong embedding, we mean and embedding of leveled trees
preserving both splitting and levels. A strong subtree of a leveled tree T is a subset S such that the
inclusion 𝑆 ⊆ 𝑇 is a strong embedding. By StrTree, we denote the category of leveled trees (called
strong trees in this context) and strong embeddings, and by LexStrTree we denote the category of
lexicographic leveled trees and strong embeddings also preserving the lexicographic order. We add the
lexicographic order in order to ensure the rigidity needed for the weak Ramsey property. By LexLevTree
and LexSplTree, we denote the expansions of LevTree and SplTree by the lexicographic order. We
summarize the categories in Figure 4.

Remark 4.27. Observe that an inclusion of a subset 𝑆 ⊆ 𝑇 of a finite tree with the induced order
preserves meets (and splitting) if and only if for every nonterminal node 𝑠 ∈ 𝑆 and every immediate
successor 𝑡 ∈ 𝑇 we have that [𝑡,→)𝑇 contains at most one (exactly one) immediate successor of s in
S. Therefore, Tree-embeddings, SplTree-embeddings, and StrTree-embeddings correspond to weakly
embedded, embedded and strongly embedded subtrees as defined in the original Milliken’s paper [19].
The lexicographic order is also considered in [19] by the name extended order.

Definition 4.28 (Categories of finite trees). We finally define the categories of finite strong trees we are
interested in. Let 𝑀 ⊆ N+ be a nonempty set. 𝔗𝑀 denotes the full subcategory of LexStrTree consisting
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Tree

SplTree LevTree LexTree

StrTree LexSplTree LexLevTree

LexStrTree

Figure 4. Categories of trees and forgetful functors between them.

Figure 5. A terminal planting 𝑆 �𝑠 𝑇 .

of finite trees such that the splitting degree takes values only in M. Note that if 𝑀 = {1}, then 𝔗𝑀

consists of finite linearly ordered sets, and strong embeddings are just increasing embeddings.
Moreover, 𝔗𝑀 denotes the variant of 𝔗𝑀 where terminal nodes may have decided splitting without

actually being split at, that is, the FSplTree-component of the category is replaced by FSplTree. Of
course, 𝔗𝑀 is identified with full a subcategory of 𝔗𝑀 . By 𝔇𝑀 , we denote the full subcategory of 𝔗𝑀

of trees where all terminal nodes are decided.

4.3.1. Extensions and amalgamations
In this section, we describe and classify arrows in 𝔗𝑀 , 𝔗𝑀 and 𝔇𝑀 for a fixed nonempty set 𝑀 ⊆ N+
and characterize amalgamable objects and arrows.

First, observe that without loss of generality we may view a 𝔗𝑀 -arrow 𝑓 : 𝑆 → 𝑇 as an inclusion
𝑆 ⊆ 𝑇 (formally we compose f with an isomorphism 𝑔 : 𝑇 → 𝑇 ′ such that 𝑔 ◦ 𝑓 : 𝑆 ⊆ 𝑇 ′). So instead
of embeddings we may work with extensions, which simplifies the proofs. Second, given an extension
𝑆 ⊆ 𝑇 there are two aspects: one, newly added nodes, and two, deciding the splitting degree of existing
terminal nodes without adding new nodes above them, which is possible in 𝔗𝑀 and required in 𝔇𝑀 .
We shall focus on the first aspect and mention the second one only when important. So from now on we
keep in mind that we are working in any of 𝔗𝑀 , 𝔗𝑀 , 𝔇𝑀 , without necessarily specifying which one.
By a tree, we mean an object of our category (in particular it is always a finite tree), by an embedding
we mean a morphism and by an extension we mean an embedding that is also an inclusion of sets.

Definition 4.29. We say that an extension 𝑆 ⊆ 𝑇 is terminal if S is a lower subset of T, that is, there is
no newly added node 𝑡 ∈ 𝑇 \ 𝑆 below any existing node 𝑠 ∈ 𝑆.

Construction 4.30 (Terminal planting). Let 𝑆, 𝑇 be trees, let 𝑠 ∈ 𝑆 be a terminal node and let r denote
the root of T. We consider the tree 𝑆 �𝑠 𝑇 resulting from planting the tree T at the terminal node 𝑠 ∈ 𝑆,
like on Figure 5.

The trees S and T can be replaced by isomorphic copies, so we may suppose that 𝑠 = 𝑟 and 𝑆∩𝑇 = {𝑠}.
Then there is a unique lexicographic strong tree structure on 𝑆 ∪𝑇 that extends both S and T: For every
𝑢 ∈ 𝑆 and 𝑡 ∈ 𝑇 , we have 𝑢∧ 𝑡 = 𝑢∧𝑆 𝑠; the splitting at every node is realized either in S or T, and so the
lexicographic order is uniquely determined and since our trees are finite, there is a unique level structure.
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For convenience, given the original trees with the sets 𝑆, 𝑇 we can take 𝑆 �𝑠 𝑇 = 𝑆∪ {(𝑠, 𝑡) : 𝑟 ≠ 𝑡 ∈ 𝑇}
as the representing set so that we have an extension 𝑆 ⊆ (𝑆 �𝑠 𝑇).

Note that up to a canonical isomorphism we have (𝑆 �𝑠 𝑇) �𝑡 𝑅 = 𝑆 �𝑠 (𝑇 �𝑡 𝑅) for s a terminal
node of S and t a terminal node of T. Similarly, (𝑆 �𝑠1 𝑇1) �𝑠2 𝑇2 = (𝑆 �𝑠2 𝑇2) �𝑠1 𝑇1 for 𝑠1, 𝑠2 distinct
terminal nodes of S. Finally, more trees can be planted at distinct terminal nodes at once: For a set of
terminal nodes 𝐴 ⊆ 𝑆 and trees {𝑇𝑎 : 𝑎 ∈ 𝐴}, we consider the extension 𝑆 �𝑎∈𝐴 𝑇𝑎.

Proposition 4.31. For every set 𝐴 ⊆ 𝑆 of terminal nodes and for nonempty trees 𝑇𝑎, we have that
𝑆 �𝑎∈𝐴 𝑇𝑎 is a terminal extension of S. On the other hand, every terminal extension 𝑆 ⊆ 𝑇 is canonically
of the form 𝑆 �𝑎∈𝐴 𝑇𝑎 with nondegenerate trees 𝑇𝑎 (unless 𝑆 = ∅).

Proof. The first claim is clear from the definition. For the second claim, let ∅ ≠ 𝑆 ⊆ 𝑇 be a terminal
extension. For a node 𝑡 ∈ 𝑇 \ 𝑆, let 𝑎 = 𝑠(𝑡) be the maximum of (←, 𝑡] ∩ 𝑆. Note that 𝑇𝑎 := [𝑎,→) is a
strong subtree of T. Moreover, we have that a is a terminal node of S and so 𝑇𝑎 ∩ 𝑆 = {𝑎}. Otherwise,
a would have an immediate successor from S by the terminality of 𝑆 ⊆ 𝑇 and also an immediate
successor from 𝑇 \ 𝑆 by the definition of a. That would contradict spl𝑆 (𝑎) = spl𝑇 (𝑎). Together, we have
𝑇 = (𝑆 �𝑎∈𝐴 𝑇𝑎) for 𝐴 := {𝑠(𝑡) : 𝑡 ∈ 𝑇 \ 𝑆}. �

Definition 4.32. By a bush, we mean a tree with exactly two levels: the root and the nonempty set of its
immediate successors.

By a one-step terminal extension of a tree S, we mean an extension of the form 𝑆 �𝑠 𝐵, where B is
a bush. Note that every terminal extension 𝑆 ⊆ 𝑇 can be realized as a finite sequence/composition of
one-step terminal extensions 𝑆 �𝑠 𝐵1 �𝑏1 · · · �𝑏𝑘−1 𝐵𝑘 . In particular, every nonempty tree T can be
build by planting bushes and starting with a singleton tree 𝑆 = {∗}.

Definition 4.33. By a nonterminal extension, we mean the complete opposite of the terminal extension:
It is an extension 𝑆 ⊆ 𝑇 such that for every decomposition into two consecutive extensions 𝑆 ⊆ 𝑇 ′ ⊆ 𝑇
such that 𝑇 ′ ⊆ 𝑇 is a terminal extension, we have 𝑇 ′ = 𝑇 .

Proposition 4.34. Every extension 𝑆 ⊆ 𝑇 can be canonically decomposed as 𝑆 ⊆ 𝑇 ′ ⊆ 𝑇 in a way that
𝑆 ⊆ 𝑇 ′ is a nonterminal extension and 𝑇 ′ ⊆ 𝑇 is a terminal extension.

Proof. Let 𝑆′ :=
⋃
𝑠∈𝑆 (←, 𝑠]𝑇 be the lower subset of T generated by S. Clearly, every suitable tree 𝑇 ′

has to contain 𝑆′. But 𝑆′ may not be a strong subtree. It is closed under meets and levels but typically
not under splitting: We may have spl𝑆′ (𝑠) < spl𝑇 (𝑠) for some 𝑠 ∈ 𝑆′ \ 𝑆, so we need to add more
nodes witnessing the splitting. Fortunately, since our tree is finite and so every level but the top one has
a successor level, we have canonical witnesses. It is enough to add all T-immediate successors of all
nodes 𝑠 ∈ 𝑆′ \ 𝑆. Note that all T-immediate successors of nonterminal nodes of S are already in 𝑆′. So
let 𝑆′′ := 𝑆′ ∪ {𝑡 ∈ 𝑇 : 𝑡 an immediate successor of a node form 𝑆′ \ 𝑆}.

We have that 𝑆′′ is the smallest strong subtree of T containing 𝑆′. It follows that every suitable 𝑇 ′
has to contain 𝑆′′. Also, 𝑆′′ ⊆ 𝑇 is a terminal extension since 𝑆′′ is a lower subset. Hence, 𝑆′′ ⊆ 𝑇 ′ is a
terminal extension, and necessarily 𝑇 ′ = 𝑆′′. It remains to show that 𝑆 ⊆ 𝑆′′ is a nonterminal extension.
Let 𝑁 := 𝑆′′ \ 𝑇 ′′ be the set of newly added nodes for some terminal extension 𝑇 ′′ ⊆ 𝑆′′ such that
𝑆 ⊆ 𝑇 ′′. Clearly, no node from 𝑆′ is in N. Similarly, no node from 𝑆′′ \ 𝑆′ is in N since its predecessor is
in 𝑆′ \𝑆 ⊆ 𝑇 ′′ and so would have to be a terminal node of𝑇 ′′, which it is not. So 𝑁 = ∅ and𝑇 ′′ = 𝑆′′. �

From the previous proof, we obtain the following.

Corollary 4.35. An extension 𝑆 ⊆ 𝑇 is nonterminal if and only if every node 𝑡 ∈ 𝑇 \ 𝑆 is below an
S-node or its immediate predecessor is a node from 𝑇 \ 𝑆 below an S-node.

Construction 4.36 (Tree surgery). By a pointed bush 𝐵𝑏 , we mean a pair (𝐵, 𝑏), where B is a bush and
b is one of its top-level nodes.

For a tree S, its level 𝛼, and a family of pointed bushes (𝐵𝑏𝑠𝑠 )𝑠∈𝑆 (𝛼) , we consider the extension
𝑆 �𝛼 (𝐵

𝑏𝑠
𝑠 )𝑠∈𝑆 (𝛼) obtained by performing a (one-step) tree surgery on S. Again, for simplicity we may
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Figure 6. A tree surgery 𝑆 �𝛼 (𝐵𝑠𝑠)𝑠∈𝑆 (𝛼) .

suppose that 𝑏𝑠 = 𝑠 and 𝑆 ∩ 𝐵𝑠 = {𝑠} for every 𝑠 ∈ 𝑆(𝛼) and that the bushes 𝐵𝑠 are pairwise disjoint.
There is a unique lexicographic strong tree structure on 𝑆 ∪

⋃
𝑠∈𝑆 (𝛼) 𝐵𝑠 that is an extension of S and of

every 𝐵𝑠 . The roots of the bushes 𝐵𝑠 form a new level immediately preceding 𝛼, while the level 𝛼 is
extended by the top levels of the bushes 𝐵𝑠 with the nodes 𝑏𝑠 being identified with the old level 𝑆(𝛼);
see Figure 6. In the case that 𝛼 is the root level, and so we have a single pointed bush 𝐵𝑏 , we write just
𝑆 � 𝐵𝑏 . Note that this nonterminal extension of S is also the terminal extension 𝐵 �𝑏 𝑆 of B.

We may iterate one-step tree surgeries and consider
( (
𝑆 �𝛼 (𝐵

𝑏1,𝑠
1,𝑠 )𝑠∈𝑆 (𝛼)

)
︸���������������������︷︷���������������������︸

𝑇1

�𝛽1 · · ·
)
�𝛽𝑘−1 (𝐵

𝑏𝑘,𝑠
𝑘,𝑠 )𝑠∈𝑇𝑘−1 (𝛽𝑘−1) ,

where 𝛽𝑖 is the new level in 𝑇𝑖 for 1 � 𝑖 � 𝑘 . We may simplify this by introducing another helper notion.
A bush-column is a tree of the form

𝐶 =
(
((𝐵0 � 𝐵

𝑏1
1 ) � · · · ) � 𝐵

𝑏𝑘
𝑘

)
=
(
𝐵𝑘 �𝑏𝑘 𝐵𝑘−1 �𝑏𝑘−1 · · · �𝑏1 𝐵0

)
,

and a pointed bush-column 𝐶𝑐 is a pair (𝐶, 𝑐), where C is a bush-column and c is a top-level node of
C. Iterated tree surgery may be written as 𝑆 �𝛼 (𝐶𝑐𝑠𝑠 )𝑠∈𝑆 (𝛼) where 𝐶𝑐𝑠𝑠 for 𝑠 ∈ 𝑆(𝛼) are pointed bush-
columns of the same height. Finally, we may perform tree surgery simultaneously on several levels and
use the notation 𝑆 �𝛼∈𝐴 (𝐶

𝑐𝛼,𝑠
𝛼,𝑠 )𝑠∈𝑆 (𝛼) or just 𝑆 �𝛼∈𝐴 𝐶𝛼 for a set 𝐴 ⊆ Lev(𝑆) and a sequence of

pointed bush-columns of the same height for every 𝛼 ∈ 𝐴.

Proposition 4.37. Every extension 𝑆 ⊆
(
𝑆 �𝛼∈𝐴 (𝐶

𝑐𝛼,𝑠
𝛼,𝑠 )𝑠∈𝑆 (𝛼)

)
is nonterminal. On the other hand, for

every nonterminal extension 𝑆 ⊆ 𝑇 , T can be canonically written as 𝑆 �𝛼∈𝐴 (𝐶
𝑐𝛼,𝑠
𝛼,𝑠 )𝑠∈𝑆 (𝛼) . It follows that

every nonterminal extension can be realized as a finite sequence/composition of one-step tree surgeries.

Proof. The first part is clear from the definition of tree surgery and Corollary 4.35. For the second part,
let 𝑆 ⊆ 𝑇 be a nonterminal extension. Let N be the set of all nodes 𝑡 ∈ 𝑇 \ 𝑆 such that there is a node
𝑠(𝑡) ∈ 𝑆 above t. Moreover, let 𝑠(𝑡) denote the least such node, which exists since S is closed under
meets. Also, let 𝑁 ′ := 𝑇 \ (𝑆 ∪ 𝑁), so we have a decomposition 𝑇 = 𝑆 ∪ 𝑁 ∪ 𝑁 ′. By Corollary 4.35,
every 𝑡 ∈ 𝑁 ′ has no S-node above and its predecessor is in N. It follows that t is a terminal node of T
(its immediate successor would have to be in 𝑁 ′, which would contradict 𝑡 ∈ 𝑁 ′).

For every 𝑡 ∈ 𝑁 , let 𝐵(𝑡) ⊆ 𝑇 be the bush consisting of t and its immediate successors in T. We have
𝑁 ′ ⊆

⋃
𝑡 ∈𝑁 𝐵(𝑡). Also, the top level of 𝐵(𝑡) may contain at most one node not in 𝑁 ′ – either 𝑠(𝑡) or

another 𝑡 ′ ∈ 𝑁 with 𝑠(𝑡 ′) = 𝑠(𝑡). This follows from the fact that S is closed under meets.
Next, observe that for every level 𝛼 if 𝑇 (𝛼) ∩ 𝑁 ≠ ∅, then 𝑇 (𝛼) ⊆ 𝑁 ∪ 𝑁 ′. This is because

𝑡 � 𝑠(𝑡), so if 𝑡 � 𝑠′ ∈ 𝑆, then 𝑡 ∈ 𝑆 as S is closed under levels. So immediately below every level
𝛼 ∈ 𝐴 := {lev𝑇 (𝑠(𝑡)) : 𝑡 ∈ 𝑁}, there are T-levels 𝛽𝛼,1 > 𝛽𝛼,2 > · · · > 𝛽𝛼,𝑘𝛼 consisting of new nodes.
We have 𝑁 = {𝑠 � 𝛽𝛼,𝑖 : 𝛼 ∈ 𝐴, 𝑠 ∈ 𝑆(𝛼), 1 � 𝑖 � 𝑘𝛼}.

For every 𝛼 ∈ 𝐴 and 𝑠 ∈ 𝑆(𝛼), let 𝐶𝛼,𝑠 :=
⋃
{𝐵(𝑡) : 𝑡 ∈ 𝑁 ∧ 𝑠(𝑡) = 𝑠}. Now, it is clear

that every 𝐶𝛼,𝑠 is a bush-column, every two bush-columns 𝐶𝛼,𝑠 , 𝐶𝛼,𝑠′ have the same height, and
𝑇 =

(
𝑆 �𝛼∈𝐴 (𝐶𝑠𝛼,𝑐)𝑠∈𝑆 (𝛼) )

)
. �
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Definition 4.38. By a one-step extension, we mean either a one-step terminal extension or a one-step
tree surgery. It follows that a one-step nonterminal extension is just a different name for a one-step tree
surgery.

Corollary 4.39. Every extension 𝑆 ⊆ 𝑇 is canonically of the form
(
𝑆 �𝛼∈𝐴 𝐶𝛼

)
�𝑠∈𝐵 𝑇𝑠 ,

where A is a set of S-levels, B is a set of terminal nodes of the nonterminal extension tree, 𝐶𝛼 are
suitable sequences of pointed bush-columns and 𝑇𝑠 are suitable trees. Moreover, every extension is a
finite composition of one-step extensions.

�����

Next, we characterize amalgamable arrows in the categories 𝔗𝑀 , 𝔗𝑀 and 𝔇𝑀 . We are in a situation as
in Section 3.3. The situation can be summarized as follows.

Theorem 4.40. Let 𝑀 ⊆ N+ be nonempty. Both 𝔗𝑀 and 𝔇𝑀 are full cofinal subcategories of 𝔗𝑀 .
𝔇𝑀 has the amalgamation property, so 𝔇𝑀 ⊆ Am(𝔗𝑀 ). Moreover, every amalgamable 𝔗𝑀 -arrow
factorizes through an amalgamable 𝔗𝑀 -object, and so (the full subcategory generated by) 𝔗𝑀 ∪𝔇𝑀

is an amalgamation extension of 𝔗𝑀 .

(i) If 𝑀 = {𝑚} for some 𝑚 ∈ N+, then forgetting the decided splitting degree at terminal nodes is
an isomorphism of categories 𝔇𝑀 → 𝔗𝑀 , and the whole category 𝔗𝑀 has the amalgamation
property.

(ii) Otherwise, if |𝑀 | � 2, then a 𝔗𝑀 -object is amalgamable if and only if it is fully decided, that is,
Am(𝔗𝑀 ) = 𝔇𝑀 . In particular, a 𝔗𝑀 -arrow 𝑓 : 𝑆 → 𝑇 is amalgamable if and only if for every
terminal node 𝑠 ∈ 𝑆, 𝑓 (𝑠) is not terminal in T.

The goal is to prove the theorem above.

Definition 4.41. Let 𝑓1 : 𝑆 → 𝑇2 and 𝑓2 : 𝑆 → 𝑇2 be 𝔗𝑀 -arrows. By a node of incompatibility for 𝑓1, 𝑓2,
we mean a node 𝑠 ∈ 𝑆 such that 𝑓1(𝑠) and 𝑓2(𝑠) are decided, but spl( 𝑓1 (𝑠)) ≠ spl( 𝑓2(𝑠)). Necessarily,
s is an undecided terminal node of S. The pair of embeddings 𝑓1, 𝑓2 is compatible if there is no node of
incompatibility.

Proposition 4.42. A pair of 𝔗𝑀 -embeddings 𝑓1 : 𝑆 → 𝑇1 and 𝑓2 : 𝑆 → 𝑇2 is amalgamable (i.e., there
are embeddings 𝑔𝑖 : 𝑇𝑖 → 𝑇 , 𝑖 ∈ {1, 2} such that 𝑔1 ◦ 𝑓1 = 𝑔2 ◦ 𝑓2) if and only if the pair is compatible.

Proof. Clearly, if 𝑠 ∈ 𝑆 is a node of incompatibility, then spl(𝑔1 ( 𝑓1(𝑠))) = spl( 𝑓1(𝑠)) ≠ spl( 𝑓2(𝑠)) =
spl(𝑔2 ( 𝑓2(𝑠))), so 𝑓1, 𝑓2 cannot be amalgamated. The other, nontrivial, implication follows from Con-
struction 4.43 below. �

Proof of Theorem 4.40. We already know that 𝔗𝑀 ,𝔇𝑀 ⊆ 𝔗𝑀 are full. The cofinality of 𝔇𝑀 is clear
— we just refine the relations by adding 𝑅𝑚(𝑠) for a fixed 𝑚 ∈ 𝑀 and every undecided terminal node
s of a given tree S. For the cofinality of 𝔗𝑀 , let S be any 𝔗𝑀 -tree. We consider the terminal extension
𝑆 �𝑠∈𝐷 𝐵spl(𝑠) , where D is the set of decided terminal nodes of S, and for every 𝑚 ∈ 𝑀 , 𝐵𝑚 is an
undecided bush whose root has the splitting degree m.

Clearly, every pair 𝑓𝑖 : 𝑆 → 𝑇𝑖 , 𝑖 ∈ {1, 2}, of 𝔗𝑀 -arrows is compatible if S is decided or if 𝑀 = {𝑚},
so every 𝔇𝑀 -object is amalgamable, and in the case (i), 𝔗𝑀 -has the amalgamation property.

The map 𝐹 : 𝔇𝑀 → 𝔗𝑀 that forgets the decided splitting degrees at terminal nodes on objects and
that acts as identity on arrows is always a faithful functor surjective on objects. But if 𝑀 = {𝑚}, then F
is also one-to-one on objects and full since there is only one way how to decide a splitting degree, and
so F is an isomorphism.
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Figure 7. An amalgamation of two one-step terminal extensions.

Finally, if 𝑚1 ≠ 𝑚2 ∈ 𝑀 and 𝛼 : 𝑆 → 𝑆′ is a 𝔗𝑀 -arrow such that 𝛼(𝑠) is not decided for a node
𝑠 ∈ 𝑆, then 𝑓1 ◦ 𝛼, 𝑓2 ◦ 𝛼, where 𝑓𝑖 : 𝑆′ → 𝑇𝑖 is the refinement by 𝑅𝑚𝑖 (𝛼(𝑠)) are not amalgamable, and
so 𝛼 is not an amalgamable arrow. Hence, an amalgamable tree is necessarily decided in (ii), and every
amalgamable arrow factorizes through an amalgamable object (which is trivial in (i)). �

It remains to construct an amalgamation 𝑔𝑖 : 𝑇𝑖 → 𝑇 , 𝑖 ∈ {1, 2}, for a pair 𝑓𝑖 : 𝑆 → 𝑇 of compatible
embeddings. As before, we may suppose for simplicity that 𝑓𝑖 is an extension 𝑆 ⊆ 𝑇𝑖 . We will be able
to construct an amalgamation such that 𝑔1 (𝑡1) = 𝑔2 (𝑡2) if and only if 𝑡𝑖 = 𝑓𝑖 (𝑠) for a node 𝑠 ∈ 𝑆 and
𝑖 ∈ {1, 2}. In this case, the embeddings 𝑔𝑖 may be replaced by extensions 𝑇𝑖 ⊆ 𝑇 , so we would have
𝑇1 ∪ 𝑇2 ⊆ 𝑇 with 𝑇1 ∩ 𝑇2 = 𝑆. We shall call such situation a nongluing amalgamation.

We have seen in Corollary 4.39 that the extension 𝑆 ⊆ 𝑇𝑖 may be viewed as a result of a certain
construction:𝑇𝑖 = 𝐸𝑖 (𝑆). It may happen that the same construction 𝐸𝑖 can be applied also to an extended
tree 𝑆′ ⊇ 𝑆. A nongluing amalgamation is a free amalgamation if 𝐸1 (𝐸2 (𝑆)) = 𝐸2(𝐸1 (𝑆)) = 𝑇1∪𝑇2 = 𝑇 .
This happens for example if 𝑇𝑖 = 𝑆 �𝑠∈𝐴𝑖 𝑉𝑠 for 𝐴1 ∩ 𝐴2 = ∅.

Construction 4.43. Let 𝑆 ⊆ 𝑇𝑖 , 𝑖 ∈ {1, 2}, be compatible extensions. We shall construct a nongluing
amalgamation 𝑇 ⊇ 𝑇1 ∪ 𝑇2. We consider several cases.

(i) Suppose 𝑇𝑖 = 𝑆 �𝑠 𝐵𝑖 for 𝑖 = 1, 2 are one-step terminal extensions planting at the same terminal
node 𝑠 ∈ 𝑆. Clearly, if spl𝑇1

(𝑠) ≠ spl𝑇2
(𝑠), then there is no amalgamation. But this is not the

case since the extensions are compatible. It follows that the bushes 𝐵𝑖 are isomorphic. Of course,
we could amalgamate simply by identifying the bushes 𝐵𝑖 , but we are interested in a nongluing
amalgamation since the bushes 𝐵𝑖 may be just parts of bigger extensions we consider in later
cases.

We may suppose 𝐵1 ∩ 𝐵2 = {𝑠}. Let 𝛼 denote the top level of the bushes 𝐵𝑖 as well as the
corresponding level of 𝑇𝑖 . Hence, 𝑇𝑖 (𝛼) is the disjoint union 𝑆(𝛼) ∪ 𝐵𝑖 (𝛼) with the possibility
that 𝑆(𝛼) is empty. Let (𝑏𝑖, 𝑗 : 𝑗 < 𝑘) for 𝑖 = 1, 2 be the �lex-increasing enumeration of 𝐵𝑖 (𝛼).
Furthermore, for every 𝑠 ∈ 𝑆(𝛼) let 𝐶1,𝑠 = 𝐶2,𝑠 be a bush containing s at the top level, and for
every 𝑗 < 𝑘 let 𝐶1,𝑏1, 𝑗 = 𝐶2,𝑏2, 𝑗 be a bush containing 𝑏1, 𝑗 and 𝑏2, 𝑗 as distinct top-level nodes
(here, we suppose 𝑀 ≠ {1}, otherwise the amalgamation is done as for linear orders). Suppose
the bushes are otherwise disjoint with all the other bushes considered. Our amalgamation is

𝑇 := (𝑆 �𝑠 𝐵1)︸������︷︷������︸
𝑇1

�𝛼 (𝐶𝑡1,𝑡 )𝑡 ∈𝑇1 (𝛼) = (𝑆 �𝑠 𝐵2)︸������︷︷������︸
𝑇2

�𝛼 (𝐶𝑡2,𝑡 )𝑡 ∈𝑇2 (𝛼)

as in Figure 7. Note that the extensions 𝑇𝑖 ⊆ 𝑇 for 𝑖 = 1, 2 are one-step nonterminal.
(ii) To amalgamate general terminal extensions 𝑆 �𝑠 𝑉𝑖 at the same node 𝑠 ∈ 𝑆 for 𝑖 = 1, 2, we write𝑉𝑖

as 𝐵𝑖 �𝑡 ∈𝐴𝑖 𝑉
′
𝑡 , where 𝐵𝑖 is the root bush of 𝑉𝑖 and 𝐴𝑖 ⊆ 𝐵𝑖 is a subset of the top level of the bush

(we suppose that 𝑉1 ∩ 𝑉2 = {𝑠}, and so 𝐴1 ∩ 𝐴2 = ∅). Then we consider the free amalgamation
𝑆′ �𝑡 ∈𝐴1∪𝐴2 𝑉

′
𝑡 of the extensions 𝑆′ �𝑡 ∈𝐴𝑖 𝑉

′
𝑡 for 𝑖 = 1, 2, where 𝑆′ is a nongluing amalgamation

of 𝑆 �𝑠 𝐵1 and 𝑆 �𝑠 𝐵2 from (i).
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Figure 8. An amalgamation of a terminal and a nonterminal extension.

(iii) To amalgamate completely general terminal extensions 𝑆 �𝑠∈𝐴𝑖 𝑉𝑖,𝑠 for 𝑖 = 1, 2, we consider the
free amalgamation 𝑇 := 𝑆 �𝑠∈𝐴1∪𝐴2 𝑉

′
𝑠 of the extensions 𝑆 �𝑠 𝑉 ′𝑠 for 𝑠 ∈ 𝐴1 ∪ 𝐴2, where

𝑆 �𝑠 𝑉 ′𝑠 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑆 �𝑠 𝑉1 if 𝑠 ∈ 𝐴1 \ 𝐴2,

𝑆 �𝑠 𝑉2 if 𝑠 ∈ 𝐴1 \ 𝐴2,

the amalgamation of 𝑆 �𝑠 𝑉1 and 𝑆 �𝑠 𝑉2 from (ii) if 𝑠 ∈ 𝐴1 ∩ 𝐴2.

This is a free amalgamation of the original extensions 𝑆 �𝑠∈𝐴𝑖 𝑉𝑖,𝑠 if and only if 𝐴1 ∩ 𝐴2 = ∅.
(iv) If 𝑇1 = (𝑆 �𝑎∈𝐴 𝑉𝑎) is a terminal extension and 𝑇2 =

(
𝑆 �𝛽∈𝐵 (𝐶𝑠𝛽,𝑠)𝑠∈𝑆 (𝛽)

)
is a nonterminal

extension, then there is a nongluing amalgamation T such that 𝑇1 ⊆ 𝑇 is nonterminal and 𝑇2 ⊆ 𝑇
is terminal.

For every 𝑎 ∈ 𝐴, let 𝐵𝑎 := {𝛽 ∈ 𝐵 : 𝑉𝑎 ∩ 𝑇1 (𝛽) ≠ ∅}, and for every 𝛽 ∈ 𝐵, let 𝐴𝛽 := {𝑎 ∈
𝐴 : 𝑉𝑎 ∩ 𝑇1 (𝛽) ≠ ∅}. We have 𝑇1 (𝛽) = 𝑆(𝛽) ∪

⋃
𝑎∈𝐴𝛽

𝑉𝑎 (𝛽). For every 𝛽 ∈ 𝐵 and 𝑡 ∈ 𝑇1 (𝛽), let
𝐶̄𝛽,𝑡 be the bush-column 𝐶𝛽,𝑡 if 𝑡 ∈ 𝑆(𝛽), or a new bush-column of the same height containing
t as a top-level node. For every 𝑎 ∈ 𝐴, we put 𝑉̄𝑎 := 𝑉𝑎 �𝛽∈𝐵𝑎 (𝐶̄

𝑡
𝛽,𝑡 )𝑡 ∈𝑉𝑎 (𝛽) . We consider the

amalgamation

𝑇 := (𝑆 �𝑎∈𝐴 𝑉𝑎)︸���������︷︷���������︸
𝑇1

�𝛽∈𝐵 (𝐶̄𝑡𝛽,𝑡 )𝑡 ∈𝑇1 (𝛽) =
(
𝑆 �𝛽∈𝐵 (𝐶𝑠𝛽,𝑠)𝑠∈𝑆 (𝛽)

)
︸�����������������������︷︷�����������������������︸

𝑇2

�𝑎∈𝐴 𝑉̄𝑎

as in Figure 8. The amalgamation is free if and only if every 𝑉𝑎 is disjoint with every 𝑇1 (𝛽).
(v) Suppose 𝑇1 =

(
𝑆 �𝛼 (𝐶𝑠𝑠 )𝑠∈𝑆 (𝛼)

)
and 𝑇2 =

(
𝑆 �𝛼 (𝐷𝑠

𝑠)𝑠∈𝑆 (𝛼)
)

are two nonterminal extensions
extending the same level 𝛼.

Let 𝛽𝑖,0 < 𝛽𝑖,1 < · · · < 𝛽𝑖,𝑘𝑖 , 𝑖 ∈ {0, 1}, be the enumeration of the levels of the bush-columns
𝐶𝑠 and 𝐷𝑠 , respectively, so in 𝑇𝑖 the newly added levels are 𝛽𝑖, 𝑗 , 𝑗 < 𝑘𝑖 , while 𝛽𝑖,𝑘𝑖 = 𝛼. In our
amalgamation T of 𝑇1 and 𝑇2, we shall have 𝛽2,0 < 𝛽2,1 < · · · < 𝛽2,𝑘2−1 < 𝛽1,0 < 𝛽1,1 < · · · <
𝛽1,𝑘1 = 𝛼 = 𝛽2,𝑘2 .

For every 𝑡 ∈ 𝑇2 (𝛼) =
⋃
𝑠∈𝑆 (𝛼) 𝐷𝑠 (𝛼), let 𝐶̄𝑡 denote the bush-column 𝐶𝑡 if 𝑡 ∈ 𝑆(𝛼), or a

completely new bush-column of the same height with t being a top-level node. Let 𝑟 (𝑡) denote the
root of 𝐶̄𝑡 . Moreover, for every 𝑠 ∈ 𝑆(𝛼) let 𝐷̄𝑠 be an isomorphic copy of the bush-column 𝐷𝑠

with every top-level node t replaced by 𝑟 (𝑡). We suppose all the bush-columns are as disjoint as
needed.

We shall write the amalgamation T in two ways so it is clear that it is an extension of both 𝑇1
and 𝑇2 agreeing on S. Let 𝛽 := 𝛽1,0. First, we consider the extension 𝑇 ′ := 𝑇1 �𝛽 (𝐷̄𝑟

𝑠 (𝑟 )
)𝑟 ∈𝑇1 (𝛽) ,

where 𝑠(𝑟) denotes the unique 𝑠 ∈ 𝑆(𝛼) with 𝑟 (𝑠) = 𝑟 . Hence, 𝛽 becomes the top level of the bush-
columns 𝐷̄𝑠 in 𝑇 ′. For every 𝑟 ∈ 𝑇 ′(𝛽) =

⋃
𝑠∈𝑆 (𝛼) 𝐷̄𝑠 (𝛽), let 𝑡 (𝑟) denote the unique 𝑡 ∈ 𝑇2 (𝛼)
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Figure 9. An amalgamation two nonterminal extensions.

𝑆

𝑆1

𝑇1

𝑆2

𝑆′′

𝑆′

𝑇 ′1

𝑇2

𝑇 ′′2

𝑇

Figure 10. The composition of immediate amalgamations for decomposed extensions.

with 𝑟 (𝑡) = 𝑟 . Our amalgamation is

𝑇 :=

𝑇 ′︷����������������������������������������������︸︸����������������������������������������������︷((
𝑆 �𝛼 (𝐶𝑠𝑠 )𝑠∈𝑆 (𝛼)

)
︸������������������︷︷������������������︸

𝑇1

�𝛽 (𝐷̄𝑟
𝑠 (𝑟 ) )𝑟 ∈𝑇1 (𝛽)

)
�𝑟 ∈𝑇 ′ (𝛽)\𝑇1 (𝛽) 𝐶̄𝑡 (𝑟 )

=
(
𝑆 �𝛼 (𝐷𝑠

𝑠)𝑠∈𝑆 (𝛼)
)

︸������������������︷︷������������������︸
𝑇2

�𝛼 (𝐶̄𝑡𝑡 )𝑡 ∈𝑇2 (𝛼)

as in Figure 9. Note that the expansion𝑇2 ⊆ 𝑇 is nonterminal and that the amalgamation𝑇 ⊇ 𝑇1∪𝑇2
is nongluing.

(vi) To amalgamate general nonterminal extensions 𝑇𝑖 = (𝑆 �𝛼∈𝐴𝑖 𝐶𝑖,𝛼) for 𝑖 = 1, 2, we consider the
free amalgamation 𝑇 := (𝑆 �𝛼∈𝐴1∪𝐴2 𝐶̄𝛼) of the extensions 𝑆 �𝛼 𝐶̄𝛼 for 𝛼 ∈ 𝐴1 ∪ 𝐴2, where

𝑆 �𝛼 𝐶̄𝛼 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑆 �𝛼 𝐶1,𝛼 if 𝛼 ∈ 𝐴1 \ 𝐴2,

𝑆 �𝛼 𝐶2,𝛼 if 𝛼 ∈ 𝐴1 \ 𝐴2,

the amalgamation of 𝑆 �𝛼 𝐶1,𝛼 and 𝑆 �𝛼 𝐶2,𝛼 from (v) if 𝛼 ∈ 𝐴1 ∩ 𝐴2.

This is always a nongluing amalgamation of the original extensions 𝑆 �𝛼∈𝐴𝑖 𝐶𝑖,𝛼, and it is a free
amalgamation if and only if 𝐴1 ∩ 𝐴2 = ∅. Note that by (v) one of 𝑇𝑖 ⊆ 𝑇 is nonterminal.

(vii) Finally, for general extensions 𝑆 ⊆ 𝑇𝑖 for 𝑖 = 1, 2 we consider the canonical decompositions
𝑆 ⊆ 𝑆𝑖 ⊆ 𝑇𝑖 such that 𝑆 ⊆ 𝑆𝑖 is nonterminal and 𝑆𝑖 ⊆ 𝑇𝑖 is terminal, and we perform several
immediate amalgamations as in Figure 10. By (vi), we take an amalgamation 𝑆1∪𝑆2 ⊆ 𝑆

′ such that
𝑆1 ⊆ 𝑆

′ is nonterminal, and we consider the canonical decomposition 𝑆2 ⊆ 𝑆
′′ ⊆ 𝑆′, so 𝑆2 ⊆ 𝑆

′′

is nonterminal and 𝑆′′ ⊆ 𝑆′ is terminal. By (iv), we take an amalgamation 𝑇1∪ 𝑆
′ ⊆ 𝑇 ′1, so 𝑆′ ⊆ 𝑇 ′1

and 𝑆′′ ⊆ 𝑇 ′1 are terminal. Again, by (iv) we take an amalgamation 𝑆′′ ∪ 𝑇2 ⊆ 𝑇
′′
2 , so 𝑆′′ ⊆ 𝑇 ′′2

is terminal. We obtain T as the amalgamation of 𝑇 ′1 ∪ 𝑇
′′
2 performed by (iii). Note that since all

the immediate amalgamations are nongluing, the compatibility of 𝑆 ⊆ 𝑇1 and 𝑆 ⊆ 𝑇2 implies the
compatibility of 𝑆′′ ⊆ 𝑇 ′1 and 𝑆′′ ⊆ 𝑇 ′′2 . Also, the resulting amalgamation is nongluing.
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4.3.2. Countable trees and the generic tree
We have shown that 𝔗𝑀 is a weak Fraïssé category, that 𝔇𝑀 is a Fraïssé category and that both are full
cofinal subcategories of 𝔗𝑀 . Let 𝜔𝔗𝑀 , 𝜔𝔇𝑀 , and 𝜔𝔗𝑀 be the corresponding categories of countable
strong trees. Note that the objects of 𝜔𝔗𝑀 ∩𝜔𝔇𝑀 are exactly trees from 𝜔𝔗𝑀 with no terminal nodes.

Since𝜔𝔗𝑀 is a category of first-order structures and all one-to-one homomorphisms (not necessarily
embeddings since deciding a splitting degree of a terminal node is allowed), colimits of sequences
essentially correspond to unions of increasing chains. Note that not every countable tree is a colimit of
a sequence finite trees — the colimits are exactly locally finite trees, that is, trees T such that for every
finite subset 𝐹 ⊆ 𝑇 there is a subtree 𝑆 ⊆ 𝑇 containing F. In our case of lexicographic strong subtrees,
we must close F under the meet operation and under levels, which is trivial but also add witnessing
nodes for splitting at nonterminals, which may complicate things.

Example 4.44. Consider the tree 𝑇 = {0, 0′, 1, 1′, . . . , 𝜔}, where every node 𝑛 ∈ 𝜔 has two immediate
successors: 𝑛+1 and 𝑛′, every node 𝑛′ is terminal and𝜔 is a terminal node above the chain {0 < 1 < . . .}.
The subset 𝐹 := {0, 𝜔} is not contained in any finite strong subtree 𝑆 ⊆ 𝑇 . This is because S would
need to contain 0′ as the witness of the splitting at 0, and then 1 as the node below 𝜔 on the level of 0′,
and then 1′ as the witness of the splitting at 1, and so on.

Lemma 4.45. Balanced trees from 𝜔𝔗𝑀 are locally finite. More precisely, let T be an 𝜔𝔗𝑀 -object.
For every finite 𝐹 ⊆ 𝑇 , there is a 𝔗𝑀 -object S with 𝐹 ⊆ 𝑆 ⊆ 𝑇 . Moreover, if T is in 𝜔𝔗𝑀 or 𝜔𝔇𝑀 ,
then S can be taken in 𝔗𝑀 or 𝔇𝑀 , respectively.

Proof. We proceed in several steps. Let 𝑆0 be the closure of F under the meet operation in T. Clearly, 𝑆0
is finite, it becomes a tree when endowed with the {�,∧}-structure inherited from T and the inclusion
𝑆0 ⊆ 𝑇 is a Tree-arrow.

Let 𝑆1 be the closure of 𝑆0 under T-levels, that is, 𝑆1 := {𝑠′ � lev𝑇 (𝑠) : 𝑠, 𝑠′ ∈ 𝑆0 with lev𝑇 (𝑠) �
lev𝑇 (𝑠′)}. It is easy to see that 𝑆1 is finite, that it becomes a leveled tree with the inherited {�,∧,�}-
structure and that the inclusion 𝑆1 ⊆ 𝑇 is a LevTree-arrow.

For every nonterminal node of 𝑠 ∈ 𝑆1, let 𝛼𝑠 ∈ Lev(𝑆1) ⊆ Lev(𝑇) denote the level corresponding
to immediate successors of s in 𝑆1 and let 𝐴𝑠 ⊆ 𝑇 (𝛼𝑠) be a transversal of Spl𝑇 (𝑠) extending 𝑆1(𝛼𝑠).
Such transversal exists since T is balanced. We put 𝑆 := 𝑆1 ∪

⋃
𝑠∈𝑆1 𝐴𝑠 and endow with the inherited

{�,∧,�, �lex, {𝑅𝑚}𝑚∈𝑀 }-structure. We have that S is a 𝔗𝑀 -object and that the inclusion 𝑆 ⊆ 𝑇 is
an 𝜔𝔗𝑀 -arrow. If T is an 𝜔𝔇𝑀 -object, then S is a 𝔇𝑀 -object. If T is an 𝜔𝔗𝑀 -object, then S is a
𝔗𝑀 -object after forgetting the relations 𝑅𝑚. �

Let 𝜎𝔗𝑀 , 𝜎𝔗𝑀 and 𝜎𝔗𝑀 denote the full subcategories of all locally finite trees in𝜔𝔗𝑀 ,𝜔𝔗𝑀 and
𝜔𝔗𝑀 , respectively. Every sequence in 𝔗𝑀 has a colimit in 𝜎𝔗𝑀 , and every 𝜎𝔗𝑀 -object is a colimit of
a 𝔗𝑀 -sequence. Also, every coned sequence in (𝔗𝑀 , 𝜎𝔗𝑀 ) is a matching sequence; see Construction
2.5. The same is true for (𝔗𝑀 , 𝜎𝔗𝑀 ) and (𝔇𝑀 , 𝜎𝔇𝑀 ). It is not hard to see that both 𝜎𝔗𝑀 and 𝜎𝔇𝑀

are cofinal in 𝜎𝔗𝑀 . Therefore, by the general theory, there is a unique (up to isomorphism) object𝑈𝑀

in 𝜎𝔗𝑀 that is a weak Fraïssé limit in (𝔗𝑀 , 𝜎𝔗𝑀 ) as well as in (𝔗𝑀 , 𝜎𝔗𝑀 ) and a Fraïssé limit in
(𝔇𝑀 , 𝜎𝔇𝑀 ). Moreover, by Theorem 3.14 Aut(𝑈𝑀 ) is extremely amenable if and only if 𝔗𝑀 has the
weak Ramsey property if and only if 𝔇𝑀 has the Ramsey property.

Proposition 4.46. The generic tree𝑈𝑀 is cofinal in 𝜔𝔗𝑀 .

Proof. The tree 𝑈𝑀 is cofinal in 𝜎𝔇𝑀 as a Fraïssé limit in (𝔇𝑀 , 𝜎𝔇𝑀 ). Moreover, it is cofinal in
𝜎𝔗𝑀 since 𝜎𝔇𝑀 is cofinal in 𝜎𝔗𝑀 . It is enough to prove that every tree S in 𝜔𝔗𝑀 can be strongly
embedded into a balanced countable tree T since by Lemma 4.45 T is in 𝜎𝔗𝑀 .

By saying that S is balanced at a node s, we mean that for every level 𝛼 > lev(𝑠) there is 𝑠′ > 𝑠
such that lev(𝑠′) = 𝛼. Suppose 𝑎 ∈ 𝑆 is a terminal node at which S is not balanced and let 𝑌 :=
[lev(𝑎),→)Lev(𝑆) . By Construction 4.49, there is a balanced tree 𝑇𝑎 in 𝜔𝔗𝑀 with Lev(𝑇𝑎) = 𝑌 (just
take 𝑉𝑚,𝑌 where 𝑀 � 𝑚 = {0 < · · · < 𝑚 − 1}). By planting the tree 𝑇𝑎 at 𝑎 ∈ 𝑆, that is, by considering
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an infinite version of a terminal extension 𝑆 �𝑎 𝑇𝑎, we obtain a strong supertree of S balanced at a as
well as at every newly added node.

Similarly, suppose that 𝐵 ⊆ 𝑆 is an unbounded branch (i.e., a maximal linearly ordered subset without
maximum) such that the upper set𝑌 := Lev(𝑆) \ lev[𝐵] is nonempty (where lev[𝐵] = {lev(𝑏) : 𝑏 ∈ 𝐵}).
We shall again consider a balanced tree 𝑇𝐵 in 𝜔𝔗𝑀 with Lev(𝑇𝑠) = 𝑌 and plant it above B, that is, all
nodes of 𝑇𝐵 will be strictly above all nodes of B. The resulting tree 𝑆 �𝐵 𝑇𝐵 is balanced at every node
in B as well as at every newly added node.

Together, there is a set 𝐴 ⊆ 𝑆 of terminal nodes and a countable set B of unbounded branches such
that every node 𝑠 ∈ 𝑆 at which S is not balanced is below a node 𝑎 ∈ 𝐴 or contained in a branch 𝐵 ∈ B.
The tree 𝑇 := 𝑆 �𝑎∈𝐴 𝑇𝑎 �𝐵∈B 𝑇𝐵 is the desired balanced extension. �

Next, we shall characterize 𝑈𝑀 , but first consider the following definition.

Definition 4.47. For every countable set of colors C, let Q𝐶 denote (Q, �) endowed with a generic
C-coloring 𝜑 : Q → 𝐶, meaning that every monochromatic set 𝜑−1 (𝑐) is �-dense. Such structure Q𝐶
is unique up to isomorphism as a Fraïssé limit of all C-colored finite linear orders and color-preserving
embeddings.

For every 𝑀 ⊆ N+, we put 𝑀< := {(𝑘, 𝑚) ∈ N0 × 𝑀 : 𝑘 < 𝑚}, so we can use Q𝑀 and Q𝑀< later.
For every 𝑠 < 𝑡 ∈ 𝑇 ∈ Obj(𝜔𝔗𝑀 ), let spl(𝑠, 𝑡) denote the pair (𝑘, spl(𝑠)) ∈ 𝑀< such that 𝑡 ∈ 𝐶𝑘 , where
(𝐶𝑖 : 𝑖 < spl(𝑠)) is the �lex-increasing enumeration of Spl(𝑠).

Theorem 4.48. 𝑈𝑀 is the unique (up to isomorphism) 𝜔𝔗𝑀 -object satisfying

(T0) 𝑈𝑀 is balanced with Lev(𝑈𝑀 ) being isomorphic to (Q, �),
(T1) for every 𝛼 ∈ Lev(𝑈𝑀 ), every 𝑡 ′ <lex 𝑡 ′′ in 𝑈𝑀 (𝛼), and 𝑚 ∈ 𝑀 there is 𝑡 ∈ 𝑈𝑀 (𝛼) such that

𝑡 ′ <lex 𝑡 <lex 𝑡 ′′ and spl(𝑡) = 𝑚,
(T2) for every 𝛽 < 𝛼 ∈ Lev(𝑈𝑀 ), finite 𝐹 ⊆ 𝑈𝑀 (𝛼) and 𝜑 : 𝐹 → 𝑀<, there is 𝛼′ ∈ (𝛽, 𝛼) such that

spl(𝑡 �𝛼′, 𝑡) = 𝜑(𝑡) for every 𝑡 ∈ 𝐹.

It follows that𝑈𝑀 satisfies also

(T3) every branch B with the coloring 𝜑 : 𝑡 ↦→ spl(𝑡) ∈ 𝑀 is isomorphic to Q𝑀 ,
(T4) for every 𝑡 ∈ 𝑈𝑀 , the interval (←, 𝑡) with the coloring 𝜑 : 𝑠 ↦→ spl(𝑠, 𝑡) ∈ 𝑀< is isomorphic

to Q𝑀< ,
(T5) for every 𝑡 ∈ 𝑈𝑀 , 𝛼 > lev(𝑡) and 𝐶 ∈ Spl(𝑡), the sets 𝑈𝑀 (𝛼) ∩ 𝐶, 𝑈𝑀 (𝛼) ∩ [𝑡,→) and 𝑈𝑀 (𝛼)

with the lexicographic order and with the coloring 𝜑 : 𝑡 ↦→ spl(𝑡) ∈ 𝑀 are all isomorphic to Q𝑀
unless 𝑀 = {1},

(T6) for every finite 𝐹 ⊆ 𝑈𝑀 (𝛼), there is 𝛽 < 𝛼 such that (𝛽, 𝛼) with the coloring 𝜑 : 𝛾 ↦→
(spl(𝑡 � 𝛾, 𝑡))𝑡 ∈𝐹 ∈ (𝑀<)𝐹 is isomorphic to Q(𝑀<)𝐹 .

Proof. 𝑈𝑀 is characterized by being a Fraïssé limit of (𝔇𝑀 , 𝜎𝔇𝑀 ). Since we have the initial object (the
empty tree), cofinality of 𝑈𝑀 in (𝔇𝑀 , 𝜎𝔇𝑀 ) already follows from injectivity. So 𝑈𝑀 is characterized
by being injective in (𝔇𝑀 , 𝜎𝔇𝑀 ). Recall that the injectivity means that for every inclusion 𝑆 ⊆ 𝑈𝑀

that is a 𝜎𝔇𝑀 -arrow from a 𝔇𝑀 -object (i.e., a finite decided strong subtree) and every (one-step) 𝔇𝑀 -
extension 𝑆 ⊆ 𝑇 we find a 𝜎𝔇𝑀 -arrow 𝑓 : 𝑇 → 𝑈𝑀 such that 𝑓 � 𝑆 = id. Note that without loss of
generality we may always suppose Lev(𝑆) ⊆ Lev(𝑈𝑀 ).

Let U be an 𝜔𝔗𝑀 -object. First, we show that if U is injective in (𝔇𝑀 , 𝜎𝔇𝑀 ), then it satisfies (T0),
(T1), (T2). U is balanced since for every 𝑠 ∈ 𝑈 and 𝛼 > lev(𝑠) we may consider a finite strong subtree
𝑆 ⊆ 𝑈 such that 𝑠 ∈ 𝑆 and 𝑆 ∩𝑈 (𝛼) ≠ ∅ (since U is a 𝜎𝔇𝑀 -object and so locally finite) with a node
𝑡 ∈ [𝑠,→)𝑆 such that lev𝑆 (𝑡) is as high as possible below 𝛼. If lev𝑆 (𝑡) = 𝛼, we are done. Otherwise,
we consider an extension 𝑇 := 𝑆 �𝑡 𝐵 for a bush B and the extending map 𝑓 : 𝑇 → 𝑈. The image
𝑆′ := 𝑓 [𝑇] ⊇ 𝑆 contains a node 𝑡 ′ > 𝑡, whose level is strictly closer to 𝛼.

https://doi.org/10.1017/fms.2024.64 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.64


Forum of Mathematics, Sigma 35

U has no maximal level since if 𝑠 ∈ 𝑈 was a node at a maximal level, we could consider an extending
map 𝑓 : {𝑠} �𝑠 𝐵 → 𝑈 for a bush B. Similarly, U has no minimal level since if 𝑟 ∈ 𝑈 was the root, we
could consider an extending map 𝑓 : {𝑟} � 𝐵𝑏 → 𝑈 for a pointed bush 𝐵𝑏 . It follows from (T2) (to be
proved) that the order of Lev(𝑈) is dense. Together, Lev(𝑈) is isomorphic to (Q, �) and to we have (T0).

We shall prove (T1) and (T2) together. Let 𝛽 < 𝛼 be levels of U, let 𝐹 ⊆ 𝑈 (𝛼) be finite, and let
𝜑 : 𝐹 → 𝑀<. In the case we are proving (T1), we make sure that 𝑡 ′, 𝑡 ′′ ∈ 𝐹 and that 𝜑(𝑡 ′) = (0, 𝑚′)
for some 𝑚′ > 1 (note that 𝑀 ≠ {1} since 𝑡 ′ <lex 𝑡 ′′). Since U is locally finite, there is a finite strong
subtree 𝑆 ⊆ 𝑈 such that 𝐹 ⊆ 𝑆 and 𝑆 ∩𝑈 (𝛽) ≠ ∅. For every 𝑠 ∈ 𝑆(𝛼), let (𝑘𝑠 , 𝑚𝑠) be an element of
𝑀< that is equal to 𝜑(𝑠) if 𝑠 ∈ 𝐹. We consider an extending map 𝑓 : 𝑆 �𝛼 (𝐵

𝑏𝑠,𝑘𝑠
𝑠 )𝑠∈𝑆 (𝛼) → 𝑈, where

𝐵𝑠 are bushes with a root 𝑟𝑠 and �lex-enumerated terminal nodes (𝑏𝑠,𝑖 : 𝑖 < 𝑚𝑠) such that 𝑏𝑠,𝑘𝑠 = 𝑠 and
spl(𝑏𝑡′,1) = 𝑚 in the case we are proving (T1). Let 𝛼′ ∈ Lev(𝑈) be the level containing images of the
roots { 𝑓 (𝑟𝑠) : 𝑠 ∈ 𝑆(𝛼)}. We have 𝛽 < 𝛼′ < 𝛼 since 𝑆 ∩𝑈 (𝛽) ≠ ∅, and spl(𝑠 �𝛼′, 𝑠) = 𝜑(𝑠) for every
𝑠 ∈ 𝐹 since 𝑠 �𝛼′ = 𝑓 (𝑟𝑠). Hence, we have proved (T2). In the case we were also proving (T1), we have
𝑏𝑡′,0 = 𝑡 ′ <lex 𝑡 := 𝑓 (𝑏𝑡′,1) <

lex 𝑡 ′′ and spl(𝑡) = spl(𝑏𝑡′,1) = 𝑚.
We have proved that the injectivity of U implies (T0), (T1), (T2). Next, we shall prove that the

conditions (T0), (T1), (T2) imply (T3), (T4), (T5), (T6) for any 𝑈 ∈ Obj(𝜔𝔗𝑀 ). The condition (T3)
follows from the fact that Lev(𝑈) is isomorphic to (Q, �) and from (T2). (T4) follows similarly. To
prove (T5), we first show that𝑈 (𝛼) ∩𝐶 is isomorphic to (Q, �). Let 𝛽 := lev(𝑡) < 𝛼 and 𝑡 ′ <lex 𝑡 ′′ ∈ 𝐶.
Let also 1 ≠ 𝑚 ∈ 𝑀 . By putting 𝜑(𝑡 ′) := (1, 𝑚) and 𝜑(𝑡 ′′) := (0, 𝑚), by applying (T2) and using
the fact that U is balanced, we obtain nodes 𝑠′, 𝑠′′ ∈ 𝐶 with 𝑠′ <lex 𝑡 ′ <lex 𝑡 ′′ <lex 𝑠′′. By putting
𝜑(𝑡 ′) := (0, 𝑚) instead, we obtain 𝑡 ′ < 𝑠′′′ < 𝑡 ′′ ∈ 𝐶. Hence, 𝑈 (𝛼) ∩ 𝐶 is isomorphic to (Q, �).
It follows that 𝑈 (𝛼) ∩ [𝑡,→) and 𝑈 (𝛼) are isomorphic to (Q, �) as well since they are covered by
the sets of the form 𝑈 (𝛼) ∩ 𝐶. We conclude (T5) by applying (T1). To prove (T6), we consider a
level 𝛽 < 𝛼 such that every meet of elements from F is strictly below the level 𝛽, so that the map
𝛾 ∈ (𝛽, 𝛼) ↦→ (𝑡 � 𝛾 : 𝑡 ∈ 𝐹) is one-to-one. By (T0), the interval (𝛽, 𝛼) is isomorphic to (Q, �) and by
(T2), the coloring 𝜑 : (𝛽, 𝛼) → (𝑀<)𝐹 is generic.

In the last part of the proof, we suppose that𝑈 ∈ Obj(𝜔𝔗𝑀 ) satisfies (T0), (T1), (T2), and we show
that U is injective in (𝔇𝑀 , 𝜎𝔇𝑀 ), and hence it is isomorphic to the Fraïssé limit𝑈𝑀 . By (T0), U is has
no terminal nodes, so𝑈 ∈ Obj(𝜔𝔇𝑀 ), and it is balanced, so𝑈 ∈ Obj(𝜎𝔇𝑀 ) by Lemma 4.45. To prove
the injectivity, for every inclusion 𝑆 ⊆ 𝑈 of a finite strong subtree and every one-step 𝔇𝑀 -extension
𝑆 ⊆ 𝑇 , we find an extending 𝜎𝔇𝑀 -arrow 𝑓 : 𝑇 → 𝑈.

Let 𝑇 = 𝑆 �𝑠 𝐵 be a terminal one-step extension by a decided bush B with (𝑏𝑖 : 𝑖 < 𝑚) being the
�lex-increasing enumeration of the top level of B. We have 𝑚 = spl𝑆 (𝑠) = spl𝑈 (𝑠) since S is decided.
Let 𝛼 ∈ Lev(𝑈) be the S-successor level to lev(𝑠) if lev(𝑠) ≠ max(Lev(𝑆)). Otherwise let 𝛼 be an
arbitrary U-level strictly above lev(𝑠), which exists since U has no terminal nodes. Let (𝐶𝑖 : 𝑖 < 𝑚) be
the �lex-increasing enumeration of Spl𝑈 (𝑠). By (T5), there is 𝑎𝑖 ∈ 𝑈 (𝛼) ∩𝐶𝑖 such that spl(𝑎𝑖) = spl(𝑏𝑖)
for every 𝑖 < 𝑚. It is enough to put 𝑓 (𝑏𝑖) := 𝑎𝑖 , 𝑖 < 𝑚 to obtain the desired map 𝑓 : 𝑇 → 𝑈.

Next, let 𝑇 = 𝑆 �𝛼 (𝐵𝑠𝑠)𝑠∈𝑆 (𝛼) be a nonterminal one-step extension where 𝑟𝑠 denotes the root of
the bush 𝐵𝑠 , (𝑏𝑠,𝑖 : 𝑖 < 𝑚𝑠) is the �lex-increasing enumeration of the top level of 𝐵𝑠 , and 𝑘𝑠 < 𝑚𝑠

is the index such that 𝑏𝑠,𝑘𝑠 = 𝑠, for every 𝑠 ∈ 𝑆(𝛼). Let 𝛽 ∈ Lev(𝑈) be the S-level immediately
preceding 𝛼 if it exists or any U-level 𝛽 < 𝛼 otherwise. By (T2), there is 𝛼′ ∈ (𝛽, 𝛼) such that
spl(𝑠 �𝛼′, 𝑠) = (𝑘𝑠 , 𝑚𝑠) for every 𝑠 ∈ 𝑆(𝛼). Fix 𝑠 ∈ 𝑆(𝛼). We put 𝑓 (𝑟𝑠) := 𝑠 �𝛼′ ∈ 𝑈, and we denote
the �lex-increasing enumeration of Spl( 𝑓 (𝑟𝑠)) by (𝐶𝑠,𝑖 : 𝑖 < 𝑚𝑠). By (T5) for every 𝑖 < 𝑚𝑠 , there is
a node 𝑎𝑠,𝑖 ∈ 𝑈 (𝛼) ∩ 𝐶𝑠,𝑖 with spl(𝑎𝑠,𝑖) = spl(𝑏𝑠,𝑖). Of course, for 𝑖 = 𝑘𝑠 we take 𝑎𝑠,𝑖 = 𝑠. Putting
𝑓 (𝑏𝑠,𝑖) := 𝑎𝑠,𝑖 , 𝑖 < 𝑚𝑠 , concludes the construction of the desired map 𝑓 : 𝑇 → 𝑈.

Altogether, we have proved that any 𝜔𝔗𝑀 -object U is injective in (𝔇𝑀 , 𝜎𝔇𝑀 ), which is equivalent
to being isomorphic to𝑈𝑀 , if and only if it satisfies (T0), (T1), (T2), in which case it satisfies also (T3),
(T4), (T5), (T6). �

We have proved that the generic tree𝑈𝑀 exists and characterized it up to isomorphism. Still, it may
be useful to give a concrete description of 𝑈𝑀 .
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Construction 4.49. For countable linearly ordered sets 𝑆,𝑌 and a distinguished point 0 ∈ 𝑆 we describe
a countable balanced strong lexicographic tree 𝑉𝑆,𝑌 with the set of levels Y and every Spl(𝑡) with the
lexicographic order isomorphic to S.

Let X be the countable family of all total maps 𝑥 : 𝑌 → 𝑆 with finite support supp(𝑥) := {𝑦 ∈
𝑌 : 𝑥(𝑦) ≠ 0}. We endow X with the lexicographic order, that is, 𝑥 � 𝑥 ′ if 𝑥 = 𝑥 ′ or 𝑥(𝑦) < 𝑥 ′(𝑦),
where 𝑦 = min{𝑦′ ∈ 𝑌 : 𝑥(𝑦′) ≠ 𝑥 ′(𝑦′)} (note the minimum exists as the supports are finite). We put
𝑉𝑆,𝑌 := {𝑥 � (←, 𝑦) : 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 }, that is, the family of all partial maps 𝑡 : (←, 𝑦) → 𝑆, 𝑦 ∈ 𝑌 ,
with finite support. The idea is that 0 corresponds to the canonical splitting direction and that a node is a
code for the splitting path from the ‘trunk’ to the node itself. The tree order � is the extension of maps,
that is, ⊆ when maps are viewed as sets, and it admits meets since dom(

⋃
{𝑣 ∈ 𝑉𝑆,𝑌 : 𝑣 ⊆ 𝑡 ∩ 𝑡 ′}) is of

the form (←, 𝑦) because of the finite supports.
For every 𝑡 ∈ 𝑉𝑆,𝑉 let 𝑥(𝑡) ∈ 𝑋 , denote the zero-extension of t to a map 𝑌 → 𝑆, and let 𝑦(𝑡) :=

sup(dom(𝑡)) ∈ 𝑌 . The map 𝑥 × 𝑦 : 𝑉𝑆,𝑉 → 𝑋 × 𝑌 is one-to-one since 𝑡 = 𝑥(𝑡) � (←, 𝑦(𝑡)). For every
incomparable 𝑡 ′, 𝑡 ′′, we put 𝑡 ′ <lex 𝑡 ′′ if 𝑥(𝑡 ′) < 𝑥(𝑡 ′′). This defines the lexicographic order on 𝑉𝑆,𝑉 .
Clearly, for every 𝑡 ∈ 𝑉𝑆,𝑉 we have that Spl(𝑡) with the lexicographic order is isomorphic to S. The
linearly ordered set Y serves as the level set: We put 𝑡 � 𝑡 ′ if 𝑦(𝑡) = 𝑦(𝑡 ′), so lev(𝑡) = 𝑦(𝑡) for every
𝑡 ∈ 𝑉𝑆,𝑉 . Clearly, the tree 𝑉𝑆,𝑉 is balanced with respect to this level structure.

Note that𝑉1,𝑌 is isomorphic to Y for every linearly ordered set Y. Also𝑉2,𝜔 is the full binary tree 2<𝜔 .
Every two embeddings of linear orders 𝑓 : 𝑆 → 𝑆′ and 𝑔 : 𝑌 → 𝑌 ′ induce an embedding

𝑒 𝑓 ,𝑔 : 𝑉𝑆,𝑌 → 𝑉𝑆′,𝑌 ′ preserving meets, levels, and the lexicographic order, where every node
𝑡 : (←, 𝑦)𝑌 → 𝑆 is mapped to the zero-extended lifting 𝑡 ′ : (←, 𝑔(𝑦))𝑌 ′ → 𝑆′, that is, 𝑡 ′ ◦ 𝑔 = 𝑓 ◦ 𝑡 and
𝑡 ′(𝑦′) = 0 for every 𝑦′ not in the range of g. Note that if 𝑓 , 𝑔 are inclusions, then 𝑡 ′ just extends t from
(←, 𝑦)𝑌 to (←, 𝑦)𝑌 ′ by zeros. If 𝑓 : 𝑆 → 𝑆′ is an isomorphism, then 𝑒 𝑓 ,𝑔 also preserves splitting. This
construction yields a functor LO2 → LexLevTree (where LO denotes the category of all linear orders
and embeddings), and for every fixed S we have a functor LO→ LexStrTree.

Let 𝐶𝑆 denote the set of colors {𝑐 ⊆ 𝑆 : 0 ∈ 𝑐}, that is, colors are arbitrary subsets of S containing 0
(though we will be considering mostly finite subsets later). A coloring 𝜑 : 𝑉𝑆,𝑌 → 𝐶𝑆 induces a pruning
𝑉𝑆,𝑌 ,𝜑 ⊆ 𝑉𝑆,𝑌 . We put 𝑡 ∈ 𝑉𝑆,𝑌 ,𝜑 if and only if 𝑡 (𝑦) ∈ 𝜑(𝑡 � 𝑦) for every 𝑦 ∈ dom(𝑡) (equivalently for
every 𝑦 ∈ supp(𝑡) since 0 ∈ 𝑐 for every color c). In fact, for every 𝑡 ∈ 𝑉𝑆,𝑌 with supp(𝑡) ≠ ∅ we put
𝑦′(𝑡) := max(supp(𝑡)) and consider the canonical predecessor 𝑝(𝑡) := 𝑡 � 𝑦′(𝑡). We have 𝑡 ∈ 𝑉𝑆,𝑌 ,𝜑 if
and only if 𝑝(𝑡) ∈ 𝑉𝑆,𝑌 ,𝜑 and 𝑦′(𝑡) ∈ 𝜑(𝑝(𝑡)) or supp(𝑡) = ∅. The subtree 𝑉𝑆,𝑌 ,𝜑 is balanced since
every node can be extended by zeros. Also, we have spl(𝑡) = |𝜑(𝑡) | for every node t. The coloring 𝜑
may be given also as 𝜑(𝑡) = 𝜑′(𝑥(𝑡), 𝑦(𝑡)) for a coloring 𝜑′ : 𝑋 × 𝑌 → 𝐶𝑆 .

Construction 4.50 (A concrete model of the generic tree). The generic tree𝑈𝑀 may be represented as
𝑇𝜑 := 𝑉Q,Q,𝜑 for a suitable coloring 𝜑 : 𝑇 → 𝐶𝑀 , where 𝑇 := 𝑉Q,Q and 𝐶𝑀 := {𝑐 ⊆ Q : 0 ∈ 𝑐 and
|𝑐 | ∈ 𝑀} is the set of colors corresponding to the allowed splitting degrees. Clearly, every tree 𝑇𝜑 is an
object of 𝜎𝔇𝑀 satisfying (T0). If 𝑀 = {1}, then there is only the constant coloring 𝜑 taking the value
𝑐0 := {0}, which works since the conditions (T1) and (T2) are trivial in this case. Otherwise, we fix
𝑐1 ∈ 𝐶𝑀 with 1 ∈ 𝑐1.

Let 𝐴 := {(𝑡 ′, 𝑡 ′′, 𝑚) ∈ 𝑇 × 𝑇 × 𝑀 : 𝑡 ′ � 𝑡 ′′ and 𝑡 ′ <lex 𝑡 ′′} be the countable set of all situations
considered in (T1). For every 𝑎 = (𝑡 ′, 𝑡 ′′, 𝑚) ∈ 𝐴, we choose nodes 𝑢𝑎, 𝑣𝑎 ∈ 𝑇 such that 𝑡 ′∧𝑡 ′′ < 𝑢𝑎 < 𝑡 ′
and lev(𝑢𝑎) > max(supp(𝑡 ′)). Moreover, we let 𝑣𝑎 be the extension of 𝑢𝑎 defined by 𝑣𝑎 (lev(𝑢𝑎)) := 1
and 𝑣𝑎 (𝛼) := 0 for 𝛼 ∈ (lev(𝑢𝑎), lev(𝑡 ′)), so 𝑡 ′ � 𝑣𝑎 � 𝑡 ′′ and 𝑡 ′ <lex 𝑣𝑎 <

lex 𝑡 ′′, and also 𝑢𝑎 is the
canonical predecessor 𝑝(𝑣𝑎). Since the set A is countable and every interval (𝑡 �𝛼, 𝑡) for 𝛼 < lev(𝑡) is
infinite, we may choose the points 𝑢𝑎 so that the map 𝑎 ↦→ lev(𝑢𝑎) is one-to-one and its range is disjoint
from an order-dense subset 𝐷 ⊆ Q. It follows that the map 𝑎 ↦→ 𝑣𝑎 is also one-to-one since 𝑝(𝑣𝑎) = 𝑢𝑎.
Moreover, we may assure that {𝑢𝑎 : 𝑎 ∈ 𝐴}∩{𝑣𝑎 : 𝑎 ∈ 𝐴} = ∅. Now, it is correct to define 𝜑1(𝑢𝑎) := 𝑐1
and |𝜑1 (𝑣𝑎) | := 𝑚 for every 𝑎 = (𝑡 ′, 𝑡 ′′, 𝑚) ∈ 𝐴, and 𝜑1 (𝑡) := 𝑐0 otherwise. The tree 𝑇𝜑1 satisfies (T1)
since for every 𝑎 = (𝑡 ′, 𝑡 ′′, 𝑚) ∈ 𝐴, if 𝑡 ′ ∈ 𝑇𝜑1 , then 𝑢𝑎 ∈ 𝑇𝜑1 , and so 𝑣𝑎 ∈ 𝑇𝜑1 . However, 𝑇𝜑1 does not
satisfy (T2): Let 𝑎 = (𝑡 ′, 𝑡 ′′, 𝑚) ∈ 𝐴 be such that 𝑡 ′ ∈ 𝑇𝜑1 , and let 𝑏 := (𝑡 ′, 𝑣𝑎, 𝑚). We have 𝑢𝑏 > 𝑢𝑎.
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There is no 𝛼 ∈ (lev(𝑢𝑏), lev(𝑡 ′)) such that spl(𝑣𝑎 �𝛼) ≠ 1 ≠ spl(𝑣𝑏 �𝛼). This is because if 𝜑1(𝑡) ≠ 𝑐0
for some 𝑡 ∈ (𝑢𝑎, 𝑣𝑎), then 𝑡 = 𝑢𝑐 or 𝑡 = 𝑣𝑐 for some 𝑐 ∈ 𝐴, and the latter is not possible since we would
have 𝑢𝑎 = 𝑝(𝑣𝑎) = 𝑝(𝑣𝑐) = 𝑢𝑐 . The same is true for (𝑢𝑏 , 𝑣𝑏), but every level can contain at most one
node of the form 𝑢𝑐 .

To assure the condition (T2), we define 𝜑2(𝑡) := 𝜓(lev(𝑡)) (𝑥(𝑡)) for every 𝑡 ∈ 𝑇 with lev(𝑡) ∈ 𝐷,
where 𝑥(𝑡) ∈ 𝑋 is the zero-extension of t defined in Construction 4.49 and 𝜓 : 𝐷 → 𝐻𝑀 is a coloring
defined as follows. 𝐻𝑀 is the countable set of ‘hypercolors’ {ℎ ∈ (𝐶𝑀 )𝑋 : supp(ℎ) := {𝑥 ∈ 𝑋 : ℎ(𝑥) ≠
𝑐0} is finite}. Note that D is an isomorphic copy of Q. We let 𝜓 be a generic 𝐻𝑀 -coloring of D. Then
for every 𝛽 < 𝛼 ∈ Lev(𝑇𝜑2 ), every finite 𝐹 ⊆ 𝑇𝜑2 (𝛼), and {(𝑘𝑡 , 𝑚𝑡 ) : 𝑡 ∈ 𝐹} ⊆ 𝑀< we consider
the hypercolor ℎ ∈ 𝐻𝑀 defined by ℎ(𝑥(𝑡)) := 𝑐𝑡 := {−𝑘𝑡 , · · · , 𝑚𝑡 − 𝑘𝑡 − 1} (so that 𝑐𝑡 contains 𝑚𝑡

numbers and 0 is at the position 𝑘𝑡 ) for every 𝑡 ∈ 𝐹, and ℎ(𝑥) := 𝑐0 otherwise. There is 𝛽′ ∈ (𝛽, 𝛼)
such that max(supp(𝑡)) > 𝛽′ for every 𝑡 ∈ 𝐹, and there is 𝛼′ ∈ (𝛽′, 𝛼) ∩ 𝐷 such that 𝜓(𝛼′) = ℎ, and
so 𝜑2 (𝑡 �𝛼′) = 𝑐𝑡 and spl𝑇𝜑2

(𝑡 �𝛼′, 𝑡) = (𝑘𝑡 , 𝑚𝑡 ) for every 𝑡 ∈ 𝐹. This shows (T2). On the other hand,
if we define 𝜑2(𝑡) = 𝑐0 for every t with lev(𝑡) ∉ 𝐷, we have levels 𝛼 such that spl(𝑡) = 1 for every
𝑡 ∈ 𝑇𝜑2 (𝛼), so (T1) does not hold.

To assure both (T1) and (T2), we combine the colorings 𝜑1 and 𝜑2. Observe that for a coloring
𝜑 : 𝑇 → 𝐶𝑀 to assure (T2) it is enough that 𝜑(𝑡) = 𝜑2 (𝑡) for every 𝑡 ∈ 𝐻𝛼 and 𝛼 ∈ 𝐷 for some finite
sets 𝐻𝛼 ⊆ 𝑇 (𝛼). This is because we can choose different witnessing levels 𝛼′ ∈ (𝛽, 𝛼) for different (T2)
situations (𝛼, 𝛽, 𝐹, {(𝑘𝑡 , 𝑚𝑡 ) : 𝑡 ∈ 𝐹}) and put 𝐻𝛼′ := {𝑡 �𝛼′ : 𝑡 ∈ 𝐹}. We also put 𝐻𝛼 := ∅ for every
𝛼 ∈ Q\𝐷. So, 𝜑 defined as 𝜑(𝑡) := 𝜑2 (𝑡) if 𝑡 ∈ 𝐻lev(𝑡) , and 𝜑(𝑡) := 𝜑1(𝑡) otherwise, assures (T2). It also
assures (T1) since for (𝑡 ′, 𝑡 ′′, 𝑚) ∈ 𝐴 there is 𝑡 ∈ (𝑡 ′, 𝑡 ′′]�lex with 𝑡 � 𝑡 ′ such that (𝑡 ′, 𝑡)�lex ∩𝐻lev(𝑡′) = ∅,
and so 𝜑(𝑣𝑎′ ) = 𝜑1(𝑣𝑎′ ) for 𝑎′ := (𝑡 ′, 𝑡, 𝑚) ∈ 𝐴. Clearly, also 𝜑(𝑢𝑎) = 𝜑1 (𝑢𝑎) since 𝐻lev(𝑢𝑎) = ∅. This
concludes the proof that 𝑇𝜑 is isomorphic to𝑈𝑀 by Theorem 4.48.

4.3.3. The weak Ramsey property and dendrites
We work with the trio of categories of finite trees 𝔗𝑀 , 𝔗𝑀 , 𝔇𝑀 for a fixed nonempty set 𝑀 ⊆ N+
of allowed splitting degrees. We have shown that 𝔗𝑀 ,𝔇𝑀 ⊆ 𝔗𝑀 are full cofinal subcategories, that
𝔗𝑀 is a weak Fraïssé category, 𝔇𝑀 is a Fraïssé category and we have described the common (weak)
Fraïssé limit𝑈𝑀 . In this situation, 𝔗𝑀 has the weak Ramsey property if and only if𝔇𝑀 has the Ramsey
property if and only if Aut(𝑈𝑀 ) is extremely amenable. We were unable to show that the equivalent
properties hold. In this section, we give partial results in this direction and pose the general case as an
open question.

The special case 𝑀 = {𝑚}, in which 𝔗𝑀 has the amalgamation property since there is only one
option for the splitting degree (Theorem 4.40 (i)), is covered by the finite version of Milliken’s theorem
[19, Corollary 1.5].

Theorem 4.51 (Milliken). For every positive integers 𝑚, 𝑎, 𝑏, 𝑘 , there exists a positive integer
𝑁 = 𝑁 (𝑚, 𝑎, 𝑏, 𝑘) with the following property. If T is a finite balanced tree of height N and splitting
degrees � 𝑚 and all its balanced strong subtrees of height a are colored by (partitioned into) k colors,
then there exists a balanced strong subtree 𝑆 ⊆ 𝑇 of height b such that all balanced strong subtrees of
S of height a have the same color.

Corollary 4.52. For 𝑚 ∈ N+ and 𝑀 = {𝑚}, the category 𝔗𝑀 has the Ramsey property.

Proof. For every 𝑛 ∈ N, let𝑇𝑛 denote the (unique up to isomorphism) lexicographically ordered balanced
m-splitting tree of height n. The full subcategory {𝑇𝑛 : 𝑛 ∈ N+} ⊆ 𝔗𝑀 is cofinal and so it suffices to
show that for any a, the tree 𝑇𝑎 is Ramsey. Note that for 𝑎, 𝑏 ∈ N, balanced strong subtrees 𝑆 ⊆ 𝑇𝑏
of height a are in one-to-one correspondence with 𝔗𝑀 (𝑇𝑎, 𝑇𝑏) by taking an embedding to its image.
Fix 𝑎, 𝑏, 𝑘 ∈ N+, and set 𝑁 = 𝑁 (𝑚, 𝑎, 𝑏, 𝑘). Take a coloring 𝜑 : 𝔗𝑀 (𝑇𝑎, 𝑇𝑁 ) → 𝑘 . By the Milliken’s
theorem, there is a balanced strong subtree 𝑆 ⊆ 𝑇𝑁 of height b and the corresponding 𝔗𝑀 -embedding
𝑓 : 𝑇𝑏 → 𝑇𝑁 such that 𝜑 is constant on 𝑓 ◦ 𝔗𝑀 (𝑎, 𝑏). �
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𝔗′𝑀
𝔗′𝑀

𝔗𝑀

𝔇′𝑀

𝔗𝑀 𝔇𝑀

Figure 11. Inclusions between the trios of categories. Diagonal inclusions are full cofinal; vertical
inclusions are wide dominating.

Figure 12. Domination by level-preserving embeddings.

The generic tree 𝑈𝑀 shares a lot of connections with the generalized Ważewski dendrite 𝑊𝑀+1.
Known related results by Duchesne [5] and Kwiatkowska [15] allow us to obtain the desired Ramsey
property. However, we need to modify our categories. Namely, we need to forget the level structure.

Definition 4.53. For 𝑀 ⊆ N+, we consider the trio 𝔗′𝑀 , 𝔗′𝑀 , 𝔇′𝑀 of leveless variants of the categories
𝔗𝑀 , 𝔗𝑀 , 𝔇𝑀 , that is, the levels are not part of the structure and they are not preserved by embeddings.
In particular, 𝔗′𝑀 is the full subcategory of LexSplTree (as opposed to LexStrTree) consisting of finite
trees with splitting degrees in M; 𝔗′𝑀 additionally allows and𝔇′𝑀 requires deciding the splitting degrees
at terminal nodes (formally via unary relations 𝑅𝑚 as in the definition of FSplTree).

Let 𝐹 : 𝔗𝑀 → 𝔗′𝑀 be the functor forgetting the level structure. Since every tree in 𝔗′𝑀 is finite, it
admits a unique level structure, so the functor F is not only faithful but also bijective on objects. Hence,
we may view 𝔗𝑀 as a subcategory of 𝔗′𝑀 with the same objects, but fewer morphisms. This way, we
have 𝔗𝑀 = 𝔗𝑀 ∩ 𝔗′𝑀 and 𝔇𝑀 = 𝔗𝑀 ∩𝔇′𝑀 as in Figure 11, and 𝔗′𝑀 ,𝔇

′
𝑀 ⊆ 𝔗′𝑀 are full cofinal

subcategories as with the original trio.
We will show in Proposition 4.55 that the subcategory 𝔗𝑀 ⊆ 𝔗′𝑀 (and so also 𝔗𝑀 ⊆ 𝔗′𝑀 and

𝔇𝑀 ⊆ 𝔇′𝑀 ) is dominating, that is, for an embedding 𝑓 ∈ 𝔗′𝑀 there is 𝑔 ∈ 𝔗′𝑀 such that 𝑔 ◦ 𝑓 ∈ 𝔗𝑀 . It
follows that every amalgamable 𝔗𝑀 -arrow is also amalgamable in 𝔗′𝑀 (Lemma 2.16), so 𝔗′𝑀 is a weak
Fraïssé category and 𝔇′𝑀 is a Fraïssé category. Moreover, a (weak) Fraïssé sequence in 𝔗𝑀 or 𝔇𝑀 is a
(weak) Fraïssé sequence in 𝔗′𝑀 or 𝔇′𝑀 (Lemma 2.15), and so the common (weak) Fraïssé limit of 𝔗′𝑀
and 𝔇′𝑀 is the generic tree𝑈𝑀 with its level structure removed. We denote it by𝑈 ′𝑀 .

Remark 4.54. Following [8, Definition 5.1], we may call a faithful functor 𝐹 : ℭ → ℭ′ (e.g., repre-
senting the language reduct between classes of structures) reasonable if for every ℭ-object A and every
ℭ′-arrow 𝑓 ′ : 𝐹 (𝐴) → 𝐵′ there is a ℭ-arrow 𝑓 : 𝐴 → 𝐵 with 𝐹 ( 𝑓 ) = 𝑓 ′. This may be viewed as a
strong form of the absorption property (D1). However, in the case F is the inclusion of a wide subcate-
gory (as above), F being reasonable would already imply ℭ = ℭ′. In particular, our 𝐹 : 𝔗𝑀 → 𝔗′𝑀 is
not reasonable.

Proposition 4.55. The subcategory 𝔗𝑀 is dominating in 𝔗′𝑀 .

Proof. Let S be a 𝔗′𝑀 -subtree of T. The inclusion 𝑆 ⊆ 𝑇 may not preserve levels. We find an 𝔗′𝑀 -
extension 𝑇 ⊆ 𝑇 such that the inclusion 𝑆 ⊆ 𝑇 will preserve levels, as in Figure 12. Namely, for every
nonterminal node 𝑠 ∈ 𝑆 and an S-immediate successor 𝑠′ > 𝑠 we let ℎ𝑠,𝑠′ denote the cardinality of
(𝑠, 𝑠′)𝑇 , we put ℎ𝑠 := max{ℎ𝑠,𝑠′ : 𝑠′ an immediate successor of s in 𝑆}, and we form 𝑇 ⊇ 𝑇 by adding a
chain of ℎ𝑠 − ℎ𝑠,𝑠′ new nodes between 𝑠′ and its predecessor in T for every 𝑠 ∈ 𝑆 and an S-immediate
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successor 𝑠′ > 𝑠. Also, for every newly added node t we decide its splitting degree 𝑚 ∈ 𝑀 and add
𝑚 − 1 new immediate successors of t. �

We can obtain a characterization of the generic leveless tree 𝑈 ′𝑀 similar to Theorem 4.48. But first,
we need the following observation.
Observation 4.56 (Leveless extensions). We reuse our results and notation from Section 3.3 to quickly
describe how the extensions in the leveless categories 𝔗′𝑀 , 𝔗′𝑀 and 𝔇′𝑀 look like. The definition
of a terminal and nonterminal extension makes sense in the leveless context. As in Proposition 4.34
every extension can be canonically decomposed into a nonterminal extension followed by a terminal
extension, and as in Proposition 4.31 every terminal extension is of the form 𝑆 �𝑠∈𝐴 𝑇𝑎 for a set A of
terminal nodes. Also, every terminal extension can be decomposed into one-step terminal extensions,
which are of the form 𝑆 �𝑠 𝐵 for a bush B. The situation with nonterminal extensions is different —
in the leveless context we are allowed to perform tree surgery at individual nodes rather than whole
levels. Similarly to Proposition 4.37, it can be shown that every nonterminal extension is canonically
of the form 𝑇 = 𝑆 �𝑠∈𝐴 𝐶

𝑐𝑠
𝑠 , where 𝐴 ⊆ 𝑆 and every 𝐶𝑐𝑠𝑠 is a pointed bush-column, and so T can be

decomposed into one-step nonterminal extensions of the form 𝑆 �𝑠 𝐵𝑏 for a pointed bush 𝐵𝑏 .
Theorem 4.57. 𝑈 ′𝑀 is the unique (up to LexSplTree-isomorphism) countable lexicographic tree such
that every branch is isomorphic to (Q, �), and for every 𝑠 < 𝑡 ∈ 𝑈 ′𝑀 and (𝑘, 𝑚) ∈ 𝑀< there is 𝑢 ∈ (𝑠, 𝑡)
such that spl(𝑢, 𝑡) = (𝑘, 𝑚).

Proof. Clearly, by Theorem 4.48,𝑈 ′𝑀 satisfies the characterizing conditions. For the converse implica-
tion, we may use Fraïssé theory and prove that a countable lexicographic tree U satisfying the conditions
is injective with respect to 𝔇′𝑀 . Let 𝑆 ⊆ 𝑈 be a decided lexicographic subtree. By the previous ob-
servation, it is enough to consider one-step extensions. Suppose 𝑇 = 𝑆 �𝑠 𝐵 for an S-terminal node s
and a bush B. Since S is decided, we have 𝑚 := spl𝐵 (𝑠) = spl𝑆 (𝑠) = spl𝑈 (𝑠). The last equality uses
the assumption that 𝑠 ∈ 𝑈 is not terminal. It is enough to define the extension 𝑓 : 𝑇 → 𝑈 ′𝑀 extending
id𝑆 by putting 𝑓 (𝑏𝑖) ∈ 𝐶𝑖 for every 𝑖 < 𝑘 , where (𝑏𝑖)𝑖<𝑚 is the �lex-increasing enumeration of the top
level of B and (𝐶𝑖)𝑖<𝑚 is the �lex-increasing enumeration of Spl𝑈 (𝑠). Next, suppose 𝑇 = 𝑆 �𝑠 𝐵𝑠 for
a node 𝑠 ∈ 𝑆 and a pointed bush 𝐵𝑠 . Let r be the root of B, let (𝑏𝑖)𝑖<𝑚 be the �lex-increasing enumer-
ation of the top level of B and let 𝑘 < 𝑚 be the index with 𝑏𝑘 = 𝑠. By the assumption that U has no
root and by the characterizing property, there is a node 𝑡 < 𝑠 with spl𝑈 (𝑡, 𝑠) = (𝑘, 𝑚). Hence, we may
take a �lex-increasing enumeration (𝐶𝑖)𝑖<𝑚 of Spl𝑈 (𝑡) with 𝑠 ∈ 𝐶𝑘 . Putting 𝑓 (𝑏𝑖) ∈ 𝐶𝑖 for 𝑖 < 𝑚 with
𝑓 (𝑏𝑘 ) = 𝑓 (𝑠) = 𝑠 defines a desired extension 𝑓 : 𝑇 → 𝑈 of id𝑆 .

Alternatively, we could show that a countable lexicographic tree U satisfying the conditions admits
a level structure such that the expansion satisfies the conditions in Theorem 4.48. The idea is to fix a
family {𝐵𝑛}𝑛∈𝜔 of branches covering U, let 𝐵0 correspond to the set of levels, and construct suitable
order-isomorphisms 𝐵𝑛 → 𝐵0. We have 𝐵0 ∩ 𝐵1 = (←, 𝑏] for some 𝑏 ∈ 𝑈. We choose an order-
isomorphism 𝑔 : (𝑏,→)𝐵𝑛 → (𝑏,→)𝐵0 such that every combination (𝑚, 𝑚′) ∈ 𝑀2 appears as the
value of (spl𝑈 (𝑡), spl𝑈 (𝑔(𝑡)) for densely many nodes 𝑡 ∈ (𝑏,→). And we continue similarly with other
branches 𝐵𝑛. �

We now begin our discussion on dendrites and their connection to the generic leveless tree 𝑈 ′𝑀 .
Recall that a dendrite (see, e.g., [20, §X]) is a locally connected metrizable continuum D such that
every two points 𝑥, 𝑦 ∈ 𝐷 are connected by a unique arc denoted by [𝑥, 𝑦] or equivalently there are no
(nontrivial) closed curves in D. Also, for every three points 𝑥, 𝑦, 𝑧 ∈ 𝐷 there is a unique point in the
intersection [𝑥, 𝑦] ∩ [𝑦, 𝑧] ∩ [𝑧, 𝑥] denoted by ∧(𝑥, 𝑦, 𝑧) and called a ternary meet or a median.

Every point 𝑥 ∈ 𝐷 has the order ord(𝑥) ∈ {1, 2, 3, . . . , 𝜔} equal to the number of connected
components of 𝐷 \ {𝑥}. Points of order 1 are called end points, points of order 2 are called ordinary
points, and points of order � 3 are called branch points. We denote the set of all branch points, which
is countable, by Br(𝐷).

Finally, for every 𝑀 ⊆ {3, 4, 5, . . . , 𝜔} there is a unique (up to homeomorphism) dendrite𝑊𝑀 called
(generalized) Ważewski dendrite such that the order of every branch point is in M and for every 𝑚 ∈ 𝑀
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and every arc 𝐴 ⊆ 𝑊𝑀 the set of branch points of order m is dense in A. Generalized Ważewski dendrites
were introduced in [3, §6]. The universal Ważewski dendrite𝑊{𝜔 } originates from [25].

Construction 4.58 (Rooting a dendrite). Let D be a dendrite, and let 𝑟 ∈ 𝐷. There is a natural way to
turn D into a tree by rooting it at r. We define the tree order by 𝑥 � 𝑦 :⇐⇒ [𝑟, 𝑥] ⊆ [𝑟, 𝑦]. This is
a well-defined order that has meets: 𝑥 ∧ 𝑦 = ∧(𝑟, 𝑥, 𝑦). Clearly, [𝑟, 𝑧] ⊆ [𝑟, 𝑥] ∩ [𝑟, 𝑦] if and only if
[𝑟, 𝑧] ⊆ [𝑟,∧(𝑟, 𝑥, 𝑦)].

Moreover, for every 𝑥 ∈ 𝐷, Spl(𝑥) consists of the connected components of 𝐷 \ {𝑥} omitting the one
containing r unless 𝑥 = 𝑟 , and hence spl(𝑥) = ord(𝑥) − 1 if 𝑥 ≠ 𝑟 , and spl(𝑟) = ord(𝑟). This is because
the components C of 𝐷 \ {𝑥} as well as the corresponding sets 𝐶 ∪ {𝑥} are arcwise connected, so for
𝑦 ∈ 𝐶 and 𝑧 ∈ 𝐶 ′, the arc [𝑦, 𝑧] goes through x if 𝐶 ≠ 𝐶 ′, and stays in C if 𝐶 = 𝐶 ′. Hence, 𝑦 < 𝑥 for
𝑦 ∈ 𝐶 if C is the component containing r, and 𝑦∧ 𝑧 = 𝑥 if 𝑦 ∈ 𝐶 and 𝑧 ∈ 𝐶 ′ and 𝐶 ≠ 𝐶 ′ are components
not containing r, and 𝑦 ∧ 𝑧 > 𝑥 for 𝑦, 𝑧 ∈ 𝐶 ∌ 𝑟 .

Construction 4.59. For a nonempty set 𝑀 ⊆ N+ we build a LexSplTree-isomorphic copy of 𝑈 ′𝑀 from
the Ważewski dendrite𝑊𝑀 ′ , where 𝑀 ′ = {𝑚 + 1 : 1 ≠ 𝑚 ∈ 𝑀} ⊆ {3, 4, 5, . . .}.

We pick an end point 𝑟 ∈ 𝑊𝑀 ′ and root the dendrite at r according to the previous construction.
Note that in the resulting tree every branch has the order type of the closed real interval [0, 1] and
contains densely many branch points of every order from 𝑀 ′ as well as densely many ordinary points
(there are only countably many branch point in a dendrite). Also, note that the end points of the dendrite
correspond to maxima of the tree and to the root.

Let 𝑇 ⊆ 𝑊𝑀 ′ be the countable subset consisting of all branch points and, if 1 ∈ 𝑀 , also of an
ordinary point 𝑧 ∈ (𝑥, 𝑦) for every 𝑥 < 𝑦 ∈ Br(𝑊𝑀 ′ ). For every 𝑥, 𝑦 ∈ 𝑇 , we have 𝑥 ∧ 𝑦 = ∧(𝑟, 𝑥, 𝑦),
which is either one of 𝑥, 𝑦 or a branch point. Since T contains all branch points, it follows that T is
closed under meets. Since also the branch points are dense in every arc of the dendrite, we have that
spl𝑇 (𝑡) = spl𝑊𝑀′

(𝑡) for every 𝑡 ∈ 𝑇 . Hence, the inclusion 𝑇 ⊆ 𝑊𝑀 ′ is a SplTree-embedding. Moreover,
every branch in T is ordered like the rationals since T contains no endpoints, and for every 𝑥 < 𝑦 ∈ 𝑇
and 𝑚 ∈ 𝑀 , there is 𝑧 ∈ (𝑥, 𝑦)𝑇 with spl𝑇 (𝑧) = 𝑚.

To construct the desired LexSplTree-isomorphic copy of 𝑈 ′𝑀 , we endow T with a lexicographic
order such that the resulting tree satisfies the characterizing condition of Theorem 4.57. To define a
compatible lexicographic order, it is enough to fix a linear order on every Spl𝑇 (𝑥) for 𝑥 ∈ 𝑇 , but to
ensure the condition we choose a point 𝑤𝑥,𝑦,𝑘,𝑚 ∈ (𝑥, 𝑦)𝑇 of splitting degree m for every 𝑥 < 𝑦 ∈ 𝑇 and
(𝑘, 𝑚) ∈ 𝑀< such that the map (𝑥, 𝑦, 𝑘, 𝑚) ↦→ 𝑤𝑥,𝑦,𝑘,𝑚 is one-to-one, and we make sure that 𝑦 ∈ 𝐶𝑘
where (𝐶𝑖)𝑖<𝑚 is the �lex-increasing enumeration of Spl𝑇 (𝑤𝑥,𝑦,𝑘,𝑚).

�����

Finite rooted subtrees obtained from the branch points of dendrites have been extensively studied,
often to the great success of computing the universal minimal flow of the Ważewski dendrites; see
Duchesne [5] and Kwiatkowska [15]. In fact, a rephrasing of a result by Kwiatkowska gives us the
Ramsey property of 𝔇′𝑀 .

Theorem 4.60. For every nonempty 𝑀 ⊆ N+, the category 𝔇′𝑀 has the Ramsey property. Hence, 𝔗′𝑀
has the weak Ramsey property and Aut(𝑈 ′𝑀 ) is extremely amenable.

Proof. The second part follows from our general theory. The first part is a reformulation of [15, Theorem
3.6]. Namely, let 𝔇′′𝑀 be the modified version of the category 𝔇′𝑀 where the predetermined splitting
degree spl may be strictly greater (but still from M) than the actual splitting degree spl. The 𝔇′′𝑀 -arrows
preserve the relations 𝑅𝑚,𝑚 ∈ 𝑀 , that encode spl, so it is the predetermined splitting degree rather than
the actual one that is being preserved. Nevertheless, 𝔇′𝑀 ⊆ 𝔇′′𝑀 is a full cofinal subcategory since we
may simply add the missing immediate successors to any nonterminal node s such that spl(𝑠) < spl(𝑠).
Hence, 𝔇′𝑀 has the Ramsey property if and only if 𝔇′′𝑀 has the Ramsey property.
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The statement of [15, Theorem 3.6] is that a certain category T ∗𝑃 has the Ramsey property. We argue
that 𝔇′′𝑀 is equivalent to T ∗𝑃 for 𝑃 = 𝑀 + 1. The objects of T ∗𝑃 are finite trees, but the unordered graph-
theoretic tree structure is encoded by a quaternary relation 𝐷 (𝑎, 𝑏, 𝑐, 𝑑) holding if the finite paths from
a to b and from c to d do not intersect, and the tree order is encoded by a ternary relation 𝐶 (𝑎, 𝑏, 𝑐)
defined by 𝐷 (𝑎, 𝑏, 𝑐, 𝑟), where r is a fixed root. By [15, Proposition 3.3], a map between trees preserves
the relations C and D if and only if it preserves the tree order and meets. The trees are labeled by unary
relations 𝐾𝑝 , 𝑝 ∈ 𝑃, giving an upper bound for a splitting degree and directly corresponding to our
relations 𝑅𝑚, where 𝑝 = 𝑚 + 1. Finally, the lexicographic order is encoded by binary relations 𝐺𝑖 (𝑎, 𝑏),
𝑖 ∈ N+: each node a with a predetermined splitting degree m has ‘slots’ for immediate successors indexed
by 𝑖 ∈ {1, . . . , 𝑚}, and 𝐺𝑖 (𝑎, 𝑏) holds if b is an actual immediate successor of a occupying the ith slot.

Note that the statement of [15, Theorem 3.6] does not cover the cases when 1 ∈ 𝑀 (though it allows
infinite bound on a splitting degree); however, the proof could be rewritten using our language to directly
show that 𝔇′𝑀 has the Ramsey property for any M. �

The following question remains open as the level structure poses a new challenge. The above,
however, seems like a step forward to proving this fact and deducing another structural variant of the
classic Milliken’s theorem.

Question 4.61. Does the category 𝔗𝑀 have the weak Ramsey property? Equivalently, does 𝔇𝑀 have
the Ramsey property? Equivalently, is Aut(𝑈𝑀 ) extremely amenable?
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