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1. Introduction. The geometry of quadric varieties (hypersurfaces) in 
finite projective spaces of N dimensions has been studied by Primrose (12) 
and Ray-Chaudhuri (13). In this paper we study the geometry of another 
class of varieties, which we call Hermitian varieties and which have many 
properties analogous to quadrics. Hermitian varieties are defined only for 
finite projective spaces for which the ground (Galois field) GF(g2) has order 
q2, where q is the power of a prime. If h is any element of GF(q2)f then h — h9 

is defined to be conjugate to h. Since hQ = h, h is conjugate to h. A square 
matrix H = ((h^)), i, j = 0, 1, . . . , N, with elements from GF(q2) is called 
Hermitian if htj = hjt for all i,j. The set of all points in PG(iV, q2) whose 
row vectors xT = (x0, Xi, . . . , xN) satisfy the equation xTHx(q) = 0 are said 
to form a Hermitian variety VN-i, if H is Hermitian and x(Q) is the column 
vector whose transpose is (xoQ, XiQ, . . . , xN

q). The properties of the curve 
XoQ+1 + Xiq+l + X2Q+1 = 0 in PG(2, q2), which is a Hermitian variety, have 
been studied in some detail by one of the authors (3). The present paper 
generalizes these results to N dimensions. The theory of tangent and polar 
hyperplanes of Hermitian varieties has been developed, and the sections of 
these varieties by hyperplanes have been studied and the number of points 
on a Hermitian variety obtained. 

It has been shown that if N = 2t + 1 or 2t + 2, a non-degenerate Her­
mitian variety VN-± contains flat spaces of t dimensions and no higher. The 
number of such subspaces contained in VN-i has been derived. Finally the 
geometry of the surface 

X0
f+1 + X!<+1 + X2

Q+1 + X3
ff+1 = 0 

has been studied in some detail, leading to a geometric interpretation of some 
designs. For example if q = 2, the surface contains 45 points and is ruled by 
27 lines, three of which pass through each point. Corresponding to any point 
P on the surface we get a set of 12 points that are joined to P by a line on 
the surface. The 45 sets so obtained form the blocks of a balanced incomplete 
block design with parameters z/ = & = 45, r = fe = 12, X = 3. There are 
many other interesting designs and configurations connected with Hermitian 
varieties which will be discussed in a separate communication. 
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2. Correspondence between the elements of GF(q) and GF(q2). Let 
q = pm, where p is a prime number and m is a positive integer. Let GF(g) be 
a Galois field with q elements, and GF(q2) an extension of GF(g). If 0 is a 
primitive element of GF(g2), then the elements of GF(q2) are 

(2.1) 0,0, 02, . . . , 6 1 e 2 - 1 = 1. 

Any non-zero element x of GF(g2) satisfies the fundamental equation 

(2.2) x*2-1 = 1. 

Writing 

(2.3) <t> = 03+1, 

it follows that 

(2.4) O , ^ 2 , . . . , ^ - 1 ^ 1, 

are all different and are elements of GF(g). Hence <j> is a primitive element 
of GF(q)y and all of the elements of GF(q) are given by (2.4). 

Corresponding to a given element x of GF(#2), there is a unique element y 
belonging to GF(#), given by 

(2.5) y = xs+1. 

But for a given non-zero y belonging to GF (q), there are precisely q + 1 dis-
tinct elements x of GF(q2) which satisfy (2.5). 

Thus if 

(2.6) ? = **== 0 i ( 5+1\ 1 < i < a - 1, 

then 

(2.7) x = 0*+**-», j = 1, 2, . . . , 0 + 1. 

If, however, 3/ is zero, then the corresponding element x of GF(q2) is zero. 

3. Conjugate elements of GF(q2). The primitive element 0 of GF(q2) 
satisfies a quadratic equation 

(3.1) x2 - sx + t = 0, 

where 5 and t belong to GF(g), and the left-hand side of (3.1) is irreducible 
over GF(q). 

Using the relation 02 — 50 + t = 0, every element x of GF(g2) can be 
expressed as 

(3.2) x = a + bd 

where a and b belong to GF(q). We then define 

(3.3) x = xq, 
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as the conjugate of x. Since 

(3.4) x«2 = x, 

the conjugate of x is x. If x is given by (3.3), then 

(3.5) x = (a + bey = a + bdQ = a + bë. 

Since x —> xQ is an automorphism of GF(g2), the second root of (3.1) is 
Bq or 0. Hence 

(3.6) 0 + £ = 5 , 00 = tt 

(3.7) x + x = 2a + fo, 

(3.8) xx = a2 + abs + bH. 

Hence the sum as well as the product of two conjugate elements of GF(q2) 
belongs to GF(g). 

It should be noted that the necessary and sufficient condition for any element 
of GF(q2) to be self-conjugate is that it belong to GF(q). 

The elements s and t of GF(q) appearing in the equation (3.1) are non-zero. 
From (3.6), t = 0ff+1 ^ 0 since 0 is a primitive element of GF(q2). Again if 
s = 0, it would follow from (3.6) that 0 + dQ = 0, i.e. either 0 = 0 or 
6s-1 = - 1 . Obviously 0 ^ 0 . Also 0*"1 ^ - 1 , otherwise 02ff~2 = 1, which is 
contradicted by the fact that 0 is a primitive element of GF(q2). 

LEMMA 3.1. If h is a non-zero element of GF(g2), we can find a non-zero 
element X of GF(<?2) such that h\ -\- h\ 9^ 0. 

Let h = a + bd and X = u + vd, where a, b, u, v belong to GF(#). Then 
using (3.6) 

h\ + h\ = (2a + bs)u + (2bt + as)v. 

Case I. If 2a + bs 9e 0, we can choose u = 1, v = 0, i.e. X = 1. 
Case II. If 2a + bs =0 , then a ?± 0, since a = 0 would make 6 = 0, con­

tradicting h ^ 0. Now (2bt + as) = a(s2 - U)/s 9* 0, since s2 - tt = 0 is 
the condition for the roots of (3.1) to coincide, i.e. for 0 to be equal to 6Q, 
which is obviously false since 0 is a primitive element of GF(q2). Hence in 
this case we can choose u = 0, v — 1, i.e. X = 0. 

4. Hermitian matrices and Hermitian forms. A square matrix 

(4.1) H=((htj))y i,j = 0,l,...,N, 

with elements from GF(g2), will be defined to be Hermitian if 

(4.2) htj = hji, 

for all i,j. Hence the diagonal elements of a Hermitian matrix belong to GF(g), 
and symmetrically situated off-diagonal elements are conjugate to each other. 
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Given a matrix A = ((atj)) with elements from GF(q2) we define the 
conjugate of A by 

(4.3) A<* = ((a,-/)) = ( (â„) ) . 

Clearly, the conjugate of A{q) is A itself. Thus the relation of conjugacy is 
symmetric. So far as this definition is concerned, A may or may not be a 
square matrix. In particular A may be a row vector or a column vector. 
Clearly, the necessary and sufficient condition for A to be self-conjugate is 
that all of its elements belong to GF(q). 

The transpose of A will be denoted by AT. Clearly the transpose of the 
conjugate is the conjugate of the transpose, i.e. 

(4.4) AT™ = A^T. 

LEMMA 4.1. A square matrix G = ((gtj)) with elements from GF(g2) is 
Hermitian if and only if 

(4.5) G<« = GT. 

The proof is obvious. 

LEMMA 4.2. Suppose A and B are two matrices of order m X n and n X h 
with elements from GF(g2), and C = AB; then 

(4.6) CM = A^BW. 

Proof. Now C = ((cijt)), where cik =y%2jaijbjk. Hence 

/ n \ g n n 

Hence by definition C(e) = A™ B«\ 

LEMMA 4.3. If H is a Hermitian matrix of order N + 1, and A is any matrix 
of order (N + 1 ) X m with elements from GF(g2), then 

G = ATHA«\ 

is a Hermitian matrix of order m. 

From Lemmas 4.1 and 4.2, and the equation (4.4), 
QT = A«I)THTA = AT(Q) HwA = G ( 0 > 

The required result follows from Lemma 4.1. 

COROLLARY. If x is a (N + 1) X 1 column vector, and H is a Hermitian 
matrix of order N + 1, then xTHx{q) is an element of GF(g). 

Proof. xTHx{q) is a 1 X 1 Hermitian matrix. Hence it is a self-conjugate 
element of GF(q2). 

The elements of all of the vectors and matrices which we shall consider 
belong to GF(g2). When we speak of the dependence or independence of a set 
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of vectors, we shall mean dependence and independence over GF(q2). The rank 
of a vector space or the rank of a matrix will mean rank over GF(#2). 

Two Hermitian matrices H and G of the same order N + 1 with elements 
from GF(g2) will be called equivalent if we can find a non-singular square 
matrix A, with elements from GF(g2), such that 

ATHA™ = G. 

If H and G are equivalent, we may write H ~ G. It is readily seen that this 
relation satisfies the three axioms of equivalence, i.e. (i) H ~ H, (ii) if H ~ G, 
then G ~ H, (iii) if H ~ G and G ~ K, then H ~ K. 

The above follows by noting that 
(i) IT = I{q) = I where I is the unit matrix of order N + 1, 
(ii) (A*)-1 = (A'1)*, (A^)-i = (A-1)"*, 

(iii) BTAT = (AB)T, AWBW = (AB)W fr0m Lemma 4.2. 

THEOREM 4.1. A Hermitian matrix H of order N + 1 and rank r > 0, w^& 
elements from GF(g2), is equivalent to a diagonal matrix of order N + 1, £/^ 
^r.^ r diagonal elements of which are unity and the rest zero. 

(a) We can permute the columns of H in any desired manner and permute 
its rows in the corresponding manner by postmultiplying H with a suitable 
permutation matrix P = P(Q\ and premultiplying H with PT. Hence, by such 
operations, we can rearrange the rows and columns of H so that all null rows 
and columns are at the end. The transformed matrix is equivalent to H. 

(b) We shall denote by Euv(\), a matrix of order N + 1, for which each 
diagonal element is unity, the element in the uth row and z>th column is X, 
u 9^ v, and all other elements are zero. Such a matrix will be called an ele­
mentary matrix of order N + 1. Clearly 

EUV
T{\) = Evu(\). 

The effect of premultiplying H with EUV
T(\) is to replace the z;th row of H 

by the sum of the z;th row and the ^th row multiplied by X. The effect of 
postmultiplying the matrix so obtained with Euv

(q) (X) is to replace its z;th 
column by the sum of the z>th column and the uth column multiplied with 
X. Thus if H is given by (4.1), 

EUVT(\)HEUV«»(\) =G= ((g,,)) 
where 

gv-i,v-i — Ap_i,p_i + \hu_itV-i + \hv_i)U_i -f- XX^w_i,w_i 

gv-u = hv-itj + \hu-i,j, gj,v-i = hj,,,-! + \hj,u-i (j 9* v — 1), 

gij = hij (i 9*V - l,j 9*V - 1 ) . 

If the z>th row and column of H are non-null but all diagonal elements are 
zero, then we can find non-zero conjugate elements hu-\lV-i and hv-itU-i 

https://doi.org/10.4153/CJM-1966-116-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-116-0


1166 R. C. BOSE AND I. M. CHAKRAVARTI 

belonging to the (u — l )s t row and column respectively. By Lemma 3.1 there 
exists an element X of GF(q2) such that X/zw_ifî,_i + \hv-itU-i 9e 0. Then the 
matrix EUV

T(\)HEuv^
q) (X) is equivalent to G and the element gv-itV-i in the 

flth row and column is non-zero. 
(c) By using (a) and (b) suppose H has already been transformed to an 

equivalent form such that the first row and column are non-null and &00 9^ 0. 
We now reduce the non-diagonal elements of the first row and column to 
zero, in N steps, the (v — l )s t step consisting of premultiplying the matrix 
obtained in the previous step by E i / ( —/^_i,oAoo) and postmultiplying it by 
EuW(-hv„uo/hoo), v = 2, 3, . . . , N + 1. 

If any null rows and columns appear, they are transferred to the end by 
using (a). If now all the diagonal elements other than &0o are zero and there 
is a non-null row, by using (a) and (b) we can bring a non-zero element at 
the diagonal position of the second row. Then as in (c), we can reduce the 
non-diagonal elements of the second row and column to zero. Proceeding in 
this manner, we reduce H to an equivalent diagonal matrix D, in which the 
first r0 diagonal elements are non-null, and the remaining diagonal elements 
are null. Since all our transformations have been rank preserving, r0 = r. 

(d) Since D is Hermitian, the diagonal elements belong to GF(g). Let the 
i th diagonal element be dt. From the correspondence described in § 2, we can 
find an element a* of GF(q2) such that 

di = 0Liq+1 = oiiâi (i = 0, 1, . . . , r — 1). 

We denote by A (a*) the diagonal matrix whose ith diagonal element is at 
and the other diagonal elements are zero. We can finally reduce D to the 
form desired in the theorem in r steps, the (i + l )s t step consisting of pre­
multiplying the matrix obtained in the previous step by DT(ai)~

1 and post-
multiplying it by D^icxi)-1 (i = 0, 1, . . . , r — 1). This completes the proof 
of the theorem. 

Let x r be the row vector (x0, xu . . . , xN), and x the corresponding column 
vector, wThere 

^0j ^i) • • • » Q̂v are indefinites. Then the form xTHx(-a) is called 
a Hermitian form if H is a Hermitian matrix. H is called the matrix of the 
form. The order and rank of the form are defined to be the order and rank 
of H. Note that xTHx(q) is a homogeneous polynomial of the (q + l )s t degree 
in the indefinites x0, Xi, . . . , xN. 

The Hermitian form xTHx^Q) is transformed into yTATHA^q)y^) by the 
linear transformation x = Ay. Two Hermitian forms are defined to be equiva­
lent if one can be transformed to the other by a non-singular linear transforma­
tion. Clearly the necessary and sufficient condition for two Hermitian forms 
to be equivalent is that their matrices be equivalent. 

COROLLARY. The Hermitian form xTHx{q) of order N + 1 and rank r can be 
reduced to the canonical form y± yi + y2 yi + . . . + yT yr by a suitable non-
singular linear transformation x = Ay. 
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5. Hermitian varieties in PG(iV, q2). We denote by PG(iV, s) the finite 
projective space of N dimensions over the Galois field GF(s) where s is a 
prime power. The points of the space can be made to correspond to ordered 
(N + l)-tuplets 

(5.1) (x0, xlf . . . , xN), 

where the x / s belong to GF(s), and are not all zero. The ordered w-tuplets 
(x0, Xi, . . . , xN) and (x0*, Xi*, . . . , xN*) correspond to the same point if and 
only if there exists a non-zero element p of GF(s) such that 

px** = Xi, i — 0, 1, . . . , N. 

If P is the point corresponding to (5.1), then the row vector xT = (x0, 
Xi, . . . , x^) is called the row vector of P , and its transpose x is called the 
column vector of P . The elements 

*̂o> î> • • • > %N are called the coordinates 
of P . 

If C is a matrix with N + 1 rows and of rank N — m with elements from 
GF(s), then the set of points whose row vectors satisfy 
(5.2) xTC = 0 

is called an m-flat or a linear subspace of m dimensions, and (5.2) is called 
the equation of the m-flat. Points are linear subspaces of zero dimensions. 
Linear subspaces of 1, 2, and N — 1 dimensions are respectively called lines, 
planes, and hyperplanes. 

A set of points will be said to be dependent or independent according as 
the corresponding row (column) vectors are dependent or independent. Any 
m + 1 independent points determine a unique m-flat containing them. 

Let Ei be the point for which the (i + l)st coordinate is unity, and other 
coordinates are zero (i = 0, 1, . . . , N). Also let E be the point all of whose 
coordinates are unity. Then E0, Eif . . . , EN are called the fundamental points 
and E is called the unit point. Clearly any iVof the N + 1 points E0, Ei} . . . , ENj 

E axe independent. Together they are said to constitute the reference system. 
Let A be an (N + 1) X (N + 1) non-singular matrix with elements from 

GF(s). Then the homogeneous linear transformation 

(5.3) y = Ax 

defines a transformation of coordinates. If x is the original column vector 
of P , the transformed column vector is y. This transformation defines new 
fundamental points Po, F±, . . . , FN and a new unit point F. Their transformed 
coordinates are (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1), and (1, 
1, . . . , 1) and the original coordinates can be calculated from (5.3). An 
important theorem states that given any N + 2 points P0 , Pi , . . . , PN, and 
and P , no N + 1 of which are dependent, there exists a unique linear trans­
formation, which would make P0 , P i , . . . , PN the fundamental points and P 
the unit point. Thus in PG(iV, s) any N + 2 points, no N + 1 of which are 
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dependent, may be chosen as the fundamental points and the unit point. This 
choice uniquely determines the coordinates of all other points (up to a non­
zero multiple of GF(s)). Projective geometry studies those properties that are 
invariant under linear homogeneous transformations and are thus independent 
of the choice of a reference system. An excellent account of finite projective 
spaces will be found in (1; 10; 15). 

In particular, let us choose 5 = q2, where q is a prime power, and consider 
the finite projective space PG(7V, q2). If H is a Hermitian matrix of order 
N + 1 and rank r with elements from GF(ç2), then the set of points whose 
coordinates satisfy the (q + l )s t degree equation 

(5.4) xTHx^ = 0 

are said to be the points of a Hermitian variety VN-i of TV — 1 dimensions 
and rank r. The equation (5.4) is said to be the equation of VN-i. If we apply 
the linear transformation (5.3) the new equation of VN-i becomes 

(5.5) yTATHAWy = 0. 

Now ATHA{q) is a Hermitian matrix of rank r equivalent to H. Hence 
the rank of a Hermitian variety is invariant under a non-singular linear trans­
formation. I t follows from Theorem 4.1 and its corollary that by a suitable 
choice of the frame of reference, the equation of a Hermitian variety of N — 1 
dimensions and rank r can be reduced to the canonical form 

(5.6) X0Xo + #1#1 + . . . + Xr-l Xr-i = 0. 

A Hermitian variety VN-\ of N — 1 dimensions is said to be non-degenerate 
if its rank is N + 1. Now PG(iV, q2) contains linear subspaces of dimensions 
r < N. Let S r be such a subspace. Then each point of 2 r can be characterized 
by a set of r + 1 coordinates (3/0, 3>i, . . . , yr). For example, if we choose the 
frame of reference so that the equations of S r are yr+1 = yr+2 = • . . = 3V = 0, 
then if the point P , when regarded as a point of PG(N, q2), has the row 
vector yT = (3/0, 3>i, • . . , yr, 0» 0, . . . , 0), regarded as a point of 2 r it has row 
vector y* r = (3/0, 3̂ 1, . . . , yT). Then if H* is a Hermitian matrix of order 
r + 1, the points of S r which satisfy the equation y*rJ7*y*(ç) = 0 will be 
said to form the Hermitian variety Fr_i of dimensions r — 1 and rank equal 
to the rank of H*. We shall in what follows always denote a Hermitian variety 
by the letter V and choose our notation so that the subscript of V denotes 
the number of dimensions of V. 

Let us consider the special case N = 1. Our space is now the projective 
line PG(1, q2). Let V0 be a non-degenerate Hermitian variety in this space. 
Then the equation of Vo can be taken as 

(5.7) xo x0 + xi xi = 0 or x0
Q+1 + x±

a+1 = 0. 

The point (0, 1) obviously does not lie on Vi. Hence for points satisfying 
(5.7), Xo p* 0. Now (5.7) gives (xi/x0)?+1 = — 1 . The correspondence described 
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in § 2 shows tha t there are precisely q + 1 values of Xi/x0 which satisfy (5.7). 
Hence a non-degenerate Hermitian variety F 0 on a projective line (over a field 
of order q2) contains exactly q + 1 distinct points. Again suppose the rank of 
Vo is one. Then by a suitable choice of the frame of reference its equat ion 
can be reduced to x 0

m = 0. The only point satisfying this equation is (0, 1). 
Hence in this case V0 consists of a single point. 

The properties of the curve 

(5.8) xoq+1 + xi*+1 + x2
Q+1 = 0 

were studied in some detail in (3). In particular, it was shown t h a t a non-
degenerate Hermitian variety V\ in PG(2 , q2) has exactly qs + 1 points. 

6. C o n j u g a t e p o i n t s , polar spaces , a n d t a n g e n t spaces . Consider a 
Hermit ian variety VN-i with equation (5.4). A point C with row vector 
cT = (c0, ci, . . . , cN) will be called a singular point of VN-i if cTH = 0 or 
equivalently Hc(Q) = 0. 

Of course a singular point mus t lie on VN-\. A point of P^- i which is no t 
singular is called a regular point of VN-i. A point C will be called a non-singular 
point if it is not a singular point of VN-\. Thus a non-singular point may be 
a regular point of VN-i or a point not lying on VN-i. 

A non-degenerate Hermitian variety cannot possess a singular point, since in 
this case there cannot exist a non-null CT satisfying CTH = 0 as H is non-
singular. If VN-i is degenerate, let r < N + 1 be the rank of H. Then cTH = 0 
has N + 1 — r independent solutions 

(6 .1) C i r , c 2
2 \ . . . , C t f + i_ r

r . 

T h u s the singular points of VN-i are the points of the (N — r)-flat deter­
mined by the points with row vectors (6.1). This will be said to const i tute 
the singular space of VN~i. 

All points whose row vectors satisfy the equation 

(6.2) xTHcW = 0 

const i tute the polar space of the point C with row vector cT. When C is a 
singular point of T^-i, the polar space of C is identical with the whole space 
PG(iV, q2). When however C is non-singular, the rank of Hc(Q) is one and 
(6.2) is the equation of a hyperplane, which may be called the polar hyper plane 
of C. If dT is the row vector of a point D, then the necessary and sufficient 
condition for the polar space of C to pass through D is dTHc(q) — 0, which 
is equivalent to cTHd(Q) = 0. This shows t ha t if the polar space of C passes 
through D, then the polar space of D passes through C. Two such points 
whose polar spaces mutual ly pass through each other are said to be conjugate 
to each other with respect to VN-i. In case F^- i is degenerate, the polar 
space of C passes through every singular point of VN-i and thus contains the 
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singular space of VN-\. Hence any two points at least one of which is singular 
are always conjugate to one another. 

The condition for the point C to be self-conjugate, i.e. to lie on its own 
polar space, is that cTHciQ) = 0. Hence a point C is conjugate to itself with 
respect to VN-\ if and only if C lies on VN-\. 

The polar hyperplane of a regular point C of VN-i is defined to be the 
tangent hyperplane to VN-i at C. The tangent hyperplane is defined only for 
regular points of VN-i and when VN-i is degenerate it contains the singular 
space of FAT-I. 

When VN-i is non-degenerate, there is no singular point. To every point 
there corresponds a unique polar hyperplane, and at every point of VN-i 
there is a unique tangent hyperplane. 

7. Sections of Hermitian varieties with flat spaces. Let VN-\ be a 
Hermitian variety of rank r in PG(iV, q2) with equation (5.4). The set 
of points common to VN-\ and the w-flat 2TO with equation (5.2) is defined 
to be the section of VN-\ by Sm. If m = N, then Sm is the whole space and 
the section is VN-i itself. Let m < N. Let Xm be defined by m + 1 independent 
points FQ, Fij. . . , Fm. We can find a non-singular linear transformation 
y = Ax such that F0j Fu . . . , Fm become the fundamental points of the 
reference system. Then the points of 2W will satisfy the equations 

(7.1) ym+i = 3W2 = . . . = yN-i = 0, 

while the equation of VN-i will become 

(7.2) yTGy^ = o 

where G is a Hermitian matrix equivalent to H. Writing (7.2) in full we have 

(7.3) ei)««iy«y/') = o. 

Hence the points common to 2W and VN-i satisfy (7.1) and 

m m 

(7.4) ZZg«3- i3 - / 9 ) = 0. 

Let G* be the matrix obtained from G by retaining only the first m + 1 
rows and columns of G. Evidently G* is Hermitian and the points on the 
section of VN-\ by 2W satisfy (7.1) and 

(7.5) y*rG*y*(ff) = 0 j 

where y* = (y0, 3>i, • • . , ym)> Regarding Sm as a projective space of m dimen­
sions, it is clear that the section of a Hermitian variety VN-i in PG(iVr, q2) by 
a flat space Sm of m dimensions is a Hermitian variety Vm-\ contained in Sm. 
Clearly the rank of Fw_i cannot exceed m + 1. However, this rank could be 
less and, in particular, it may happen that G* is null so that every point of 
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2m belongs to the section, which therefore coincides with the section. In this 
case, the flat space 2W is contained in VN-i. We shall therefore adopt the 
convention that a flat-space 2m of dimensions m can be regarded as a Her-
mitian variety Fm_i of dimensions m — 1 and rank zero. 

As a particular case, let m = 1. Then 2W is a line. Since the intersection 
of a line with VN-\ must be a Hermitian variety Vo of rank 2, 1, or 0, we see 
that a line intersects VN-i in (i) <Z + 1 points, (ii) a swg/e point, or (iii) Zies 
completely in VN-i. We shall now prove the following theorem: 

THEOREM 7.1. If the Hermitian variety VN-i with equation xTHx^Q) = 0 is 
degenerate with rank r < N + 1 and 2r_i is a flat space of dimensions r — 1 
disjoint with the singular space 2^_ r 0/ VN-\, then VN-i and 2r_i intersect in 
a non-degenerate Hermitian variety Vr-2 contained in 2r_i. 

Let FQ, Fu . . . , Fr_i be any r independent points in 2r_i. Also let i<V, 
F r + i , . . . , FN be any N — r + 1 independent points in 2^_r. Now make a 
non-singular linear transformation x = Ay such that F0, F1} . . . , /V-i, 
Fry . . . , FN become the fundamental points of the reference system. The 
equation of VN-i now becomes yTGy(q) = 0 where 

G= «gtj)) (i,j = 0,1,...,N), 

is equivalent to H and is therefore of rank r. Using ^-coordinates, the row 
vector of Ft is e ^ for which the (i + l )s t coordinate is equal to unity and 
all other coordinates are equal to zero. The condition for Ft and Fj to be 
conjugate to each other is e ^ G e / 0 = 0 or gtj = 0. Since FT1 Fr+1, . . . , FN 

are singular points of VN-i, Ft and Fj are conjugate if (i) 0 < i < r — 1, 
r < j < iV, (ii) r < i < N, r < 7 < N. This shows that we may write 

« - [oG* I] • 
where G* is a Hermitian matrix of order r. Since the rank of G is r, the rank 
of G* must also be equal to r. Now the points of VT-i satisfy 

y*^*y* ( f f ) = 0, yr = yT+i = . . . = yN = 0, 

where y* r = (3/0, 3>i, . . . , yT-i). Hence Vr~2 is a Hermitian variety of rank r 
contained in 2 r_i, and is therefore non-degenerate. 

COROLLARY. If VN-i, ^N-r, 2r_i, and Vr-2 have the same meanings as in 
the theorem, C* is a point on Vr~2 and 2 r_2 is the tangent space to Fr_2 at C*, 
then the tangent space to VN-i at C* is the flat space 2jv-i of N — 1 dimensions 
containing 2r_2 and 2^_r. 

THEOREM 7.2. If VN-\ is a degenerate Hermitian variety of rank r < N + 1 
in PG(N, a2) and if C is any point belonging to the singular space of VN-i 
and D is an arbitrary point of VN-\, then any point on the line CD belongs 
to FJV-I. 
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Let the equation of VN-i be xTHx(q) = 0 and let cT and dT be the row 
vectors of C and D respectively. Now C and D are self-conjugate, and also 
C and D are conjugate to each other. Hence 

(7.1) cTHc™ = 0, dTHd™ = 0, cTHd^ = 0, driïc<ff) = 0. 

If B is any point on the line CD, then its row vector b T must be of the 
form h cT + h dT or (h c + h d)T. But 

(hc + hd)TH(hc + hd)^ = 0, 
which proves the theorem. 

COROLLARY. / / VN-i is as in the theorem and F r_2 is the section of VN-\ by 
an (r — 1) flat 2 r_i disjoint with the singular space 2^-r of VN-i, then every 
point of VN-I lies on some line joining a point of 2N-r with a point of Vr-2. 

From the theorem, if C is a point of 2Ar_r and D is a point of F r_2, then 
any point on the line joining CD belongs to VN-\. 

Conversely, let Do be any point on VN-i. We have to show that it lies on 
some line joining a point of 2x-r with a point of Fr_2. This is obviously true 
if Do belongs to 2^-r or 2 r_i. We may therefore suppose that D0 does not 
lie on either of these flat spaces. Let S r be the r-flat containing D0 and 2 r_i. 
Then 2 r intersects 2N-r in a point C0 and C0 D0 intersects 2 r_i in a point 
P0 . From the theorem, P 0 must be on VN-i and therefore on Fr_2- This proves 
the corollary. 

We shall next study the nature of the section of a Hermitian variety with 
a tangent space. We shall first prove the following: 

THEOREM 7.3. The tangent spaces at two distinct regular points A and B 
of a Hermitian variety VN-\ are identical if and only if the line joining A and 
B meets the singular space of VN-\ in a point. In particular, if VN-\ is non-
degenerate, then the tangent spaces at A and B must be distinct. 

Let the equation of VN-i be xTHx{Q) = 0, and let the row vectors of A and 
B be a r and bT . Then the tangent spaces at A and B have the equations 
xTHa(q) = 0 and xTHh{q) = 0. Hence the two tangent spaces are identical if 
and only if there exists a non-zero element / of GF(g2) such that 

(7.2) J7a<« = IHhw or (a - l^b)TH = 0. 

First suppose VN-\ is non-degenerate. In this case, H is non-singular. Hence 
the homogeneous linear equations cTH = 0 can only be satisfied by cT = 0. 
Hence a r = l{q)bT. The vectors of A and B differ only by a non-zero multiple 
of an element of GF(g2). Hence the points A and B must be identical. 

Now suppose that VN-\ is degenerate and of rank r < N + 1. The singular 
space 2jv-r of VN-\ consists of all points with row vector cT satisfying cTH = 0. 
Hence (7.2) implies that a r — l{q)bT = cT where cT is the row vector of some 
point C belonging to S^-r- Hence the line AB meets 2N-r at C. 
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COROLLARY. Let 2^_ r + 1 be the flat space of N — r + 1 dimensions containing 
a regular point A and the singular space 2#__r of a degenerate Hermitian variety 
VN-\ of rank r < N + 1. Then any point B on 2N-r+i (which is not on 2^_r) 
has the same tangent space as A. 

THEOREM 7.4. Given a non-degenerate Hermitian variety VN-±} the tangent 
space at a point C of VN-± intersects VN-i in a degenerate Hermitian variety 
VN~2 of rank N — 1 contained in S^-i. The singular space of VN-.2 consists 
of the single point C. 

Let the equation of VN-i be xTHx(Q) = 0. Let S^-i be the tangent space 
to VN-i at C. Let F0 = C, Fly . . . , FN-i be N independent points in 2Ar_1. 
We can find a non-singular linear transformation y = Ax such that F0, 
Fif • • • y Ftf-i become the fundamental points of the reference system. Then 
the equation of S^-i becomes xN = 0, and the equation of VN-i becomes 
y^y(e) = 0, where G = {{gij)) (i,j = 0, 1, . . . , N) is Hermitian and of 
rank N + 1. Since F0 is self-con jugate and is conjugate to Flf F2, . . . , FN-_U 

we have 

goj = 0 and gi0 = 0 (ij = 0, 1, . . . , N - 1). 

We can therefore write 

0 0 0 • • • 0 gON 

0 

0 

o 

£** 

glN 

g2N 

gN-l,N 

_gN0 gNl &V2 gN-l,N gNN 

where G** = ((gij)), i,j = 1, 2, . . . , N — 1. Now g0N and gN0 are non-null 
since G is non-singular. Also 

(7.4) det G = -g0N gN0 det G**. 

It follows that det G** is non-null so that the rank of G** is N — 1. Regarding 
2^-1 as a projective space of N — 1 dimensions, we have seen that the equa­
tion of the section VN-2 is yr*G*y*(ff) = 0 where y* r = (y0t y1} . . . , 3V-1) 
and G* is the Hermitian matrix obtained by retaining only the first N rows 
and columns of G. Since G* is the same as G** except that it has an additional 
null row and column, rank G* = rank G** = N — 1. 

The row vectors of C = F0 when regarded as a point of projective space 
2^-1 is eo*r = (1, 0, . . . , 0). Since e0*

TG* = 0, C is a singular point of F^_i. 
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Since the rank of VN-2 is iV — 1, the singular space has dimension 0, and 
must therefore consist of the single point C. 

COROLLARY. Let VN-i be a degenerate Hermitian variety of rank r < N + 1, 
with singular space 2^_ r. Let 2^_i be the tangent space to VN-i at a regular 
point C. Then S^-i intersects VN-\ in a Hermitian variety VN^ ofN — 2 
dimensions and rank r — 1 whose singular space is the (N — r + I)-flat 
2^_r+i containing C and 2N-r. 

8. Number of points on a Hermitian variety. Let SN+i(q2) denote the 
vector space of row vectors of order N + 1 with elements from GF(g2), and 
let Stf+iiq) have a similar meaning with relation to GF(g). To any vector 
xT = (x0, Xi, . . . , xN) belonging to SN+i(q2), let there correspond a vector 
yT = (yo, yi, . . . , 3^) belonging to SN+1(q) where yt = Xiq+\ i = 0, 1, . . . , N. 
It follows from the correspondence between the elements of GF(q2) and GF(q) 
discussed in § 2 that to each xT there corresponds a unique yT, but to each 
yT with r non-zero coordinates there correspond (q + l ) r vectors xT belonging 
to Stf+i(q), each with r non-zero coordinates. 

Now let X be any point of PG(iV, q2) with row vector xT having r non-zero 
coordinates. Then any one of the q2 — 1 row vectors pXT of SN+i(q2) will 
represent X, where p is any arbitrary non-zero element of GF(g2). Let yT be 
the row vector of SN+i(q) which corresponds to xT, and let Y be the point 
of PG(7V, q) with row vector yT. We then say that Y corresponds to X. The 
point Y of PG(iV, q) is given uniquely by the point X of PG(iV, q2)\ for if 
we take pXT as the vector representing X, then the corresponding vector of 
SN+i(q) is ayT where a = pff+1, and represents the same point of PG(JV, q) 
as yT. Conversely, let yT be a vector of SN+i(q) representing a point Y of 
PG(N, q). If yT has r non-zero coordinates then we get (q + l ) r distinct 
vectors of SN+1(q

2) corresponding to yT. Now Y can be represented by any 
one of the q — 1 row vectors ayT of SN+\(q), where a is any non-zero element 
of GF(q). To each of these vectors there correspond (q + l ) r vectors of 
5JV+I(<Z2). Thus to the q — 1 vectors ayT (where a ranges over all the non-zero 
elements of GF(g)), there correspond (q — l)(q + l)r vectors of SN+i(q2). 
But any q2 — 1 of these vectors which differ merely by a multiple of some 
non-zero element p of GF(g2) represent the same point of PG(iV, q2). Hence 
to each point of PG(iV, q) with r non-zero coordinates there correspond 
(q - l)(g + l ) 7 ( 2 2 - 1) or (q + I ) ' " 1 points of PG(iV, q2). 

Now let VN-i be a non-degenerate Hermitian variety in PG(N, q2). By a 
suitable choice of the frame of reference we take its equation in the canonical 
form 

AT 

• J OC i X i = = U 

or 

(8.1) Xos+1 + X!5+l + • • • + xN
t+1 = 0. 
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-Ct1} 

Let 2 be the hyperplane of PG(iV, g) with equation 

(8.2) y0 + y l + u m m + y N = 0m 

In the correspondence between the points of PG(N, g) and PG(iV, g2) just 
described, if X lies on FJV-I, then T lies on 2 and conversely. Let 

nr = (q™ - l)/(q - 1) 

denote the number of points on an r-flat in PG(iV, q). The number of points 
on 2 which have exactly r non-zero coordinates is 

(8.3) (^+ l)\nT-, - ([)nr-t + ( ^ n ^ + ... + ( - 1 ) ^ r_ 2)«„] 

i K a - i r 1 - (-lr1]/*. 

Hence the total number of points on VN-i is 

• W a * ) = g ( * + ^ [ ( g - I ) ' " 1 - ( - 1 ) - 1 (2 + 1 ) ^ / 2 

= [ g A r + 1 - ( - i ) J V + 1 ] [ / - ( - D " ] / ( g 2 - i ) . 

We have thus proved: 

THEOREM 8.1. The number of points on a non-degenerate Hermitian variety 
VN-i in PG (N,q2) is 

(8.4) * ( # , g2) = [<̂ +> - ( - l ) ™ ] ^ - ( - 1 ) * W - 1). 

COROLLARY. The number of points on a degenerate Hermitian variety VN-\ 
of rank r < N + 1 in PG(7V, q2) is 

(8.5) (g2 - l)f(N - r, q*)<t>(r - 1, g2) +f(N - r, g2) + 4>{r - 1, g2), 

where 4>{N,q2) is given by (8.4), f(k, g2) = [g2<*+1> - l]/(g2 - 1). 

Let 2iv-r be the singular space of VN-i; then the number of points in 2^_ r 

is f(N — r, g2). Also let 2r_i be an (r — l)-flat disjoint from 2^_ r. Then 
from Theorem 7.1, 2 r_i intersects F^_i in a non-degenerate Hermitian variety 
Fr_2 contained in 2 r_i. The number of points on Vr-2 is 4>{r — 1, g2). Now 
from the corollary to Theorem 7.2, every point of VN-i belongs to some line 
joining a point of 2Ar_r with a point of Vr-i. Two such lines cannot have a 
point in common outside of Vr-2 or 2^_r. Suppose, if possible, that the points 
A i and A2 be in 2^_ r and the points B\ and B2 in VV-2. If possible, let the 
lines A i i?i and ^42 -B2 intersect in P , a point neither in 2^_ r nor in Fr_2. Then 
A1 and -42 are distinct. If not, they would coincide with the point of inter­
section of the two lines, which would mean that P lies in 2^-r- Similarly B\ 
and B2 are distinct. However, both A^B\ and A2B2 lie in the plane PA±A2. 
Hence the lines A1A2 and B\B2 intersect in a point Q, which therefore must 
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be common to 2#_r and 2 r_i. This contradicts the fact that 2 r_i and 2w_r 

are disjoint. Each line joining a point of 2N-r and Vr-2 contains q2 — 1 
points not contained in either ^N~r and Vr-2. Hence VN-i contains 

f(N-r,q*)ct>(r-l,q*)(q*-l) 

points not on 2N-r or Vr-2. This proves the corollary. 

9. Flat spaces contained in Hermitian varieties. We shall first prove 
the following lemma. 

LEMMA 9.1. The line joining two points C and D on a Hermitian variety 
VN-I is completely contained in VN-\ if and only if C and D are conjugate with 
respect to VN-\. 

Let the equation of VN-i be xTHx(Q) = 0 where H is Hermitian of order 
N + 1. Let cT and dT be the row vectors of C and D. Then 

(9.1) cTHc^ = 0, dTHd^ = 0. 

The row vector of any point A lying on the line CD can be written as 
a r = h CT + h dT = (Ii c + h d)T. If CD is completely contained in F^-i, 
we must have 

(9.2) (h c + h d)TH(h c + h d)W = 0 for any (lu h) * (0, 0). 

Hence from (9.1), 

(9.3) h hQcTHd^ + h hqdTHc^ = 0 if (lu h) * (0, 0). 

This implies that cTHd^Q) = 0, i.e. C and D are conjugate. If this is not so, 
suppose cTHd(Q) = h F^ 0. Then from Lemma (3.1), we can find a non-zero 
element X of GF(g2) such that h\ + h\ ^ 0. Now let us choose h = 1, Z2 = X; 
then h ha = X, h ha = X, dTH&Q) = h so that from (9.3) we have AX + h\ = 0. 
This is a contradiction. 

Conversely, suppose C and D are conjugate. Then cTHd(Q) = 0 and 
dTHc{Q) = 0, so that (9.2) is satisfied. Hence every point of the line CD is 
on VN-i. 

COROLLARY. The necessary and sufficient condition for any t-flat 2^ to be 
completely contained in VN-i is that any two points of 2t are conjugate with 
respect to VN-\. If 2tis contained in VN-i and a point C of Htis a regular point 
of VN-i, then 2 f is contained in the tangent space to VN-\ at C. 

The first part of the corollary is obvious. For the second part, we observe 
that if D is any point of S t , then D is conjugate to C and is therefore con­
tained in the polar hyperplane of C, which in this case is the tangent space 
to VN-i at C. 

THEOREM 9.1. If N = 2t + 1 or 2t + 2, then a non-degenerate Hermitian 
variety VN-\ contains flat spaces of dimension t and no higher. 
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We can without loss of generality take the equation of VN in the canonical 
form xrx(ff) = 0, i.e., we take H = IN+i, the unit matrix of order N + 1. Sup­
pose VN contains a /-flat determined by the t + 1 independent points Z70, 
Ui, . . . , Ut with row vectors u0, Ui, . . . , ut. Any two of these points are 
conjugate to each other with respect to VN-i. Hence 

(9.4) u < r u / « = 0 , ij = 0 , 1 , . . . , / . 

Let 
Uoo Uoi ' ' ' UON 

(9.5) UT = I Mio un • • • um 

\_U IQ U t\ • • • M IN 

be the (/ + 1) X (N + 1) matrix whose row vectors are u0
T, U137, . . . , u T. 

Since the rows of UT are independent, its rank is / + 1. Hence we can find at 
least / + 1 independent columns. We can suppose the first / + 1 columns 
of UT to be independent; for if this is not true, we can achieve it merely by a 
permutation of coordinates. Now the equation (9.4) may be rewritten as 

(9.6) UTU™ = 0. 

Let UiT be the matrix consisting of the first / + 1 columns of UT, and 
U2

T the matrix consisting of the last N — t columns. Then rank (UiT) = / + 1, 
rank (U2

T) < N - L Now from (9.6) 

(9.7) 
[UiT, US] I ~ \ * I = 0. 

Hence 

(9.8) UiT US + U2
T U2

(q) = 0. 

Since x —•» x(a) is an automorphism of GF(g2), rank UiT = rank Uia = t + 1. 
Hence 

(9.9) / + 1 = rank(t/1
77 U^) = r a n k ( - UX

T U2
(Q)) N - t, 

which shows that N > 2/ + 1. 
Changing / to / + 1, we find that if VN-i contains a flat space of dimension 

t + 1, then N > 2/ + 3. Hence if N = 2/ + 1 or 2/ + 2, then F ^ i cannot 
contain a flat space of dimensions higher than /. 

We shall next show that if N = 2/ + 1 or 2/ + 2, we can always find 
/ + 1 mutually conjugate points on VN-i. The flat space of / dimensions deter­
mined by these points must lie in VN-\. Choose any point U0 on VN-\. Let 
Siv-i be the polar space of U0. Then S^-i intersects VN-i in a degenerate Her-
mitian variety VN-2 contained in lïN-i of which Uo is the singular space; cf. 
Theorem 7.4. Now we can find an (TV — 2)-flat 2^_2 lying in 2iv-i, disjoint 
from Uo and intersecting \N-2 in a non-degenerate Hermitian variety VNs 
contained in 2^-2; cf. Theorem 7.1. Let Ui be any point on ^ - 3 . Since Ui 
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lies in 2^_i, it is conjugate to Uo. Now let 2JV_3 be the tangent space to VN-$ 
when considered as a variety of the space 2^-2, and let it intersect VN-i in 
the Hermitian variety VN-± of which U\ is the singular space. Again in 2^-3 
we can find a flat space 2^-4 of dimension N — 4 disjoint from U\ and inter­
secting FJV-4 in a non-degenerate Hermitian variety VN-$ contained in 2^_4. 
Let Ui be in VN-$. Then U% is conjugate to both U\ and Uo. Continuing in 
this way we obtain points J/0, Z7i, . . . , C/t mutually conjugate to one another, 
Ut lying on VN-2t-i- If iV = 2/ + 1 or 2/ + 2, we shall not be able to carry 
this process further. The flat space 2* determined by Uo, Ui, . . . , Ut lies 
completely in VN-\. 

Let \p(N, /, q2) denote the number of /-flats contained in a non-degenerate 
Hermitian variety VN-i in PG(iV, g2). Then we know that 

(9.10) *(N, 0, g2) = ^(iV, g2), *(2t + 1, £, g2) = ^(2/ + 2, *, q2) = 0 

for k > /, 

where 0(iV, q2) is given by (8.4). 
We shall next calculate the value of i (N, /, q2) when N = 2/ + 1 or 2/ + 2. 
First suppose iV = 2/ + 1. Let C be any point on Vit- Then the tangent 

space 22* at C to F2* cuts it in a Hermitian variety V^t-i contained in 22u 
for which C is the singular space. We can find a (2/ — l)-flat 22^-1 contained 
in 22 f and disjoint from C intersecting Vït-i hi a non-degenerate Hermitian 
variety ^2^-2. Now V2t-z contains \p(2t — 1, t — 1, g2) (2 — 1)-flats. Any of 
these (/ — 1)-flats together with C determines a /-flat contained in VN-\. 
Conversely if 2* is a /-flat contained in VN-\ and passing through C, then it 
is contained in 22* and intersects 22 «-1 in a (/ — l)-flat contained in ^2^-2-
Hence the number of /-flats contained in VN-i and passing through a fixed 
point C is \p (2t — 1, £ — 1, g2). But the number of points on I /

2 * i s# (2 /+ 1, g2), 
where 0(N, g2) is given by (8.4). We thus obtain \p(2t-l, / - l , g 2 )0(2/+l , g2) 
/-flats by considering all points of Vit. Here each /-flat has been counted 
/ ( / , g2) = (g2<*+1> — l) / (g 2 — 1) times since this is the number of points on 
a /-flat. Hence 

H2t + 1, t, 2
2) - ^ - M - i ; < ) ^ + i . g

2 ) 
J\P> ÇL ) 

= ( g 2 ' + 1 + l ) ^ ( 2 f - l , ; - l , « 7
2 ) . 

By successive reduction 

* ( 2 * + U , g * ) = ( g m i + 1 ) ( 2 î ^ i + 1 ) . . . ( g + 1 ) , 

since ^ ( 1 , 0, g2) = q + 1. 
In the same manner we can prove that 

*(2t + 2,t,q*) = (g2<+3 + l)(g2<+i + 1) . . . (g« + 1). 
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THEOREM 9.2. If ^ (Ny t, q2) denotes the number of t-flats on a non-degenerate 
Hermitian variety VN-i in PG(7V, g2), then 

(9.11) tf (2/ + 1, t, g2) = (g2<+1 + lKg2 ' "1 + 1) . . . (g + 1), 

(9.12) i(2t + 2,/,g2) = (g2'+3 + l ) ( g 2 ^ + 1) . . . (g3 + 1). 

10. Some designs associated with a non-degenerate Hermitian 
variety of two dimensions in PG(3, g2). Let F2 be a non-degenerate 
Hermitian variety in PG(3, q2). It follows from Theorem 8.1 that F 2 con­
tains (g3 + l)(g2 + 1) points. The case q = 2 is of special interest. In this 
case F2 is a cubic surface with 45 points. Again from Theorems 9.1 and 9.2, 
F2 does not contain any plane but is ruled by lines, (g2 + l)(g + 1) in 
number. In the special case g = 2, the number of lines is 27. The lines lying 
on V2 will be called generators of F2 . 

From Theorem 7.4, the tangent plane to F 2 at any point C intersects V2 
in a degenerate Hermitian variety V \ of rank 2 with C a s a singular point. 
It follows from Theorem 7.1 that if we take a line I in the tangent plane at 
C, disjoint from C, then / would intersect Vi in a non-degenerate Hermitian 
variety Vo of dimension 0, contained in /. It was shown in § 5 that F 0 con­
sists of a set of q + 1 distinct points P0, Pi, • • • > ^V It now follows from 
the corollary to Theorem 7.2 that V± consists of the set of q + 1 concurrent 
lines CPo, CPi, . . . , CPq. Thus the tangent plane to F 2 at any point C meets 
V2 in a set of q + 1 generators passing through C Conversely, from the 
corollary to Lemma 9.4, any generator through C is contained in the tangent 
plane at C, We have thus shown: Through any point C of Vi, there pass exactly 
q + 1 generators which constitute the intersection with V2 of the tangent plane 
at C. Now through C, there pass q2 + 1 lines lying in the tangent plane at 
C, out of which q + 1 are generators. The remaining q2 — q lines through C, 
which lie in the tangent plane meet V2 only in the single point. Lines meeting 
V2 in a single point C will be called tangents to V2 at the point where they 
meet F2. Through C, there will pass g4 lines not lying in the tangent plane 
at C. Now the q + 1 generators through C contain g3 + g2 + 1 points of F2 . 
Hence there are g5 points of V2 not lying on the tangent plane at C. On the 
other hand, any line through C not lying on the tangent plane must meet F2 
in a Hermitian variety F0*, which must consist of either q + 1 points or a 
single point, according as the rank is 2 or 1. Since each of the g5 points of V2 
not contained in the tangent plane must lie on some line through C, each 
of the g4 lines passing through C and not contained in the tangent plane at C 
must intersect V2 in exactly g + 1 points, one of which is C. This shows that Fo* 
must be of rank 2. Lines intersecting V2 in q + 1 points may be called secants. 
Any arbitrary line not a generator of V2 must either be a tangent or a secant. 

Let I be any generator of F2. From Theorem 7.3, the tangents to F2 at 
two distinct points of / must be distinct. There are exactly g2 + 1 points on 
/, and exactly g2 + 1 planes pass through /. Hence any plane through a generator 
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is tangent to V2 at some point, and intersects V2 in a set of a + 1 generators 
through the point of contact. Let P be a point on V2 disjoint from a given 
generator /. Then the plane ir containing P and / mus t be tangent to V2 a t 
some point C on /. Since P is on the intersection of V2 and w, CP mus t be 
a generator of V2. Since ir can be tangent to V2 a t only one point on CP, so 
7T is not the tangent plane a t P. Let 71-* be the tangent plane to V2 a t P. Then 
the a + 1 generators of V2 through P lie on 7r*. T h u s w and 71-* intersect in a 
single generator CP. We have thus shown t h a t given a generator I of V\ and 
a point P of V\ not on h there passes through P exactly one generator which 
meets I in a point. 

T h e concept of a partial geometry (r, k, t) was introduced by one of the 
authors in (4). I t is a system of two kinds of undefined elements called * ' po in t s" 
and " l ines" and an undefined relation of " incidence" satisfying the following 
axioms: 

A l . Any two points are incident with not more than one line. 
A2. Each point is incident with r lines. 
A3. Each line is incident with k points. 
A4. If the point P is not incident with the line I, there are exactly t lines ( /> 1) 

through P intersecting I. 

T H E O R E M 10.1. The configuration of points and generators of a Hermitian 
variety V2 in P G ( 3 , q2) form a partial geometry (q + 1, q2 + 1, 1). 

All the axioms A1-A4 are satisfied in view of the results already proved. 
From the connection established between par t ia l geometries and part ial ly 

balanced incomplete block ( P B I B ) designs in (4), it follows t h a t by identifying 
the points of V2 with t r ea tments , and the generators of V2 with blocks, we 
obtain the P B I B design with parameters 

(10.1) v = (q2 + 1)(<23 + 1), b = (q + l ) ( g 3 + 1), r = q + 1, k = q2 + 1, 

n i = q2(q + 1), n2 = q\ Pn1 = q2 - 1, Pn2 = 2 + 1 , Ai = 1, X2 = 0. 

Th is design was otherwise obtained by Ray-Chaudhur i (14). T h e case 
q = 2 was obtained earlier by Cla twor thy and one of the present au thors 
(6) . For the definition and other properties of P B I B designs the reader is 
referred to (5 ; 7; 8; 9 ) . 

Let Co and d be two dist inct points of V2 not on the same generator. Denote 
the line joining C0 and C\ by l\. Then h mus t be a secant to V2 and intersects 
V2 in q — 1 other points C2, . . . , Cq. Let 7r0 and m be the t angen t planes 
to V2 a t Co and d respectively. Now 7r0 cannot pass through C\. Otherwise 
Ci would be on the section of F2 by 7r0 and this would make C0 C\ a generator, 
cont rary to the hypothesis . Similarly, 71-1 cannot pass through Co. Let l2 be 
the line of intersection of T0 and ir\. Then l2 mus t be skew to l\. Since l2 is a 
line on T0 disjoint with Co, l2 meets V2 in q + 1 dist inct points Do, D\y . . . , Dq. 
Now Di (i = 0, 1, . . . , q) is conjugate to bo th C0 and C\. Hence the tangent 
plane 2* a t Dt passes through Co and C\ and so through the line l\. T h u s d 
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and Dj are conjugate (i,j = 0, 1, . . . , q — 1) and the lines CtDj are gene­
rators of V2. We have incidentally shown that if two points C0 and d on V2 
do not lie on a generator then there are exactly q + 1 points Dt on Vz such that 
both D i Co and Dt Ci are generators of V2. 

Now consider the special case q = 2. Then V2 is the cubic surface 
x0

s + X13 + X23 + x3
3 = 0 in PG(3, 22). It has 45 points and 27 generators. 

Through each point there pass three generators and on each generator lie 
five points. To each point P of V2 we may associate a set of 12 points, viz. the 
points (other than P) lying on the three generators through P. This set of 
points will be called the block corresponding to P. There are exactly 45 blocks, 
and each point P of V2 belongs to 12 blocks, viz. the blocks corresponding to 
the 12 points (other than P) lying on the three generators through P. 

Given two distinct points P and Q on V2, we shall show that there are 
exactly three blocks containing both P and Q. We have to consider two 
separate cases. First let P and Q lie on a generator /*. Now I* contains three 
other points besides P and Q, and both P and Q belong to the blocks corre­
sponding to each of these points. Again suppose P and Q lie on a secant. Then 
from what has been shown above, the line of intersection of the tangent 
planes at P and Q meets V2 in q + 1 = 3 points D0, Du D?. such that DtP 
and Di Q (i = 0, 1, 2) are both generators. Hence both P and Q belong to 
the blocks corresponding to D0, Di, and D2. 

Now a balanced incomplete block (BIB) design is a set of v objects or 
treatments, arranged into b sets or blocks such that (i) each block contains 
k distinct treatments, (ii) each treatment appears in exactly r blocks, (iii) 
any pair of objects occurs in exactly X blocks. The numbers v, b, r, k, X are 
called the parameters of the BIB design (2, 11). We may thus state: 

THEOREM 10.2. If V2 is a non-degenerate Hermitian variety in PG(3, 22), and 
if the points of V2 are identified with treatments, and if corresponding to each 
point P on V2 we define a block consisting of all points (other than P) on the 
generators through P, then the treatments and the blocks form a BIB design with 
parameters 

v = b = 45, r = k = 12, X = 3. 

This design has been otherwise obtained by Shrikhande and Singh (16) 
and by Takeuchi (17). 

There are many other interesting balanced and partially balanced incom­
plete block designs associated with Hermitian varieties. These will be dis­
cussed in a separate communication. 
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